1
|
Mayo-Muñoz D, Li H, Mestre MR, Pinilla-Redondo R. The role of noncoding RNAs in bacterial immunity. Trends Microbiol 2024:S0966-842X(24)00250-6. [PMID: 39396887 DOI: 10.1016/j.tim.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 10/15/2024]
Abstract
The evolutionary arms race between bacteria and phages has driven the development of diverse anti-phage defense mechanisms. Recent studies have identified noncoding RNAs (ncRNAs) as key players in bacteria-phage conflicts, including CRISPR-Cas, toxin-antitoxin (TA), and reverse transcriptase (RT)-based defenses; however, our understanding of their roles in immunity is still emerging. In this review, we explore the multifaceted roles of ncRNAs in bacterial immunity, offering insights into their contributions to defense and anti-defense mechanisms, their influence on immune regulatory networks, and potential biotechnological applications. Finally, we highlight key outstanding questions in the field to spark future research directions.
Collapse
Affiliation(s)
- David Mayo-Muñoz
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Huijuan Li
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Mario Rodríguez Mestre
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Rafael Pinilla-Redondo
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark.
| |
Collapse
|
2
|
Zou X, Mo Z, Wang L, Chen S, Lee SY. Overcoming Bacteriophage Contamination in Bioprocessing: Strategies and Applications. SMALL METHODS 2024:e2400932. [PMID: 39359025 DOI: 10.1002/smtd.202400932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/14/2024] [Indexed: 10/04/2024]
Abstract
Bacteriophage contamination has a devastating impact on the viability of bacterial hosts and can significantly reduce the productivity of bioprocesses in biotechnological industries. The consequences range from widespread fermentation failure to substantial economic losses, highlighting the urgent need for effective countermeasures. Conventional prevention methods, which focus primarily on the physical removal of bacteriophages from equipment, bioprocess units, and the environment, have proven ineffective in preventing phage entry and contamination. The coevolutionary dynamics between phages and their bacterial hosts have spurred the development of a diverse repertoire of antiviral defense mechanisms within microbial communities. These naturally occurring defense strategies can be harnessed through genetic engineering to convert phage-sensitive hosts into robust, phage-resistant cell factories, providing a strategic approach to mitigate the threats posed by bacteriophages to industrial bacterial processes. In this review, an overview of the various defense strategies and immune systems that curb the propagation of bacteriophages and highlight their applications in fermentation bioprocesses to combat phage contamination is provided. Additionally, the tactics employed by phages to circumvent these defense strategies are also discussed, as preventing the emergence of phage escape mutants is a key component of effective contamination management.
Collapse
Affiliation(s)
- Xuan Zou
- Intensive Care Unit, Shenzhen Key Laboratory of Microbiology in Genomic Modification & Editing and Application, Shenzhen Institute of Translational Medicine, Medical Innovation Technology Transformation Center of Shenzhen Second People's Hospital, Shenzhen Univeristy Medical School, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518035, China
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Synthetic Biology Research Center, Shenzhen University, Shenzhen, Guangdong, 518035, China
| | - Ziran Mo
- Department of Respiratory Diseases, Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, Guangdong, 518026, China
- Department of Gastroenterology, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Taikang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Lianrong Wang
- Department of Respiratory Diseases, Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, Guangdong, 518026, China
- Department of Gastroenterology, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Taikang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Shi Chen
- Intensive Care Unit, Shenzhen Key Laboratory of Microbiology in Genomic Modification & Editing and Application, Shenzhen Institute of Translational Medicine, Medical Innovation Technology Transformation Center of Shenzhen Second People's Hospital, Shenzhen Univeristy Medical School, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518035, China
- Synthetic Biology Research Center, Shenzhen University, Shenzhen, Guangdong, 518035, China
- Department of Gastroenterology, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Taikang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141, Republic of Korea
- BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, Daejeon, 34141, Republic of Korea
- Graduate School of Engineering Biology, KAIST, Daejeon, 34141, Republic of Korea
| |
Collapse
|
3
|
He L, Miguel-Romero L, Patkowski JB, Alqurainy N, Rocha EPC, Costa TRD, Fillol-Salom A, Penadés JR. Tail assembly interference is a common strategy in bacterial antiviral defenses. Nat Commun 2024; 15:7539. [PMID: 39215040 PMCID: PMC11364771 DOI: 10.1038/s41467-024-51915-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Many bacterial immune systems recognize phage structural components to activate antiviral responses, without inhibiting the function of the phage component. These systems can be encoded in specific chromosomal loci, known as defense islands, and in mobile genetic elements such as prophages and phage-inducible chromosomal islands (PICIs). Here, we identify a family of bacterial immune systems, named Tai (for 'tail assembly inhibition'), that is prevalent in PICIs, prophages and P4-like phage satellites. Tai systems protect their bacterial host population from other phages by blocking the tail assembly step, leading to the release of tailless phages incapable of infecting new hosts. To prevent autoimmunity, some Tai-positive phages have an associated counter-defense mechanism that is expressed during the phage lytic cycle and allows for tail formation. Interestingly, the Tai defense and counter-defense genes are organized in a non-contiguous operon, enabling their coordinated expression.
Collapse
Affiliation(s)
- Lingchen He
- Centre for Bacterial Resistance Biology, Imperial College London, London, UK
| | - Laura Miguel-Romero
- Centre for Bacterial Resistance Biology, Imperial College London, London, UK
- Instituto de Biomedicina de Valencia (IBV), CSIC, Valencia, Spain
| | - Jonasz B Patkowski
- Centre for Bacterial Resistance Biology, Imperial College London, London, UK
| | - Nasser Alqurainy
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Department of Basic Science, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences & King Abdullah International Medical Research Centre, Riyadh, Saudi Arabia
| | - Eduardo P C Rocha
- Institut Pasteur, Université de Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, Paris, France
| | - Tiago R D Costa
- Centre for Bacterial Resistance Biology, Imperial College London, London, UK
| | - Alfred Fillol-Salom
- Centre for Bacterial Resistance Biology, Imperial College London, London, UK.
| | - José R Penadés
- Centre for Bacterial Resistance Biology, Imperial College London, London, UK.
- School of Health Sciences, Universidad CEU Cardenal Herrera, CEU Universities, Alfara del Patriarca, Spain.
| |
Collapse
|
4
|
Wu Y, Garushyants SK, van den Hurk A, Aparicio-Maldonado C, Kushwaha SK, King CM, Ou Y, Todeschini TC, Clokie MRJ, Millard AD, Gençay YE, Koonin EV, Nobrega FL. Bacterial defense systems exhibit synergistic anti-phage activity. Cell Host Microbe 2024; 32:557-572.e6. [PMID: 38402614 PMCID: PMC11009048 DOI: 10.1016/j.chom.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/27/2024]
Abstract
Bacterial defense against phage predation involves diverse defense systems acting individually and concurrently, yet their interactions remain poorly understood. We investigated >100 defense systems in 42,925 bacterial genomes and identified numerous instances of their non-random co-occurrence and negative association. For several pairs of defense systems significantly co-occurring in Escherichia coli strains, we demonstrate synergistic anti-phage activity. Notably, Zorya II synergizes with Druantia III and ietAS defense systems, while tmn exhibits synergy with co-occurring systems Gabija, Septu I, and PrrC. For Gabija, tmn co-opts the sensory switch ATPase domain, enhancing anti-phage activity. Some defense system pairs that are negatively associated in E. coli show synergy and significantly co-occur in other taxa, demonstrating that bacterial immune repertoires are largely shaped by selection for resistance against host-specific phages rather than negative epistasis. Collectively, these findings demonstrate compatibility and synergy between defense systems, allowing bacteria to adopt flexible strategies for phage defense.
Collapse
Affiliation(s)
- Yi Wu
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Sofya K Garushyants
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Anne van den Hurk
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | | | - Simran Krishnakant Kushwaha
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK; Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India
| | - Claire M King
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Yaqing Ou
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Thomas C Todeschini
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Martha R J Clokie
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Andrew D Millard
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | | | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Franklin L Nobrega
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| |
Collapse
|
5
|
Dicks LMT, Vermeulen W. Bacteriophage-Host Interactions and the Therapeutic Potential of Bacteriophages. Viruses 2024; 16:478. [PMID: 38543843 PMCID: PMC10975011 DOI: 10.3390/v16030478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 05/23/2024] Open
Abstract
Healthcare faces a major problem with the increased emergence of antimicrobial resistance due to over-prescribing antibiotics. Bacteriophages may provide a solution to the treatment of bacterial infections given their specificity. Enzymes such as endolysins, exolysins, endopeptidases, endosialidases, and depolymerases produced by phages interact with bacterial surfaces, cell wall components, and exopolysaccharides, and may even destroy biofilms. Enzymatic cleavage of the host cell envelope components exposes specific receptors required for phage adhesion. Gram-positive bacteria are susceptible to phage infiltration through their peptidoglycan, cell wall teichoic acid (WTA), lipoteichoic acids (LTAs), and flagella. In Gram-negative bacteria, lipopolysaccharides (LPSs), pili, and capsules serve as targets. Defense mechanisms used by bacteria differ and include physical barriers (e.g., capsules) or endogenous mechanisms such as clustered regularly interspaced palindromic repeat (CRISPR)-associated protein (Cas) systems. Phage proteins stimulate immune responses against specific pathogens and improve antibiotic susceptibility. This review discusses the attachment of phages to bacterial cells, the penetration of bacterial cells, the use of phages in the treatment of bacterial infections, and the limitations of phage therapy. The therapeutic potential of phage-derived proteins and the impact that genomically engineered phages may have in the treatment of infections are summarized.
