1
|
Sivaloganathan DM, Wan X, Leon G, Brynildsen MP. Loss of Gre factors leads to phenotypic heterogeneity and cheating in Escherichia coli populations under nitric oxide stress. mBio 2024; 15:e0222924. [PMID: 39248572 PMCID: PMC11498084 DOI: 10.1128/mbio.02229-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/05/2024] [Indexed: 09/10/2024] Open
Abstract
Nitric oxide (·NO) is one of the toxic metabolites that bacteria can be exposed to within phagosomes. Gre factors, which are also known as transcript cleavage factors or transcription elongation factors, relieve back-tracked transcription elongation complexes by cleaving nascent RNAs, which allows transcription to resume after stalling. Here we discovered that loss of both Gre factors in Escherichia coli, GreA and GreB, significantly compromised ·NO detoxification due to ·NO-induced phenotypic heterogeneity in ΔgreAΔgreB populations, which did not occur in wild-type cultures. Under normal culturing conditions, both wild-type and ΔgreAΔgreB synthesized transcripts uniformly, whereas treatment with ·NO led to bimodal transcript levels in ΔgreAΔgreB that were unimodal in wild-type. Interestingly, exposure to another toxic metabolite of phagosomes, hydrogen peroxide (H2O2), produced analogous results. Furthermore, we showed that loss of Gre factors led to cheating under ·NO stress where transcriptionally deficient cells benefited from the detoxification activities of the transcriptionally proficient subpopulation. Collectively, these results show that loss of Gre factor activities produces phenotypic heterogeneity under ·NO and H2O2 stress that can yield cheating between subpopulations.IMPORTANCEToxic metabolite stress occurs in a broad range of contexts that are important to human health, microbial ecology, and biotechnology, whereas Gre factors are highly conserved throughout the bacterial kingdom. Here we discovered that loss of Gre factors in E. coli leads to phenotypic heterogeneity under ·NO and H2O2 stress, which we further show with ·NO results in cheating between subpopulations. Collectively, these data suggest that Gre factors play a role in coping with toxic metabolite stress, and that loss of Gre factors can produce cheating between neighbors.
Collapse
Affiliation(s)
| | - Xuanqing Wan
- Department of Chemical
and Biological Engineering, Princeton
University, Princeton,
New Jersey, USA
| | - Gabrielle Leon
- Department of Chemical
and Biological Engineering, Princeton
University, Princeton,
New Jersey, USA
| | - Mark P. Brynildsen
- Department of Chemical
and Biological Engineering, Princeton
University, Princeton,
New Jersey, USA
| |
Collapse
|
2
|
Petushkov I, Elkina D, Burenina O, Kubareva E, Kulbachinskiy A. Key interactions of RNA polymerase with 6S RNA and secondary channel factors during pRNA synthesis. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195032. [PMID: 38692564 DOI: 10.1016/j.bbagrm.2024.195032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/17/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
Small non-coding 6S RNA mimics DNA promoters and binds to the σ70 holoenzyme of bacterial RNA polymerase (RNAP) to suppress transcription of various genes mainly during the stationary phase of cell growth or starvation. This inhibition can be relieved upon synthesis of short product RNA (pRNA) performed by RNAP from the 6S RNA template. Here, we have shown that pRNA synthesis depends on specific contacts of 6S RNA with RNAP and interactions of the σ finger with the RNA template in the active site of RNAP, and is also modulated by the secondary channel factors. We have adapted a molecular beacon assay with fluorescently labeled σ70 to analyze 6S RNA release during pRNA synthesis. We found the kinetics of 6S RNA release to be oppositely affected by mutations in the σ finger and in the CRE pocket of core RNAP, similarly to the reported role of these regions in promoter-dependent transcription. Secondary channel factors, DksA and GreB, inhibit pRNA synthesis and 6S RNA release from RNAP, suggesting that they may contribute to the 6S RNA-mediated switch in transcription during stringent response. Our results demonstrate that pRNA synthesis depends on a similar set of contacts between RNAP and 6S RNA as in the case of promoter-dependent transcription initiation and reveal that both processes can be regulated by universal transcription factors acting on RNAP.