Collapse
Affiliation(s)
- Leon M. T. Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa;
| | | |
Collapse
|
6
|
Patel PH, Taylor VL, Zhang C, Getz LJ, Fitzpatrick AD, Davidson AR, Maxwell KL. Anti-phage defence through inhibition of virion assembly. Nat Commun 2024; 15:1644. [PMID: 38388474 PMCID: PMC10884400 DOI: 10.1038/s41467-024-45892-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Bacteria have evolved diverse antiviral defence mechanisms to protect themselves against phage infection. Phages integrated into bacterial chromosomes, known as prophages, also encode defences that protect the bacterial hosts in which they reside. Here, we identify a type of anti-phage defence that interferes with the virion assembly pathway of invading phages. The protein that mediates this defence, which we call Tab (for 'Tail assembly blocker'), is constitutively expressed from a Pseudomonas aeruginosa prophage. Tab allows the invading phage replication cycle to proceed, but blocks assembly of the phage tail, thus preventing formation of infectious virions. While the infected cell dies through the activity of the replicating phage lysis proteins, there is no release of infectious phage progeny, and the bacterial community is thereby protected from a phage epidemic. Prophages expressing Tab are not inhibited during their own lytic cycle because they express a counter-defence protein that interferes with Tab function. Thus, our work reveals an anti-phage defence that operates by blocking virion assembly, thereby both preventing formation of phage progeny and allowing destruction of the infected cell due to expression of phage lysis genes.
Collapse
Affiliation(s)
| | | | - Chi Zhang
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Landon J Getz
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | | | - Alan R Davidson
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Karen L Maxwell
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
7
|
Kienbeck K, Malfertheiner L, Zelger-Paulus S, Johannsen S, von Mering C, Sigel RKO. Identification of HDV-like theta ribozymes involved in tRNA-based recoding of gut bacteriophages. Nat Commun 2024; 15:1559. [PMID: 38378708 PMCID: PMC10879173 DOI: 10.1038/s41467-024-45653-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/29/2024] [Indexed: 02/22/2024] Open
Abstract
Trillions of microorganisms, collectively known as the microbiome, inhabit our bodies with the gut microbiome being of particular interest in biomedical research. Bacteriophages, the dominant virome constituents, can utilize suppressor tRNAs to switch to alternative genetic codes (e.g., the UAG stop-codon is reassigned to glutamine) while infecting hosts with the standard bacterial code. However, what triggers this switch and how the bacteriophage manipulates its host is poorly understood. Here, we report the discovery of a subgroup of minimal hepatitis delta virus (HDV)-like ribozymes - theta ribozymes - potentially involved in the code switch leading to the expression of recoded lysis and structural phage genes. We demonstrate their HDV-like self-scission behavior in vitro and find them in an unreported context often located with their cleavage site adjacent to tRNAs, indicating a role in viral tRNA maturation and/or regulation. Every fifth associated tRNA is a suppressor tRNA, further strengthening our hypothesis. The vast abundance of tRNA-associated theta ribozymes - we provide 1753 unique examples - highlights the importance of small ribozymes as an alternative to large enzymes that usually process tRNA 3'-ends. Our discovery expands the short list of biological functions of small HDV-like ribozymes and introduces a previously unknown player likely involved in the code switch of certain recoded gut bacteriophages.
Collapse
Affiliation(s)
- Kasimir Kienbeck
- Department of Chemistry, University of Zurich, Zurich, CH-8057, Switzerland
| | - Lukas Malfertheiner
- Department of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, Zurich, CH-8057, Switzerland
| | | | - Silke Johannsen
- Department of Chemistry, University of Zurich, Zurich, CH-8057, Switzerland
| | - Christian von Mering
- Department of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, Zurich, CH-8057, Switzerland.
| | - Roland K O Sigel
- Department of Chemistry, University of Zurich, Zurich, CH-8057, Switzerland.
| |
Collapse
|
8
|
Lou YC, Chen L, Borges AL, West-Roberts J, Firek BA, Morowitz MJ, Banfield JF. Infant gut DNA bacteriophage strain persistence during the first 3 years of life. Cell Host Microbe 2024; 32:35-47.e6. [PMID: 38096814 PMCID: PMC11156429 DOI: 10.1016/j.chom.2023.11.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/27/2023] [Accepted: 11/16/2023] [Indexed: 01/13/2024]
Abstract
Bacteriophages are key components of gut microbiomes, yet the phage colonization process in the infant gut remains uncertain. Here, we establish a large phage sequence database and use strain-resolved analyses to investigate DNA phage succession in infants throughout the first 3 years of life. Analysis of 819 fecal metagenomes collected from 28 full-term and 24 preterm infants and their mothers revealed that early-life phageome richness increases over time and reaches adult-like complexity by age 3. Approximately 9% of early phage colonizers, which are mostly maternally transmitted and infect Bacteroides, persist for 3 years and are more prevalent in full-term than in preterm infants. Although rare, phages with stop codon reassignment are more likely to persist than non-recoded phages and generally display an increase in in-frame reassigned stop codons over 3 years. Overall, maternal seeding, stop codon reassignment, host CRISPR-Cas locus prevalence, and diverse phage populations contribute to stable viral colonization.
Collapse
Affiliation(s)
- Yue Clare Lou
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - LinXing Chen
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA 94709, USA
| | - Adair L Borges
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jacob West-Roberts
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Brian A Firek
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Michael J Morowitz
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jillian F Banfield
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
9
|
Georjon H, Bernheim A. The highly diverse antiphage defence systems of bacteria. Nat Rev Microbiol 2023; 21:686-700. [PMID: 37460672 DOI: 10.1038/s41579-023-00934-x] [Citation(s) in RCA: 86] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2023] [Indexed: 09/14/2023]
Abstract
Bacteria and their viruses have coevolved for billions of years. This ancient and still ongoing arms race has led bacteria to develop a vast antiphage arsenal. The development of high-throughput screening methods expanded our knowledge of defence systems from a handful to more than a hundred systems, unveiling many different molecular mechanisms. These findings reveal that bacterial immunity is much more complex than previously thought. In this Review, we explore recently discovered bacterial antiphage defence systems, with a particular focus on their molecular diversity, and discuss the ecological and evolutionary drivers and implications of the existing diversity of antiphage defence mechanisms.
Collapse
Affiliation(s)
- Héloïse Georjon
- Molecular Diversity of Microbes Lab, Institut Pasteur, Université Paris Cité, INSERM, Paris, France
| | - Aude Bernheim
- Molecular Diversity of Microbes Lab, Institut Pasteur, Université Paris Cité, INSERM, Paris, France.
| |
Collapse
|
10
|
Mayo-Muñoz D, Pinilla-Redondo R, Birkholz N, Fineran PC. A host of armor: Prokaryotic immune strategies against mobile genetic elements. Cell Rep 2023; 42:112672. [PMID: 37347666 DOI: 10.1016/j.celrep.2023.112672] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/22/2023] [Accepted: 06/02/2023] [Indexed: 06/24/2023] Open
Abstract
Prokaryotic adaptation is strongly influenced by the horizontal acquisition of beneficial traits via mobile genetic elements (MGEs), such as viruses/bacteriophages and plasmids. However, MGEs can also impose a fitness cost due to their often parasitic nature and differing evolutionary trajectories. In response, prokaryotes have evolved diverse immune mechanisms against MGEs. Recently, our understanding of the abundance and diversity of prokaryotic immune systems has greatly expanded. These defense systems can degrade the invading genetic material, inhibit genome replication, or trigger abortive infection, leading to population protection. In this review, we highlight these strategies, focusing on the most recent discoveries. The study of prokaryotic defenses not only sheds light on microbial evolution but also uncovers novel enzymatic activities with promising biotechnological applications.
Collapse
Affiliation(s)
- David Mayo-Muñoz
- Department of Microbiology and Immunology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; Genetics Otago, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Rafael Pinilla-Redondo
- Department of Microbiology and Immunology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Nils Birkholz
- Department of Microbiology and Immunology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; Genetics Otago, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; Bioprotection Aotearoa, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; Genetics Otago, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; Bioprotection Aotearoa, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand.
| |
Collapse
|
11
|
Sultan-Alolama MI, Amin A, Vijayan R, El-Tarabily KA. Isolation, Characterization, and Comparative Genomic Analysis of Bacteriophage Ec_MI-02 from Pigeon Feces Infecting Escherichia coli O157:H7. Int J Mol Sci 2023; 24:ijms24119506. [PMID: 37298457 DOI: 10.3390/ijms24119506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
The most significant serotype of Shiga-toxigenic Escherichia coli that causes foodborne illnesses is Escherichia coli O157:H7. Elimination of E. coli O157:H7 during food processing and storage is a possible solution. Bacteriophages have a significant impact on bacterial populations in nature due to their ability to lyse their bacterial host. In the current study, a virulent bacteriophage, Ec_MI-02, was isolated from the feces of a wild pigeon in the United Arab Emirates (UAE) for potential future use as a bio-preservative or in phage therapy. Using a spot test and an efficiency of plating analysis, Ec_MI-02 was found to infect in addition to the propagation host, E. coli O157:H7 NCTC 12900, five different serotypes of E. coli O157:H7 (three clinical samples from infected patients, one from contaminated green salad, and one from contaminated ground beef). Based on morphology and genome analysis, Ec_MI-02 belongs to the genus Tequatrovirus under the order Caudovirales. The adsorption rate constant (K) of Ec_MI-02 was found to be 1.55 × 10-8 mL/min. The latent period was 50 min with a burst size of almost 10 plaque forming units (pfu)/host cell in the one-step growth curve when the phage Ec_MI-02 was cultivated using the propagation host E. coli O157:H7 NCTC 12900. Ec_MI-02 was found to be stable at a wide range of pH, temperature, and commonly used laboratory disinfectants. Its genome is 165,454 bp long with a GC content of 35.5% and encodes 266 protein coding genes. Ec_MI-02 has genes encoding for rI, rII, and rIII lysis inhibition proteins, which supports the observation of delayed lysis in the one-step growth curve. The current study provides additional evidence that wild birds could also be a good natural reservoir for bacteriophages that do not carry antibiotic resistance genes and could be good candidates for phage therapy. In addition, studying the genetic makeup of bacteriophages that infect human pathogens is crucial for ensuring their safe usage in the food industry.