Collapse
Affiliation(s)
- Ivan Petushkov
- National Research Center "Kurchatov Institute", Moscow 123182, Russia; Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Daria Elkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Olga Burenina
- Center of Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow 121205, Russia; Chemistry Department, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Elena Kubareva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Andrey Kulbachinskiy
- National Research Center "Kurchatov Institute", Moscow 123182, Russia; Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia.
| |
Collapse
|
3
|
Gaviria-Cantin T, Fernández-Coll L, Vargas AF, Jiménez CJ, Madrid C, Balsalobre C. Expression of accessory genes in Salmonella requires the presence of the Gre factors. Genomics 2024; 116:110777. [PMID: 38163572 DOI: 10.1016/j.ygeno.2023.110777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/13/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
Genomic studies with Salmonella enterica serovar Typhimurium reveal a crucial role of horizontal gene transfer (HGT) in the acquisition of accessory cellular functions involved in host-interaction. Many virulence genes are located in genomic islands, plasmids and prophages. GreA and GreB proteins, Gre factors, interact transiently with the RNA polymerase alleviating backtracked complexes during transcription elongation. The overall effect of Gre factors depletion in Salmonella expression profile was studied. Both proteins are functionally redundant since only when both Gre factors were depleted a major effect in gene expression was detected. Remarkably, the accessory gene pool is particularly sensitive to the lack of Gre factors, with 18.6% of accessory genes stimulated by the Gre factors versus 4.4% of core genome genes. Gre factors involvement is particularly relevant for the expression of genes located in genomic islands. Our data reveal that Gre factors are required for the expression of accessory genes.
Collapse
Affiliation(s)
- Tania Gaviria-Cantin
- Department of Genetics, Microbiology and Statistics, School of Biology, Universitat de Barcelona, Avda. Diagonal 643, Barcelona 08028, Spain
| | - Llorenç Fernández-Coll
- Department of Genetics, Microbiology and Statistics, School of Biology, Universitat de Barcelona, Avda. Diagonal 643, Barcelona 08028, Spain
| | - Andrés Felipe Vargas
- Department of Genetics, Microbiology and Statistics, School of Biology, Universitat de Barcelona, Avda. Diagonal 643, Barcelona 08028, Spain
| | - Carlos Jonay Jiménez
- Department of Genetics, Microbiology and Statistics, School of Biology, Universitat de Barcelona, Avda. Diagonal 643, Barcelona 08028, Spain
| | - Cristina Madrid
- Department of Genetics, Microbiology and Statistics, School of Biology, Universitat de Barcelona, Avda. Diagonal 643, Barcelona 08028, Spain
| | - Carlos Balsalobre
- Department of Genetics, Microbiology and Statistics, School of Biology, Universitat de Barcelona, Avda. Diagonal 643, Barcelona 08028, Spain.
| |
Collapse
|
4
|
Mishra S, Hasan SH, Sakhawala RM, Chaudhry S, Maraia RJ. Mechanism of RNA polymerase III termination-associated reinitiation-recycling conferred by the essential function of the N terminal-and-linker domain of the C11 subunit. Nat Commun 2021; 12:5900. [PMID: 34625550 PMCID: PMC8501072 DOI: 10.1038/s41467-021-26080-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/17/2021] [Indexed: 01/06/2023] Open
Abstract
RNA polymerase III achieves high level tRNA synthesis by termination-associated reinitiation-recycling that involves the essential C11 subunit and heterodimeric C37/53. The C11-CTD (C-terminal domain) promotes Pol III active center-intrinsic RNA 3'-cleavage although deciphering function for this activity has been complicated. We show that the isolated NTD (N-terminal domain) of C11 stimulates Pol III termination by C37/53 but not reinitiation-recycling which requires the NTD-linker (NTD-L). By an approach different from what led to current belief that RNA 3'-cleavage activity is essential, we show that NTD-L can provide the essential function of Saccharomyces cerevisiae C11 whereas classic point mutations that block cleavage, interfere with active site function and are toxic to growth. Biochemical and in vivo analysis including of the C11 invariant central linker led to a model for Pol III termination-associated reinitiation-recycling. The C11 NTD and CTD stimulate termination and RNA 3'-cleavage, respectively, whereas reinitiation-recycling activity unique to Pol III requires only the NTD-linker. RNA 3'-cleavage activity increases growth rate but is nonessential.
Collapse
Affiliation(s)
- Saurabh Mishra
- Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Department of Biochemistry, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Shaina H Hasan
- Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Mayo Clinic Alix School of Medicine, Scottsdale, AZ, USA
| | - Rima M Sakhawala
- Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Section on Regulatory RNA, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Shereen Chaudhry
- Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Pfizer (Pearl River Site), 401 N Middletown Rd, Pearl River, NY, USA
| | - Richard J Maraia
- Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
5
|
Mfd regulates RNA polymerase association with hard-to-transcribe regions in vivo, especially those with structured RNAs. Proc Natl Acad Sci U S A 2021; 118:2008498118. [PMID: 33443179 DOI: 10.1073/pnas.2008498118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
RNA polymerase (RNAP) encounters various roadblocks during transcription. These obstacles can impede RNAP movement and influence transcription, ultimately necessitating the activity of RNAP-associated factors. One such factor is the bacterial protein Mfd, a highly conserved DNA translocase and evolvability factor that interacts with RNAP. Although Mfd is thought to function primarily in the repair of DNA lesions that stall RNAP, increasing evidence suggests that it may also be important for transcription regulation. However, this is yet to be fully characterized. To shed light on Mfd's in vivo functions, we identified the chromosomal regions where it associates. We analyzed Mfd's impact on RNAP association and transcription regulation genome-wide. We found that Mfd represses RNAP association at many chromosomal regions. We found that these regions show increased RNAP pausing, suggesting that they are hard to transcribe. Interestingly, we noticed that the majority of the regions where Mfd regulates transcription contain highly structured regulatory RNAs. The RNAs identified regulate a myriad of biological processes, ranging from metabolism to transfer RNA regulation to toxin-antitoxin (TA) functions. We found that cells lacking Mfd are highly sensitive to toxin overexpression. Finally, we found that Mfd promotes mutagenesis in at least one toxin gene, suggesting that its function in regulating transcription may promote evolution of certain TA systems and other regions containing strong RNA secondary structures. We conclude that Mfd is an RNAP cofactor that is important, and at times critical, for transcription regulation at hard-to-transcribe regions, especially those that express structured regulatory RNAs.
Collapse
|
6
|
Imashimizu M, Tanaka M, Hoshina H. Gre factors prevent thermal and mechanical stresses induced by terahertz irradiation during transcription. Genes Cells 2020; 26:56-64. [PMID: 33247986 DOI: 10.1111/gtc.12822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 11/29/2022]
Abstract
During transcription in cells, the transcription complex consisting of RNA polymerase, DNA and nascent RNA is exposed to fluctuating temperature and pressure. However, little is known about the mechanism of transcriptional homeostasis under fluctuating physical parameters. In this study, we generated these fluctuating parameters using pulsed local heating and acoustic waves in the reaction system of transcription by Escherichia coli RNA polymerase, using a terahertz free-electron laser. We demonstrated that transcription processes, including abortive initiation and elongation pausing, and the fidelity of elongation are significantly affected by the laser-based local perturbations. We also found that all these functional alternations in the transcription process are almost completely mitigated by the presence of Gre proteins. It is well known that Gre proteins enhance RNA cleavage of polymerase by binding to the pore structure termed secondary channel. Recently, the chaperone activities have also been proposed for Gre proteins, yet the details directly associated with transcription are largely unknown. Our finding indicates that Gre proteins are necessary for maintaining transcriptional homeostasis under thermal and mechanical stresses.