Collapse
Affiliation(s)
- Mohamad Ismail Sultan-Alolama
- Zayed Complex for Herbal Research and Traditional Medicine, Research and Innovation Center, Department of Health, Abu Dhabi 5674, United Arab Emirates
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Amr Amin
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Ranjit Vijayan
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- The Big Data Analytics Center, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
| |
Collapse
|
12
|
Sather LM, Zamani M, Muhammed Z, Kearsley JVS, Fisher GT, Jones KM, Finan TM. A broadly distributed predicted helicase/nuclease confers phage resistance via abortive infection. Cell Host Microbe 2023; 31:343-355.e5. [PMID: 36893733 DOI: 10.1016/j.chom.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/16/2022] [Accepted: 01/11/2023] [Indexed: 03/11/2023]
Abstract
There is strong selection for the evolution of systems that protect bacterial populations from viral attack. We report a single phage defense protein, Hna, that provides protection against diverse phages in Sinorhizobium meliloti, a nitrogen-fixing alpha-proteobacterium. Homologs of Hna are distributed widely across bacterial lineages, and a homologous protein from Escherichia coli also confers phage defense. Hna contains superfamily II helicase motifs at its N terminus and a nuclease motif at its C terminus, with mutagenesis of these motifs inactivating viral defense. Hna variably impacts phage DNA replication but consistently triggers an abortive infection response in which infected cells carrying the system die but do not release phage progeny. A similar host cell response is triggered in cells containing Hna upon expression of a phage-encoded single-stranded DNA binding protein (SSB), independent of phage infection. Thus, we conclude that Hna limits phage spread by initiating abortive infection in response to a phage protein.
Collapse
Affiliation(s)
- Leah M Sather
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada
| | - Maryam Zamani
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada
| | - Zahed Muhammed
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada
| | - Jason V S Kearsley
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada
| | - Gabrielle T Fisher
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Kathryn M Jones
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Turlough M Finan
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
13
|
Teklemariam AD, Al-Hindi RR, Qadri I, Alharbi MG, Ramadan WS, Ayubu J, Al-Hejin AM, Hakim RF, Hakim FF, Hakim RF, Alseraihi LI, Alamri T, Harakeh S. The Battle between Bacteria and Bacteriophages: A Conundrum to Their Immune System. Antibiotics (Basel) 2023; 12:381. [PMID: 36830292 PMCID: PMC9952470 DOI: 10.3390/antibiotics12020381] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Bacteria and their predators, bacteriophages, or phages are continuously engaged in an arms race for their survival using various defense strategies. Several studies indicated that the bacterial immune arsenal towards phage is quite diverse and uses different components of the host machinery. Most studied antiphage systems are associated with phages, whose genomic matter is double-stranded-DNA. These defense mechanisms are mainly related to either the host or phage-derived proteins and other associated structures and biomolecules. Some of these strategies include DNA restriction-modification (R-M), spontaneous mutations, blocking of phage receptors, production of competitive inhibitors and extracellular matrix which prevent the entry of phage DNA into the host cytoplasm, assembly interference, abortive infection, toxin-antitoxin systems, bacterial retrons, and secondary metabolite-based replication interference. On the contrary, phages develop anti-phage resistance defense mechanisms in consortium with each of these bacterial phage resistance strategies with small fitness cost. These mechanisms allow phages to undergo their replication safely inside their bacterial host's cytoplasm and be able to produce viable, competent, and immunologically endured progeny virions for the next generation. In this review, we highlight the major bacterial defense systems developed against their predators and some of the phage counterstrategies and suggest potential research directions.
Collapse
Affiliation(s)
- Addisu D. Teklemariam
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rashad R. Al-Hindi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ishtiaq Qadri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mona G. Alharbi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Wafaa S. Ramadan
- Department of Anatomy, Faculty of Medicine (FM), King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Anatomy, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Jumaa Ayubu
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ahmed M. Al-Hejin
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Microbiology Level 2 Laboratory, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
| | | | - Fanar F. Hakim
- Department of Internal Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rahad F. Hakim
- Ibn Sina National College for Medical Studies, Jeddah 21418, Saudi Arabia
| | | | - Turki Alamri
- Family and Community Medicine Department, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Steve Harakeh
- King Fahd Medical Research Center, Yousef Abdullatif Jameel Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
14
|
Escobedo S, Pérez de Pipaon M, Rendueles C, Rodríguez A, Martínez B. Cell wall modifications that alter the exolytic activity of lactococcal phage endolysins have little impact on phage growth. Front Microbiol 2023; 14:1106049. [PMID: 36744092 PMCID: PMC9894900 DOI: 10.3389/fmicb.2023.1106049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/04/2023] [Indexed: 01/22/2023] Open
Abstract
Bacteriophages are a nuisance in the production of fermented dairy products driven by starter bacteria and strategies to reduce the risk of phage infection are permanently sought. Bearing in mind that the bacterial cell wall plays a pivotal role in host recognition and lysis, our goal was to elucidate to which extent modifications in the cell wall may alter endolysin activity and influence the outcome of phage infection in Lactococcus. Three lactococcal endolysins with distinct catalytic domains (CHAP, amidase and lysozyme) from phages 1,358, p2 and c2 respectively, were purified and their exolytic activity was tested against lactococcal mutants either overexpressing or lacking genes involved in the cell envelope stress (CES) response or in modifying peptidoglycan (PG) composition. After recombinant production in E. coli, Lys1358 (CHAP) and LysC2 (muramidase) were able to lyse lactococcal cells in turbidity reduction assays, but no activity of LysP2 was detected. The degree of PG acetylation, namely C6-O-acetylation and de-N-acetylation influenced the exolytic activity, being LysC2 more active against cells depleted of the PG deacetylase PgdA and the O-acetyl transferase OatA. On the contrary, both endolysins showed reduced activity on cells with an induced CES response. By measuring several growth parameters of phage c2 on these lactococcal mutants (lytic score, efficiency of plaquing, plaque size and one-step curves), a direct link between the exolytic activity of its endolysin and phage performance could not be stablished.
Collapse
|
15
|
Borges AL, Lou YC, Sachdeva R, Al-Shayeb B, Penev PI, Jaffe AL, Lei S, Santini JM, Banfield JF. Widespread stop-codon recoding in bacteriophages may regulate translation of lytic genes. Nat Microbiol 2022; 7:918-927. [PMID: 35618772 PMCID: PMC9197471 DOI: 10.1038/s41564-022-01128-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 04/21/2022] [Indexed: 11/09/2022]
Abstract
Bacteriophages (phages) are obligate parasites that use host bacterial translation machinery to produce viral proteins. However, some phages have alternative genetic codes with reassigned stop codons that are predicted to be incompatible with bacterial translation systems. We analysed 9,422 phage genomes and found that stop-codon recoding has evolved in diverse clades of phages that infect bacteria present in both human and animal gut microbiota. Recoded stop codons are particularly over-represented in phage structural and lysis genes. We propose that recoded stop codons might function to prevent premature production of late-stage proteins. Stop-codon recoding has evolved several times in closely related lineages, which suggests that adaptive recoding can occur over very short evolutionary timescales.
Collapse
Affiliation(s)
- Adair L Borges
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Environmental Science, Policy and Management, University of California, Berkeley, CA, USA
| | - Yue Clare Lou
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Rohan Sachdeva
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Earth and Planetary Science, University of California, Berkeley, CA, USA
| | - Basem Al-Shayeb
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Petar I Penev
- Earth and Planetary Science, University of California, Berkeley, CA, USA
| | - Alexander L Jaffe
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Shufei Lei
- Earth and Planetary Science, University of California, Berkeley, CA, USA
| | - Joanne M Santini
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
| | - Jillian F Banfield
- Innovative Genomics Institute, University of California, Berkeley, CA, USA.
- Environmental Science, Policy and Management, University of California, Berkeley, CA, USA.
- Earth and Planetary Science, University of California, Berkeley, CA, USA.
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
16
|
Zeng Z, Chen Y, Pinilla-Redondo R, Shah SA, Zhao F, Wang C, Hu Z, Wu C, Zhang C, Whitaker RJ, She Q, Han W. A short prokaryotic Argonaute activates membrane effector to confer antiviral defense. Cell Host Microbe 2022; 30:930-943.e6. [PMID: 35594868 DOI: 10.1016/j.chom.2022.04.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/25/2022] [Accepted: 04/26/2022] [Indexed: 11/03/2022]
Abstract
Argonaute (Ago) proteins are widespread nucleic-acid-guided enzymes that recognize targets through complementary base pairing. Although, in eukaryotes, Agos are involved in RNA silencing, the functions of prokaryotic Agos (pAgos) remain largely unknown. In particular, a clade of truncated and catalytically inactive pAgos (short pAgos) lacks characterization. Here, we reveal that a short pAgo protein in the archaeon Sulfolobus islandicus, together with its two genetically associated proteins, Aga1 and Aga2, provide robust antiviral protection via abortive infection. Aga2 is a toxic transmembrane effector that binds anionic phospholipids via a basic pocket, resulting in membrane depolarization and cell killing. Ago and Aga1 form a stable complex that exhibits nucleic-acid-directed nucleic-acid-recognition ability and directly interacts with Aga2, pointing to an immune sensing mechanism. Together, our results highlight the cooperation between pAgos and their widespread associated proteins, suggesting an uncharted diversity of pAgo-derived immune systems.