Collapse
Affiliation(s)
- Masahiko Imashimizu
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Masahito Tanaka
- Research Institute for Measurement and Analytical Instrumentation, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Hiromichi Hoshina
- Terahertz Sensing and Imaging Team, Center for Advanced Photonics, RIKEN, Sendai, Miyagi, Japan
| |
Collapse
|
7
|
Mutational analysis of Escherichia coli GreA protein reveals new functional activity independent of antipause and lethal when overexpressed. Sci Rep 2020; 10:16074. [PMID: 32999370 PMCID: PMC7527559 DOI: 10.1038/s41598-020-73069-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 09/07/2020] [Indexed: 12/17/2022] Open
Abstract
There is a growing appreciation for the diverse regulatory consequences of the family of proteins that bind to the secondary channel of E. coli RNA polymerase (RNAP), such as GreA, GreB or DksA. Similar binding sites could suggest a competition between them. GreA is characterised to rescue stalled RNAP complexes due to its antipause activity, but also it is involved in transcription fidelity and proofreading. Here, overexpression of GreA is noted to be lethal independent of its antipause activity. A library of random GreA variants has been used to isolate lethality suppressors to assess important residues for GreA functionality and its interaction with the RNA polymerase. Some mutant defects are inferred to be associated with altered binding competition with DksA, while other variants seem to have antipause activity defects that cannot reverse a GreA-sensitive pause site in a fliC::lacZ reporter system. Surprisingly, apparent binding and cleavage defects are found scattered throughout both the coiled-coil and globular domains. Thus, the coiled-coil of GreA is not just a measuring stick ensuring placement of acidic residues precisely at the catalytic centre but also seems to have binding functions. These lethality suppressor mutants may provide valuable tools for future structural and functional studies.
Collapse
|
8
|
Imashimizu M, Tokunaga Y, Afek A, Takahashi H, Shimamoto N, Lukatsky DB. Control of Transcription Initiation by Biased Thermal Fluctuations on Repetitive Genomic Sequences. Biomolecules 2020; 10:biom10091299. [PMID: 32916947 PMCID: PMC7564750 DOI: 10.3390/biom10091299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/23/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022] Open
Abstract
In the process of transcription initiation by RNA polymerase, promoter DNA sequences affect multiple reaction pathways determining the productivity of transcription. However, the question of how the molecular mechanism of transcription initiation depends on the sequence properties of promoter DNA remains poorly understood. Here, combining the statistical mechanical approach with high-throughput sequencing results, we characterize abortive transcription and pausing during transcription initiation by Escherichia coli RNA polymerase at a genome-wide level. Our results suggest that initially transcribed sequences, when enriched with thymine bases, contain the signal for inducing abortive transcription, whereas certain repetitive sequence elements embedded in promoter regions constitute the signal for inducing pausing. Both signals decrease the productivity of transcription initiation. Based on solution NMR and in vitro transcription measurements, we suggest that repetitive sequence elements within the promoter DNA modulate the nonlocal base pair stability of its double-stranded form. This stability profoundly influences the reaction coordinates of the productive initiation via pausing.
Collapse
Affiliation(s)
- Masahiko Imashimizu
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan;
- Correspondence: (M.I.); (D.B.L.); Tel.: +81-3-3599-8232 (M.I.); +972-8642-8370 (D.B.L.)
| | - Yuji Tokunaga
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan;
| | - Ariel Afek
- Center for Genomic and Computational Biology, Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27708, USA;
| | - Hiroki Takahashi
- Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan;
- Molecular Chirality Research Center, Chiba University, Chiba 263-8522, Japan
- Plant Molecular Science Center, Chiba University, Chiba 260-8675, Japan
| | - Nobuo Shimamoto
- National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan;
| | - David B. Lukatsky
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- Correspondence: (M.I.); (D.B.L.); Tel.: +81-3-3599-8232 (M.I.); +972-8642-8370 (D.B.L.)
| |
Collapse
|
9
|
Feng S, Liu Y, Liang W, El-Sayed Ahmed MAEG, Zhao Z, Shen C, Roberts AP, Liang L, Liao L, Zhong Z, Guo Z, Yang Y, Wen X, Chen H, Tian GB. Involvement of Transcription Elongation Factor GreA in Mycobacterium Viability, Antibiotic Susceptibility, and Intracellular Fitness. Front Microbiol 2020; 11:413. [PMID: 32265867 PMCID: PMC7104715 DOI: 10.3389/fmicb.2020.00413] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 02/27/2020] [Indexed: 11/13/2022] Open
Abstract
There is growing evidence that GreA aids adaptation to stressful environments in various bacteria. However, the functions of GreA among mycobacteria remain obscure. Here, we report on cellular consequences following deletion of greA gene in Mycobacterium spp. The greA mutant strain (ΔgreA) was generated in Mycobacterium smegmatis, Mycobacterium tuberculosis (MTB) H37Ra, and M. tuberculosis H37Rv. Deletion of greA results in growth retardation and poor survival in response to adverse stress, besides rendering M. tuberculosis more susceptible to vancomycin and rifampicin. By using RNA-seq, we observe that disrupting greA results in the differential regulation of 195 genes in M. smegmatis with 167 being negatively regulated. Among these, KEGG pathways significantly enriched for differentially regulated genes included tryptophan metabolism, starch and sucrose metabolism, and carotenoid biosynthesis, supporting a role of GreA in the metabolic regulation of mycobacteria. Moreover, like Escherichia coli GreA, M. smegmatis GreA exhibits a series of conservative features, and the anti-backtracking activity of C-terminal domain is indispensable for the expression of glgX, a gene was down-regulated in the RNA-seq data. Interestingly, the decrease in the expression of glgX by CRISPR interference, resulted in reduced growth. Finally, intracellular fitness significantly declines due to loss of greA. Our data indicates that GreA is an important factor for the survival and resistance establishment in Mycobacterium spp. This study provides new insight into GreA as a potential target in multi-drug resistant TB treatment.