Collapse
Affiliation(s)
- Zhifeng Zeng
- State Key Laboratory of Agricultural Microbiology and College of Life Sciences and Technology, Huazhong Agricultural University, 430070 Wuhan, China; Hubei Hongshan Laboratory, 430070 Wuhan, China
| | - Yu Chen
- State Key Laboratory of Agricultural Microbiology and College of Life Sciences and Technology, Huazhong Agricultural University, 430070 Wuhan, China; Hubei Hongshan Laboratory, 430070 Wuhan, China
| | - Rafael Pinilla-Redondo
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Shiraz A Shah
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Ledreborg Alle 34, 2820 Gentofte, Denmark
| | - Fen Zhao
- Hubei Hongshan Laboratory, 430070 Wuhan, China; National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, 430070 Wuhan, China
| | - Chen Wang
- Hubei Hongshan Laboratory, 430070 Wuhan, China; National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, 430070 Wuhan, China
| | - Zeyu Hu
- State Key Laboratory of Agricultural Microbiology and College of Life Sciences and Technology, Huazhong Agricultural University, 430070 Wuhan, China; Hubei Hongshan Laboratory, 430070 Wuhan, China
| | - Chang Wu
- State Key Laboratory of Agricultural Microbiology and College of Life Sciences and Technology, Huazhong Agricultural University, 430070 Wuhan, China; Hubei Hongshan Laboratory, 430070 Wuhan, China
| | - Changyi Zhang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA
| | - Rachel J Whitaker
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA
| | - Qunxin She
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Jimo, 266237 Qingdao, China
| | - Wenyuan Han
- State Key Laboratory of Agricultural Microbiology and College of Life Sciences and Technology, Huazhong Agricultural University, 430070 Wuhan, China; Hubei Hongshan Laboratory, 430070 Wuhan, China.
| |
Collapse
|
17
|
González-Delgado A, Mestre MR, Martínez-Abarca F, Toro N. Prokaryotic reverse transcriptases: from retroelements to specialized defense systems. FEMS Microbiol Rev 2021; 45:fuab025. [PMID: 33983378 PMCID: PMC8632793 DOI: 10.1093/femsre/fuab025] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/07/2021] [Indexed: 12/30/2022] Open
Abstract
Reverse transcriptases (RTs) catalyze the polymerization of DNA from an RNA template. These enzymes were first discovered in RNA tumor viruses in 1970, but it was not until 1989 that they were found in prokaryotes as a key component of retrons. Apart from RTs encoded by the 'selfish' mobile retroelements known as group II introns, prokaryotic RTs are extraordinarily diverse, but their function has remained elusive. However, recent studies have revealed that different lineages of prokaryotic RTs, including retrons, those associated with CRISPR-Cas systems, Abi-like RTs and other yet uncharacterized RTs, are key components of different lines of defense against phages and other mobile genetic elements. Prokaryotic RTs participate in various antiviral strategies, including abortive infection (Abi), in which the infected cell is induced to commit suicide to protect the host population, adaptive immunity, in which a memory of previous infection is used to build an efficient defense, and other as yet unidentified mechanisms. These prokaryotic enzymes are attracting considerable attention, both for use in cutting-edge technologies, such as genome editing, and as an emerging research topic. In this review, we discuss what is known about prokaryotic RTs, and the exciting evidence for their domestication from retroelements to create specialized defense systems.
Collapse
Affiliation(s)
- Alejandro González-Delgado
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Structure, Dynamics and Function of Rhizobacterial Genomes, Grupo de Ecología Genética de la Rizosfera, C/ Profesor Albareda 1, 18008 Granada, Spain
| | - Mario Rodríguez Mestre
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Structure, Dynamics and Function of Rhizobacterial Genomes, Grupo de Ecología Genética de la Rizosfera, C/ Profesor Albareda 1, 18008 Granada, Spain
- Department of Biochemistry, Universidad Autónoma de Madrid and Instituto de Investigaciones Biomédicas “Alberto Sols”, CSIC-UAM, Madrid, Spain
| | - Francisco Martínez-Abarca
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Structure, Dynamics and Function of Rhizobacterial Genomes, Grupo de Ecología Genética de la Rizosfera, C/ Profesor Albareda 1, 18008 Granada, Spain
| | - Nicolás Toro
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Structure, Dynamics and Function of Rhizobacterial Genomes, Grupo de Ecología Genética de la Rizosfera, C/ Profesor Albareda 1, 18008 Granada, Spain
| |
Collapse
|
18
|
Owen SV, Wenner N, Dulberger CL, Rodwell EV, Bowers-Barnard A, Quinones-Olvera N, Rigden DJ, Rubin EJ, Garner EC, Baym M, Hinton JCD. Prophages encode phage-defense systems with cognate self-immunity. Cell Host Microbe 2021; 29:1620-1633.e8. [PMID: 34597593 PMCID: PMC8585504 DOI: 10.1016/j.chom.2021.09.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 02/23/2021] [Accepted: 09/03/2021] [Indexed: 12/18/2022]
Abstract
Temperate phages are pervasive in bacterial genomes, existing as vertically inherited islands termed prophages. Prophages are vulnerable to predation of their host bacterium by exogenous phages. Here, we identify BstA, a family of prophage-encoded phage-defense proteins in diverse Gram-negative bacteria. BstA localizes to sites of exogenous phage DNA replication and mediates abortive infection, suppressing the competing phage epidemic. During lytic replication, the BstA-encoding prophage is not itself inhibited by BstA due to self-immunity conferred by the anti-BstA (aba) element, a short stretch of DNA within the bstA locus. Inhibition of phage replication by distinct BstA proteins from Salmonella, Klebsiella, and Escherichia prophages is generally interchangeable, but each possesses a cognate aba element. The specificity of the aba element ensures that immunity is exclusive to the replicating prophage, preventing exploitation by variant BstA-encoding phages. The BstA protein allows prophages to defend host cells against exogenous phage attack without sacrificing the ability to replicate lytically. BstA is an abortive infection protein found in prophages of Gram-negative bacteria aba, a short DNA sequence within the bstA locus, acts as a self-immunity element aba gives BstA-encoding prophages immunity to BstA-driven abortive infection Variant BstA proteins have distinct and cognate aba elements
Collapse
Affiliation(s)
- Siân V Owen
- Department of Biomedical Informatics and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA.
| | - Nicolas Wenner
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, UK; Biozentrum, University of Basel, Basel, Switzerland
| | - Charles L Dulberger
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Molecular and Cellular Biology, Harvard University, Boston, MA, USA
| | - Ella V Rodwell
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Arthur Bowers-Barnard
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Natalia Quinones-Olvera
- Department of Biomedical Informatics and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Daniel J Rigden
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Eric J Rubin
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ethan C Garner
- Department of Molecular and Cellular Biology, Harvard University, Boston, MA, USA
| | - Michael Baym
- Department of Biomedical Informatics and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA.
| | - Jay C D Hinton
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, UK.
| |
Collapse
|
19
|
Growth characteristics of lytic cyanophages newly isolated from the Nakdong River, Korea. Virus Res 2021; 306:198600. [PMID: 34648883 DOI: 10.1016/j.virusres.2021.198600] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/03/2021] [Accepted: 10/04/2021] [Indexed: 11/20/2022]
Abstract
Cyanophages are primary regulators of cyanobacterial harmful algal blooms (CyanoHABs), and they control host cyanobacterial dynamics, frequency, and diversity in the aquatic environment. This study deals with growth characteristics of three lytic cyanophages, Myoviridae AGM-1, Myoviridae NGM-1, and Podoviridae NDP-1, newly isolated from the Nakdong River in South Korea. These isolates are capable of infecting Amazoninema brasiliense, Nododsilinea nodulosa, and Nostoc sp. The results showed that abiotic parameters such as water temperature and pH balance significantly affect the growth of a cyanophage and the interaction with its host in the aquatic environment. The optimal growth conditions of the newly isolated cyanophages are less than 37 °C and pH 9, whereas optimal conditions are 25-30 °C and pH 7 for the cyanobacteria used as hosts. However, each cyanophage was found to have significantly different growth characteristics in phage titer, latent period, and burst size, depending on the characteristics of the species. Among the three cyanophages, Podoviridae NDP-1 showed the highest burst size and infection activity. The lower the designed multiplicity of infection (MOI) ratio (0.01 to 10), the longer it takes to lyse the host cells. The minimum MOI value for sustainable biocontrol of CyanoHABs is proposed as MOI=1. These results can be used as basic information in further studies, such as pyophage control of CyanoHABs and enrichment of cyanophages with high activity.
Collapse
|
20
|
Isaev AB, Musharova OS, Severinov KV. Microbial Arsenal of Antiviral Defenses. Part II. BIOCHEMISTRY (MOSCOW) 2021; 86:449-470. [PMID: 33941066 DOI: 10.1134/s0006297921040064] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Bacteriophages or phages are viruses that infect bacterial cells (for the scope of this review we will also consider viruses that infect Archaea). The constant threat of phage infection is a major force that shapes evolution of microbial genomes. To withstand infection, bacteria had evolved numerous strategies to avoid recognition by phages or to directly interfere with phage propagation inside the cell. Classical molecular biology and genetic engineering had been deeply intertwined with the study of phages and host defenses. Nowadays, owing to the rise of phage therapy, broad application of CRISPR-Cas technologies, and development of bioinformatics approaches that facilitate discovery of new systems, phage biology experiences a revival. This review describes variety of strategies employed by microbes to counter phage infection. In the first part defense associated with cell surface, roles of small molecules, and innate immunity systems relying on DNA modification were discussed. The second part focuses on adaptive immunity systems, abortive infection mechanisms, defenses associated with mobile genetic elements, and novel systems discovered in recent years through metagenomic mining.
Collapse
Affiliation(s)
- Artem B Isaev
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow, 143028, Russia.
| | - Olga S Musharova
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow, 143028, Russia. .,Institute of Molecular Genetics, Moscow, 119334, Russia
| | - Konstantin V Severinov
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow, 143028, Russia. .,Waksman Institute of Microbiology, Piscataway, NJ 08854, USA
| |
Collapse
|
21
|
Romero DA, Magill D, Millen A, Horvath P, Fremaux C. Dairy lactococcal and streptococcal phage-host interactions: an industrial perspective in an evolving phage landscape. FEMS Microbiol Rev 2021; 44:909-932. [PMID: 33016324 DOI: 10.1093/femsre/fuaa048] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022] Open
Abstract
Almost a century has elapsed since the discovery of bacteriophages (phages), and 85 years have passed since the emergence of evidence that phages can infect starter cultures, thereby impacting dairy fermentations. Soon afterward, research efforts were undertaken to investigate phage interactions regarding starter strains. Investigations into phage biology and morphology and phage-host relationships have been aimed at mitigating the negative impact phages have on the fermented dairy industry. From the viewpoint of a supplier of dairy starter cultures, this review examines the composition of an industrial phage collection, providing insight into the development of starter strains and cultures and the evolution of phages in the industry. Research advances in the diversity of phages and structural bases for phage-host recognition and an overview of the perpetual arms race between phage virulence and host defense are presented, with a perspective toward the development of improved phage-resistant starter culture systems.
Collapse
Affiliation(s)
- Dennis A Romero
- DuPont Nutrition and Biosciences, 3329 Agriculture Dr., Madison, WI 53716, USA
| | - Damian Magill
- DuPont Nutrition and Biosciences, CS 10010, Dangé-Saint-Romain 86220, France
| | - Anne Millen
- DuPont Nutrition and Biosciences, 3329 Agriculture Dr., Madison, WI 53716, USA
| | - Philippe Horvath
- DuPont Nutrition and Biosciences, CS 10010, Dangé-Saint-Romain 86220, France
| | - Christophe Fremaux
- DuPont Nutrition and Biosciences, CS 10010, Dangé-Saint-Romain 86220, France
| |
Collapse
|
22
|
Mestre MR, González-Delgado A, Gutiérrez-Rus LI, Martínez-Abarca F, Toro N. Systematic prediction of genes functionally associated with bacterial retrons and classification of the encoded tripartite systems. Nucleic Acids Res 2021; 48:12632-12647. [PMID: 33275130 PMCID: PMC7736814 DOI: 10.1093/nar/gkaa1149] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/05/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
Bacterial retrons consist of a reverse transcriptase (RT) and a contiguous non-coding RNA (ncRNA) gene. One third of annotated retrons carry additional open reading frames (ORFs), the contribution and significance of which in retron biology remains to be determined. In this study we developed a computational pipeline for the systematic prediction of genes specifically associated with retron RTs based on a previously reported large dataset representative of the diversity of prokaryotic RTs. We found that retrons generally comprise a tripartite system composed of the ncRNA, the RT and an additional protein or RT-fused domain with diverse enzymatic functions. These retron systems are highly modular, and their components have coevolved to different extents. Based on the additional module, we classified retrons into 13 types, some of which include additional variants. Our findings provide a basis for future studies on the biological function of retrons and for expanding their biotechnological applications.
Collapse
Affiliation(s)
- Mario Rodríguez Mestre
- Structure, Dynamics and Function of Rhizobacterial Genomes, Grupo de Ecología Genética de la Rizosfera, Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/ Profesor Albareda 1, 18008 Granada, Spain
| | - Alejandro González-Delgado
- Structure, Dynamics and Function of Rhizobacterial Genomes, Grupo de Ecología Genética de la Rizosfera, Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/ Profesor Albareda 1, 18008 Granada, Spain
| | - Luis I Gutiérrez-Rus
- Departamento de Química Física. Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Francisco Martínez-Abarca
- Structure, Dynamics and Function of Rhizobacterial Genomes, Grupo de Ecología Genética de la Rizosfera, Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/ Profesor Albareda 1, 18008 Granada, Spain
| | - Nicolás Toro
- Structure, Dynamics and Function of Rhizobacterial Genomes, Grupo de Ecología Genética de la Rizosfera, Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/ Profesor Albareda 1, 18008 Granada, Spain
| |
Collapse
|
23
|
Abstract
Facing frequent phage challenges, bacteria have evolved numerous mechanisms to resist phage infection. A commonly used phage resistance strategy is abortive infection (Abi), in which the infected cell commits suicide before the phage can complete its replication cycle. Abi prevents the phage epidemic from spreading to nearby cells, thus protecting the bacterial colony. The Abi strategy is manifested by a plethora of mechanistically diverse defense systems that are abundant in bacterial genomes. In turn, phages have developed equally diverse mechanisms to overcome bacterial Abi. This review summarizes the current knowledge on bacterial defense via cell suicide. It describes the principles of Abi, details how these principles are implemented in a variety of natural defense systems, and discusses phage counter-defense mechanisms.
Collapse
Affiliation(s)
- Anna Lopatina
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel;
| | - Nitzan Tal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel;
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel;
| |
Collapse
|
24
|
Hays SG, Seed KD. Dominant Vibrio cholerae phage exhibits lysis inhibition sensitive to disruption by a defensive phage satellite. eLife 2020; 9:e53200. [PMID: 32329714 PMCID: PMC7182436 DOI: 10.7554/elife.53200] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/01/2020] [Indexed: 12/28/2022] Open
Abstract
Bacteria, bacteriophages that prey upon them, and mobile genetic elements (MGEs) compete in dynamic environments, evolving strategies to sense the milieu. The first discovered environmental sensing by phages, lysis inhibition, has only been characterized and studied in the limited context of T-even coliphages. Here, we discover lysis inhibition in the etiological agent of the diarrheal disease cholera, Vibrio cholerae, infected by ICP1, a phage ubiquitous in clinical samples. This work identifies the ICP1-encoded holin, teaA, and antiholin, arrA, that mediate lysis inhibition. Further, we show that an MGE, the defensive phage satellite PLE, collapses lysis inhibition. Through lysis inhibition disruption a conserved PLE protein, LidI, is sufficient to limit the phage produced from infection, bottlenecking ICP1. These studies link a novel incarnation of the classic lysis inhibition phenomenon with conserved defensive function of a phage satellite in a disease context, highlighting the importance of lysis timing during infection and parasitization.
Collapse
Affiliation(s)
- Stephanie G Hays
- Department of Plant and Microbial Biology, University of CaliforniaBerkeleyUnited States
| | - Kimberley D Seed
- Department of Plant and Microbial Biology, University of CaliforniaBerkeleyUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| |
Collapse
|
25
|
Safari F, Sharifi M, Farajnia S, Akbari B, Karimi Baba Ahmadi M, Negahdaripour M, Ghasemi Y. The interaction of phages and bacteria: the co-evolutionary arms race. Crit Rev Biotechnol 2019; 40:119-137. [PMID: 31793351 DOI: 10.1080/07388551.2019.1674774] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Since the dawn of life, bacteria and phages are locked in a constant battle and both are perpetually changing their tactics to overcome each other. Bacteria use various strategies to overcome the invading phages, including adsorption inhibition, restriction-modification (R/E) systems, CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated proteins) systems, abortive infection (Abi), etc. To counteract, phages employ intelligent tactics for the nullification of bacterial defense systems, such as accessing host receptors, evading R/E systems, and anti-CRISPR proteins. Intense knowledge about the details of these defense pathways is the basis for their broad utilities in various fields of research from microbiology to biotechnology. Hence, in this review, we discuss some strategies used by bacteria to inhibit phage infections as well as phage tactics to circumvent bacterial defense systems. In addition, the application of these strategies will be described as a lesson learned from bacteria and phage combats. The ecological factors that affect the evolution of bacterial immune systems is the other issue represented in this review.
Collapse
Affiliation(s)
- Fatemeh Safari
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrdad Sharifi
- Department of Emergency Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Safar Farajnia
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Akbari
- Department of Medical Biotechnology, School of Medical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Younes Ghasemi
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
26
|
Promises and Pitfalls of In Vivo Evolution to Improve Phage Therapy. Viruses 2019; 11:v11121083. [PMID: 31766537 PMCID: PMC6950294 DOI: 10.3390/v11121083] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 12/26/2022] Open
Abstract
Phage therapy is the use of bacterial viruses (phages) to treat bacterial infections, a medical intervention long abandoned in the West but now experiencing a revival. Currently, therapeutic phages are often chosen based on limited criteria, sometimes merely an ability to plate on the pathogenic bacterium. Better treatment might result from an informed choice of phages. Here we consider whether phages used to treat the bacterial infection in a patient may specifically evolve to improve treatment on that patient or benefit subsequent patients. With mathematical and computational models, we explore in vivo evolution for four phage properties expected to influence therapeutic success: generalized phage growth, phage decay rate, excreted enzymes to degrade protective bacterial layers, and growth on resistant bacteria. Within-host phage evolution is strongly aligned with treatment success for phage decay rate but only partially aligned for phage growth rate and growth on resistant bacteria. Excreted enzymes are mostly not selected for treatment success. Even when evolution and treatment success are aligned, evolution may not be rapid enough to keep pace with bacterial evolution for maximum benefit. An informed use of phages is invariably superior to naive reliance on within-host evolution.
Collapse
|
27
|
The pan-immune system of bacteria: antiviral defence as a community resource. Nat Rev Microbiol 2019; 18:113-119. [PMID: 31695182 DOI: 10.1038/s41579-019-0278-2] [Citation(s) in RCA: 308] [Impact Index Per Article: 61.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2019] [Indexed: 11/08/2022]
Abstract
Viruses and their hosts are engaged in a constant arms race leading to the evolution of antiviral defence mechanisms. Recent studies have revealed that the immune arsenal of bacteria against bacteriophages is much more diverse than previously envisioned. These discoveries have led to seemingly contradictory observations: on one hand, individual microorganisms often encode multiple distinct defence systems, some of which are acquired by horizontal gene transfer, alluding to their fitness benefit. On the other hand, defence systems are frequently lost from prokaryotic genomes on short evolutionary time scales, suggesting that they impose a fitness cost. In this Perspective article, we present the 'pan-immune system' model in which we suggest that, although a single strain cannot carry all possible defence systems owing to their burden on fitness, it can employ horizontal gene transfer to access immune defence mechanisms encoded by closely related strains. Thus, the 'effective' immune system is not the one encoded by the genome of a single microorganism but rather by its pan-genome, comprising the sum of all immune systems available for a microorganism to horizontally acquire and use.
Collapse
|
28
|
Abstract
The Klaenhammer group at North Carolina State University pioneered genomic applications in food microbiology and beneficial lactic acid bacteria used as starter cultures and probiotics. Dr. Todd Klaenhammer was honored to be the first food scientist elected to the National Academy of Sciences (2001). The program was recognized with the highest research awards presented by the American Dairy Science Association (Borden Award 1996), the Institute of Food Technologists (Nicholas Appert Medal, 2007), and the International Dairy Federation (Eli Metchnikoff Award in Biotechnology, 2010) as well as with the Outstanding Achievement Award from the University of Minnesota (2001) and the Oliver Max Gardner Award (2009) for outstanding research across the 16-campus University of North Carolina system. Dr. Klaenhammer is a fellow of the American Association for the Advancement of Science, the American Dairy Science Association, and the Institute of Food Technology. Over his career, six of his PhD graduate students were awarded the annual Kenneth Keller award for the outstanding PhD dissertation that year in the College of Agriculture and Life Sciences. He championed the use of basic microbiology and genomic approaches to set a platform for translational applications of beneficial microbes in foods and their use in food preservation and probiotics and as oral delivery vehicles for vaccines and biotherapeutics. Dr. Klaenhammer was also a founding and co-chief editor of the Annual Review of Food Science and Technology.
Collapse
Affiliation(s)
- Todd Robert Klaenhammer
- Department of Food, Bioprocessing & Nutrition Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA;
| |
Collapse
|
29
|
Abstract
Bacteria are under constant attack from bacteriophages (phages), bacterial parasites that are the most abundant biological entity on earth. To resist phage infection, bacteria have evolved an impressive arsenal of anti-phage systems. Recent advances have significantly broadened and deepened our understanding of how bacteria battle phages, spearheaded by new systems like CRISPR-Cas. This review aims to summarize bacterial anti-phage mechanisms, with an emphasis on the most recent developments in the field.
Collapse
Affiliation(s)
- Jakob T Rostøl
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Luciano Marraffini
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
30
|
Enterococcus faecalis Countermeasures Defeat a Virulent Picovirinae Bacteriophage. Viruses 2019; 11:v11010048. [PMID: 30634666 PMCID: PMC6356687 DOI: 10.3390/v11010048] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 12/29/2018] [Accepted: 12/31/2018] [Indexed: 12/23/2022] Open
Abstract
Enterococcus faecalis is an opportunistic pathogen that has emerged as a major cause of nosocomial infections worldwide. Many clinical strains are indeed resistant to last resort antibiotics and there is consequently a reawakening of interest in exploiting virulent phages to combat them. However, little is still known about phage receptors and phage resistance mechanisms in enterococci. We made use of a prophageless derivative of the well-known clinical strain E. faecalis V583 to isolate a virulent phage belonging to the Picovirinae subfamily and to the P68 genus that we named Idefix. Interestingly, most isolates of E. faecalis tested—including V583—were resistant to this phage and we investigated more deeply into phage resistance mechanisms. We found that E. faecalis V583 prophage 6 was particularly efficient in resisting Idefix infection thanks to a new abortive infection (Abi) mechanism, which we designated Abiα. It corresponded to the Pfam domain family with unknown function DUF4393 and conferred a typical Abi phenotype by causing a premature lysis of infected E. faecalis. The abiα gene is widespread among prophages of enterococci and other Gram-positive bacteria. Furthermore, we identified two genes involved in the synthesis of the side chains of the surface rhamnopolysaccharide that are important for Idefix adsorption. Interestingly, mutants in these genes arose at a frequency of ~10−4 resistant mutants per generation, conferring a supplemental bacterial line of defense against Idefix.
Collapse
|
31
|
Abstract
Evolution of bacteria and archaea involves an incessant arms race against an enormous diversity of genetic parasites. Accordingly, a substantial fraction of the genes in most bacteria and archaea are dedicated to antiparasite defense. The functions of these defense systems follow several distinct strategies, including innate immunity; adaptive immunity; and dormancy induction, or programmed cell death. Recent comparative genomic studies taking advantage of the expanding database of microbial genomes and metagenomes, combined with direct experiments, resulted in the discovery of several previously unknown defense systems, including innate immunity centered on Argonaute proteins, bacteriophage exclusion, and new types of CRISPR-Cas systems of adaptive immunity. Some general principles of function and evolution of defense systems are starting to crystallize, in particular, extensive gain and loss of defense genes during the evolution of prokaryotes; formation of genomic defense islands; evolutionary connections between mobile genetic elements and defense, whereby genes of mobile elements are repeatedly recruited for defense functions; the partially selfish and addictive behavior of the defense systems; and coupling between immunity and dormancy induction/programmed cell death.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894;
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894;
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894;
| |
Collapse
|
32
|
Cheng K, Van de Waal DB, Niu XY, Zhao YJ. Combined Effects of Elevated pCO 2 and Warming Facilitate Cyanophage Infections. Front Microbiol 2017; 8:1096. [PMID: 28659906 PMCID: PMC5468398 DOI: 10.3389/fmicb.2017.01096] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 05/30/2017] [Indexed: 11/25/2022] Open
Abstract
Elevated pCO2 and warming are generally expected to influence cyanobacterial growth, and may promote the formation of blooms. Yet, both climate change factors may also influence cyanobacterial mortality by favoring pathogens, such as viruses, which will depend on the ability of the host to adapt. To test this hypothesis, we grew Plectonema boryanum IU597 under two temperature (25 and 29°C) and two pCO2 (400 and 800 μatm) conditions for 1 year, after which all treatments were re-exposed to control conditions for a period of 3 weeks. At several time points during the 1 year period, and upon re-exposure, we measured various infection characteristics of it associated cyanophage PP, including the burst size, latent period, lytic cycle and the efficiency of plaquing (EOP). As expected, elevated pCO2 promoted growth of P. boryanum equally over the 1 year period, but warming did not. Burst size increased in the warm treatment, but decreased in both the elevated pCO2 and combined treatment. The latent period and lytic cycle both became shorter in the elevated pCO2 and higher temperature treatment, and were further reduced by the combined effect of both factors. Efficiency of plaquing (EOP) decreased in the elevated pCO2 treatment, increased in the warm treatment, and increased even stronger in the combined treatment. These findings indicate that elevated pCO2 enhanced the effect of warming, thereby further promoting the virus infection rate. The re-exposure experiments demonstrate adaptation of the host leading to higher biomass build-up with elevated pCO2 over the experimental period, and lower performance upon re-exposure to control conditions. Similarly, virus burst size and EOP increased when given warm adapted host, but were lower as compared to the control when the host was re-exposed to control conditions. Our results demonstrate that adaptation but particularly physiological acclimation to climate change conditions favored viral infections, while limited host plasticity and slow adaptation after re-exposure to control conditions impeded host biomass build-up and viral infections.
Collapse
Affiliation(s)
- Kai Cheng
- Hubei Key Laboratory of Ecological Restoration for River-Lakes and Algal Utilization, College of Resources and Environmental Engineering, Hubei University of TechnologyWuhan, China
- College of Life Science, Central China Normal UniversityWuhan, China
| | - Dedmer B. Van de Waal
- Department of Aquatic Ecology, Netherlands Institute of EcologyWageningen, Netherlands
| | - Xiao Ying Niu
- College of Life Science, Central China Normal UniversityWuhan, China
| | - Yi Jun Zhao
- Hubei Key Laboratory of Ecological Restoration for River-Lakes and Algal Utilization, College of Resources and Environmental Engineering, Hubei University of TechnologyWuhan, China
| |
Collapse
|
33
|
Eraclio G, Fortina MG, Labrie SJ, Tremblay DM, Moineau S. Characterization of prophages of Lactococcus garvieae. Sci Rep 2017; 7:1856. [PMID: 28500301 PMCID: PMC5431838 DOI: 10.1038/s41598-017-02038-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/06/2017] [Indexed: 12/22/2022] Open
Abstract
This report describes the morphological characterization and genome analysis of an induced prophage (PLg-TB25) from a dairy strain of Lactococcus garvieae. The phage belongs to the Siphoviridae family and its morphology is typical of other lactococcal phages. A general analysis of its genome did not reveal similarities with other lactococcal phage genomes, confirming its novelty. However, similarities were found between genes of its morphogenesis cluster and genes of Gram-positive bacteria, suggesting that this phage genome resulted from recombination events that took place in a heterogeneous microbial environment. An in silico search for other prophages in 16 L. garvieae genomes available in public databases, uncovered eight seemingly complete prophages in strains isolated from dairy and fish niches. Genome analyses of these prophages revealed three novel L. garvieae phages. The remaining prophages had homology to phages of Lactococcus lactis (P335 group) suggesting a close relationship between these lactococcal species. The similarity in GC content of L. garvieae prophages to the genomes of L. lactis phages further supports the hypothesis that these phages likely originated from the same ancestor.
Collapse
Affiliation(s)
- Giovanni Eraclio
- Department of Food, Environmental and Nutritional Sciences, Division of Food Microbiology and Bioprocesses, University of Milan, Via Celoria 2, 20133, Milan, Italy
| | - Maria G Fortina
- Department of Food, Environmental and Nutritional Sciences, Division of Food Microbiology and Bioprocesses, University of Milan, Via Celoria 2, 20133, Milan, Italy
| | - Simon J Labrie
- GREB & Félix d'Hérelle Reference Center for Bacterial Viruses, Faculté de médecine dentaire, Université Laval, Québec City, Québec, G1V 0A6, Canada.,Département de biochimie, de microbiologie et de bio-informatique & PROTEO, Faculté des sciences et de génie, Université Laval, Québec City, Québec, G1V 0A6, Canada
| | - Denise M Tremblay
- GREB & Félix d'Hérelle Reference Center for Bacterial Viruses, Faculté de médecine dentaire, Université Laval, Québec City, Québec, G1V 0A6, Canada.,Département de biochimie, de microbiologie et de bio-informatique & PROTEO, Faculté des sciences et de génie, Université Laval, Québec City, Québec, G1V 0A6, Canada
| | - Sylvain Moineau
- GREB & Félix d'Hérelle Reference Center for Bacterial Viruses, Faculté de médecine dentaire, Université Laval, Québec City, Québec, G1V 0A6, Canada. .,Département de biochimie, de microbiologie et de bio-informatique & PROTEO, Faculté des sciences et de génie, Université Laval, Québec City, Québec, G1V 0A6, Canada.
| |
Collapse
|
34
|
Stout E, Klaenhammer T, Barrangou R. CRISPR-Cas Technologies and Applications in Food Bacteria. Annu Rev Food Sci Technol 2017; 8:413-437. [DOI: 10.1146/annurev-food-072816-024723] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins form adaptive immune systems that occur in many bacteria and most archaea. In addition to protecting bacteria from phages and other invasive mobile genetic elements, CRISPR-Cas molecular machines can be repurposed as tool kits for applications relevant to the food industry. A primary concern of the food industry has long been the proper management of food-related bacteria, with a focus on both enhancing the outcomes of beneficial microorganisms such as starter cultures and probiotics and limiting the presence of detrimental organisms such as pathogens and spoilage microorganisms. This review introduces CRISPR-Cas as a novel set of technologies to manage food bacteria and offers insights into CRISPR-Cas biology. It primarily focuses on the applications of CRISPR-Cas systems and tools in starter cultures and probiotics, encompassing strain-typing, phage resistance, plasmid vaccination, genome editing, and antimicrobial activity.
Collapse
Affiliation(s)
- Emily Stout
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina 27695
| | - Todd Klaenhammer
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina 27695
| | - Rodolphe Barrangou
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina 27695
| |
Collapse
|
35
|
Shabbir MAB, Hao H, Shabbir MZ, Wu Q, Sattar A, Yuan Z. Bacteria vs. Bacteriophages: Parallel Evolution of Immune Arsenals. Front Microbiol 2016; 7:1292. [PMID: 27582740 PMCID: PMC4987407 DOI: 10.3389/fmicb.2016.01292] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/05/2016] [Indexed: 12/26/2022] Open
Abstract
Bacteriophages are the most common entities on earth and represent a constant challenge to bacterial populations. To fend off bacteriophage infection, bacteria evolved immune systems to avert phage adsorption and block invader DNA entry. They developed restriction–modification systems and mechanisms to abort infection and interfere with virion assembly, as well as newly recognized clustered regularly interspaced short palindromic repeats (CRISPR). In response to bacterial immune systems, bacteriophages synchronously evolved resistance mechanisms, such as the anti-CRISPR systems to counterattack bacterial CRISPR-cas systems, in a continuing evolutionary arms race between virus and host. In turn, it is fundamental to the survival of the bacterial cell to evolve a system to combat bacteriophage immune strategies.
Collapse
Affiliation(s)
- Muhammad A B Shabbir
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China; Department of Basic Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Haihong Hao
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China; Department of Basic Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Muhammad Z Shabbir
- Quality Operations Laboratory, University of Veterinary and Animal Sciences Lahore, Pakistan
| | - Qin Wu
- Department of Basic Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China; National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural UniversityWuhan, China
| | - Adeel Sattar
- Department of Basic Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China; National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural UniversityWuhan, China
| | - Zonghui Yuan
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China; Department of Basic Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China; National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
36
|
van Zyl LJ, Taylor MP, Trindade M. Engineering resistance to phage GVE3 in Geobacillus thermoglucosidasius. Appl Microbiol Biotechnol 2015; 100:1833-1841. [DOI: 10.1007/s00253-015-7109-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 10/13/2015] [Accepted: 10/16/2015] [Indexed: 11/30/2022]
|
37
|
Affiliation(s)
- Kimberley D. Seed
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
38
|
Mutational Analysis of the Antitoxin in the Lactococcal Type III Toxin-Antitoxin System AbiQ. Appl Environ Microbiol 2015; 81:3848-55. [PMID: 25819963 DOI: 10.1128/aem.00572-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 03/23/2015] [Indexed: 01/21/2023] Open
Abstract
The lactococcal abortive phage infection mechanism AbiQ recently was classified as a type III toxin-antitoxin system in which the toxic protein (ABIQ) is regulated following cleavage of its repeated noncoding RNA antitoxin (antiQ). In this study, we investigated the role of the antitoxin in antiphage activity. The cleavage of antiQ by ABIQ was characterized using 5' rapid amplification of cDNA ends PCR and was located in an adenine-rich region of antiQ. We next generated a series of derivatives with point mutations within antiQ or with various numbers of antiQ repetitions. These modifications were analyzed for their effect on the antiphage activity (efficiency of plaquing) and on the endoribonuclease activity (Northern hybridization). We observed that increasing or reducing the number of antiQ repeats significantly decreased the antiphage activity of the system. Several point mutations had a similar effect on the antiphage activity and were associated with changes in the digestion profile of antiQ. Interestingly, a point mutation in the putative pseudoknot structure of antiQ mutants led to an increased AbiQ antiphage activity, thereby offering a novel way to increase the activity of an abortive infection mechanism.
Collapse
|
39
|
Comprehensive phylogenetic analysis of bacterial reverse transcriptases. PLoS One 2014; 9:e114083. [PMID: 25423096 PMCID: PMC4244168 DOI: 10.1371/journal.pone.0114083] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 11/04/2014] [Indexed: 11/24/2022] Open
Abstract
Much less is known about reverse transcriptases (RTs) in prokaryotes than in eukaryotes, with most prokaryotic enzymes still uncharacterized. Two surveys involving BLAST searches for RT genes in prokaryotic genomes revealed the presence of large numbers of diverse, uncharacterized RTs and RT-like sequences. Here, using consistent annotation across all sequenced bacterial species from GenBank and other sources via RAST, available from the PATRIC (Pathogenic Resource Integration Center) platform, we have compiled the data for currently annotated reverse transcriptases from completely sequenced bacterial genomes. RT sequences are broadly distributed across bacterial phyla, but green sulfur bacteria and cyanobacteria have the highest levels of RT sequence diversity (≤85% identity) per genome. By contrast, phylum Actinobacteria, for which a large number of genomes have been sequenced, was found to have a low RT sequence diversity. Phylogenetic analyses revealed that bacterial RTs could be classified into 17 main groups: group II introns, retrons/retron-like RTs, diversity-generating retroelements (DGRs), Abi-like RTs, CRISPR-Cas-associated RTs, group II-like RTs (G2L), and 11 other groups of RTs of unknown function. Proteobacteria had the highest potential functional diversity, as they possessed most of the RT groups. Group II introns and DGRs were the most widely distributed RTs in bacterial phyla. Our results provide insights into bacterial RT phylogeny and the basis for an update of annotation systems based on sequence/domain homology.
Collapse
|
40
|
Dy RL, Richter C, Salmond GP, Fineran PC. Remarkable Mechanisms in Microbes to Resist Phage Infections. Annu Rev Virol 2014; 1:307-31. [DOI: 10.1146/annurev-virology-031413-085500] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ron L. Dy
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand;
| | - Corinna Richter
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand;
| | - George P.C. Salmond
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Peter C. Fineran
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand;
| |
Collapse
|
41
|
Ainsworth S, Stockdale S, Bottacini F, Mahony J, van Sinderen D. The Lactococcus lactis plasmidome: much learnt, yet still lots to discover. FEMS Microbiol Rev 2014; 38:1066-88. [PMID: 24861818 DOI: 10.1111/1574-6976.12074] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/17/2014] [Accepted: 05/07/2014] [Indexed: 01/20/2023] Open
Abstract
Lactococcus lactis is used extensively worldwide for the production of a variety of fermented dairy products. The ability of L. lactis to successfully grow and acidify milk has long been known to be reliant on a number of plasmid-encoded traits. The recent availability of low-cost, high-quality genome sequencing, and the quest for novel, technologically desirable characteristics, such as novel flavour development and increased stress tolerance, has led to a steady increase in the number of available lactococcal plasmid sequences. We will review both well-known and very recent discoveries regarding plasmid-encoded traits of biotechnological significance. The acquired lactococcal plasmid sequence information has in recent years progressed our understanding of the origin of lactococcal dairy starter cultures. Salient points on the acquisition and evolution of lactococcal plasmids will be discussed in this review, as well as prospects of finding novel plasmid-encoded functions.
Collapse
Affiliation(s)
- Stuart Ainsworth
- Department of Microbiology, University College Cork, Cork, Ireland
| | | | | | | | | |
Collapse
|
42
|
SP10 infectivity is aborted after bacteriophage SP10 infection induces nonA transcription on the prophage SPβ region of the Bacillus subtilis genome. J Bacteriol 2013; 196:693-706. [PMID: 24272782 DOI: 10.1128/jb.01240-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Bacteria have developed various strategies for phage resistance. Infection with phage induces the transcription of part of the phage resistance gene, but the regulatory mechanisms of such transcription remain largely unknown. The phage resistance gene nonA is located on the SPβ prophage region of the Bacillus subtilis Marburg strain genome. The nonA transcript was detected at the late stage of SP10 infection but is undetectable in noninfected cells. The nonA transcript was detected after the induction of the sigma factor Orf199-Orf200 (σ(Orf199-200)), when sigma factors encoded in the SP10 genome were expressed from a xylose-inducible plasmid. Thus, the SP10 sigma factor is an activator of a set of SP10 genes and nonA. The nonA gene encodes a 72-amino-acid protein with a transmembrane motif and has no significant homology with any protein in any database. NonA overexpression halted cell growth and reduced the efficiency of B. subtilis colony formation and respiration activity. In addition, SP10 virion protein synthesis was inhibited in the nonA(+) strain, and SP10 virion particles were scarce in it. These results indicate that NonA is a novel protein that can abort SP10 infection, and its transcription was regulated by SP10 sigma factor.
Collapse
|
43
|
Effect of the abortive infection mechanism and type III toxin/antitoxin system AbiQ on the lytic cycle of Lactococcus lactis phages. J Bacteriol 2013; 195:3947-56. [PMID: 23813728 DOI: 10.1128/jb.00296-13] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
To survive in phage-containing environments, bacteria have evolved an array of antiphage systems. Similarly, phages have overcome these hurdles through various means. Here, we investigated how phages are able to circumvent the Lactococcus lactis AbiQ system, a type III toxin-antitoxin with antiviral activities. Lactococcal phage escape mutants were obtained in the laboratory, and their genomes were sequenced. Three unrelated genes of unknown function were mutated in derivatives of three distinct lactococcal siphophages: orf38 of phage P008, m1 of phage bIL170, and e19 of phage c2. One-step growth curve experiments revealed that the phage mutations had a fitness cost while transcriptional analyses showed that AbiQ modified the early-expressed phage mRNA profiles. The L. lactis AbiQ system was also transferred into Escherichia coli MG1655 and tested against several coliphages. While AbiQ was efficient against phages T4 (Myoviridae) and T5 (Siphoviridae), escape mutants of only phage 2 (Myoviridae) could be isolated. Genome sequencing revealed a mutation in gene orf210, a putative DNA polymerase. Taking these observations together, different phage genes or gene products are targeted or involved in the AbiQ phenotype. Moreover, this antiviral system is active against various phage families infecting Gram-positive and Gram-negative bacteria. A model for the mode of action of AbiQ is proposed.
Collapse
|
44
|
Samson JE, Spinelli S, Cambillau C, Moineau S. Structure and activity of AbiQ, a lactococcal endoribonuclease belonging to the type III toxin-antitoxin system. Mol Microbiol 2013; 87:756-68. [PMID: 23279123 DOI: 10.1111/mmi.12129] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2012] [Indexed: 01/21/2023]
Abstract
AbiQ is a phage resistance mechanism found on a native plasmid of Lactococcus lactis that abort virulent phage infections. In this study, we experimentally demonstrate that AbiQ belongs to the recently described type III toxin-antitoxin systems. When overexpressed, the AbiQ protein (ABIQ) is toxic and causes bacterial death in a bacteriostatic manner. Northern and Western blot experiments revealed that the abiQ gene is transcribed and translated constitutively, and its expression is not activated by a phage product. ABIQ is an endoribonuclease that specifically cleaves its cognate antitoxin RNA molecule in vivo. The crystal structure of ABIQ was solved and site-directed mutagenesis identified key amino acids for its anti-phage and/or its RNase function. The AbiQ system is the first lactococcal abortive infection system characterized to date at a structural level.
Collapse
Affiliation(s)
- Julie E Samson
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et génie, Université Laval, Québec, Canada, G1V 0A6
| | | | | | | |
Collapse
|
45
|
Samson JE, Moineau S. Bacteriophages in food fermentations: new frontiers in a continuous arms race. Annu Rev Food Sci Technol 2012; 4:347-68. [PMID: 23244395 DOI: 10.1146/annurev-food-030212-182541] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phage contamination represents an important risk to any process requiring bacterial growth, particularly in the biotechnology and food industries. The presence of unwanted phages may lead to manufacturing delays, lower quality product, or, in the worst cases, total production loss. Thus, constant phage monitoring and stringent application of the appropriate control measures are indispensable. In fact, a systematic preventive approach to phage contamination [phage analysis and critical control points (PACCP)] should be put in place. In this review, sources of phage contamination and novel phage detection methods are described, with an emphasis on bacterial viruses that infect lactic acid bacteria used in food fermentations. Recent discoveries related to antiphage systems that are changing our views on phage-host interactions are highlighted. Finally, future directions are also discussed.
Collapse
Affiliation(s)
- Julie E Samson
- Département debiochimie, de microbiologie et de bio-informatique, Université Laval, Québec, Canada.
| | | |
Collapse
|
46
|
Mahony J, Murphy J, van Sinderen D. Lactococcal 936-type phages and dairy fermentation problems: from detection to evolution and prevention. Front Microbiol 2012; 3:335. [PMID: 23024644 PMCID: PMC3445015 DOI: 10.3389/fmicb.2012.00335] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 08/29/2012] [Indexed: 11/21/2022] Open
Abstract
The so-called 936-type phages are the most frequently encountered lactococcal phage species in dairy fermentations, where they cause slow or even failed fermentations with concomitant economic losses. Several dairy phage population studies, performed in different geographical locations, have detailed their dominance in dairy phage populations, while various phage-resistance mechanisms have been assessed in a bid to protect against this virulent phage group. The impact of thermal and chemical treatments on 936 phages is an important aspect for dairy technologists and has been assessed in several studies, and has indicated that these phages have adapted to better resist such treatments. The abundance of 936 phage genome sequences has permitted a focused view on genomic content and regions of variation, and the role of such variable regions in the evolution of these phages. Here, we present an overview on detection and global prevalence of the 936 phages, together with their tolerance to industrial treatments and anti-phage strategies. Furthermore, we present a comprehensive review on the comparative genomic analyses of members of this fascinating phage species.
Collapse
Affiliation(s)
- Jennifer Mahony
- Department of Microbiology, University College Cork Cork, Ireland
| | | | | |
Collapse
|
47
|
Abstract
Strains of lactic acid bacteria, yeasts, and molds have been selected over thousands of years based on the unique sensory attributes they provide to food fermentations. Over the centuries they have evolved to their domesticated roles, leading to genome decay, loss of pathways, acquisition of genomic elements, and beneficial mutations that provide an advantage in their nutrient-rich food environments. This review highlights the evolutionary traits influenced by the domestication process as these microbes adapted to nutrient-rich foods developed by humans.
Collapse
Affiliation(s)
- Grace L Douglas
- Department of Food, Bioprocessing & Nutrition Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA.
| | | |
Collapse
|
48
|
Abstract
Lactic acid bacteria are among the powerhouses of the food industry, colonize the surfaces of plants and animals, and contribute to our health and well-being. The genomic characterization of LAB has rocketed and presently over 100 complete or nearly complete genomes are available, many of which serve as scientific paradigms. Moreover, functional and comparative metagenomic studies are taking off and provide a wealth of insight in the activity of lactic acid bacteria used in a variety of applications, ranging from starters in complex fermentations to their marketing as probiotics. In this new era of high throughput analysis, biology has become big science. Hence, there is a need to systematically store the generated information, apply this in an intelligent way, and provide modalities for constructing self-learning systems that can be used for future improvements. This review addresses these systems solutions with a state of the art overview of the present paradigms that relate to the use of lactic acid bacteria in industrial applications. Moreover, an outlook is presented of the future developments that include the transition into practice as well as the use of lactic acid bacteria in synthetic biology and other next generation applications.
Collapse
Affiliation(s)
- Willem M de Vos
- Laboratory of Microbiology, Wageningen University, The Netherlands.
| |
Collapse
|
49
|
Garneau JE, Moineau S. Bacteriophages of lactic acid bacteria and their impact on milk fermentations. Microb Cell Fact 2011; 10 Suppl 1:S20. [PMID: 21995802 PMCID: PMC3231927 DOI: 10.1186/1475-2859-10-s1-s20] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Every biotechnology process that relies on the use of bacteria to make a product or to overproduce a molecule may, at some time, struggle with the presence of virulent phages. For example, phages are the primary cause of fermentation failure in the milk transformation industry. This review focuses on the recent scientific advances in the field of lactic acid bacteria phage research. Three specific topics, namely, the sources of contamination, the detection methods and the control procedures will be discussed.
Collapse
Affiliation(s)
- Josiane E Garneau
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Quebec city, Québec, G1V 0A6, Canada
| | | |
Collapse
|
50
|
Abstract
Bacteria, the most abundant organisms on the planet, are outnumbered by a factor of 10 to 1 by phages that infect them. Faced with the rapid evolution and turnover of phage particles, bacteria have evolved various mechanisms to evade phage infection and killing, leading to an evolutionary arms race. The extensive co-evolution of both phage and host has resulted in considerable diversity on the part of both bacterial and phage defensive and offensive strategies. Here, we discuss the unique and common features of phage resistance mechanisms and their role in global biodiversity. The commonalities between defense mechanisms suggest avenues for the discovery of novel forms of these mechanisms based on their evolutionary traits.
Collapse
Affiliation(s)
- Adi Stern
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|