Collapse
Affiliation(s)
- Siyuan Feng
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Yan Liu
- Clinical Laboratory, Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Wanfei Liang
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Mohamed Abd El-Gawad El-Sayed Ahmed
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Department of Microbiology and Immunology, Faculty of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Cairo, Egypt
| | - Zihan Zhao
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Cong Shen
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Adam P. Roberts
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Lujie Liang
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Liya Liao
- Clinical Laboratory, Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Zhijuan Zhong
- Clinical Laboratory, Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Zhaowang Guo
- Clinical Laboratory, Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Yongqiang Yang
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Xin Wen
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Hongtao Chen
- Clinical Laboratory, Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Guo-bao Tian
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
10
|
Dylewski M, Fernández-Coll L, Bruhn-Olszewska B, Balsalobre C, Potrykus K. Autoregulation of greA Expression Relies on GraL Rather than on greA Promoter Region. Int J Mol Sci 2019; 20:ijms20205224. [PMID: 31652493 PMCID: PMC6829880 DOI: 10.3390/ijms20205224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/16/2019] [Accepted: 10/21/2019] [Indexed: 11/16/2022] Open
Abstract
GreA is a well-characterized transcriptional factor that acts primarily by rescuing stalled RNA polymerase complexes, but has also been shown to be the major transcriptional fidelity and proofreading factor, while it inhibits DNA break repair. Regulation of greA gene expression itself is still not well understood. So far, it has been shown that its expression is driven by two overlapping promoters and that greA leader encodes a small RNA (GraL) that is acting in trans on nudE mRNA. It has been also shown that GreA autoinhibits its own expression in vivo. Here, we decided to investigate the inner workings of this autoregulatory loop. Transcriptional fusions with lacZ reporter carrying different modifications (made both to the greA promoter and leader regions) were made to pinpoint the sequences responsible for this autoregulation, while GraL levels were also monitored. Our data indicate that GreA mediated regulation of its own gene expression is dependent on GraL acting in cis (a rare example of dual-action sRNA), rather than on the promoter region. However, a yet unidentified, additional factor seems to participate in this regulation as well. Overall, the GreA/GraL regulatory loop seems to have unique but hard to classify properties.
Collapse
Affiliation(s)
- Maciej Dylewski
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, W. Stwosza 59, 80-299 Gdańsk, Poland.
| | - Llorenç Fernández-Coll
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain.
| | - Bożena Bruhn-Olszewska
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, W. Stwosza 59, 80-299 Gdańsk, Poland.
| | - Carlos Balsalobre
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain.
| | - Katarzyna Potrykus
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, W. Stwosza 59, 80-299 Gdańsk, Poland.
| |
Collapse
|
11
|
Sharma D, Sharma A, Singh B, Verma SK. Bioinformatic Exploration of Metal-Binding Proteome of Zoonotic Pathogen Orientia tsutsugamushi. Front Genet 2019; 10:797. [PMID: 31608099 PMCID: PMC6769048 DOI: 10.3389/fgene.2019.00797] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/30/2019] [Indexed: 12/21/2022] Open
Abstract
Metal ions are involved in many essential biological processes and are crucial for the survival of all organisms. Identification of metal-binding proteins (MBPs) of human affecting pathogens may provide the blueprint for understanding biological metal usage and their putative roles in pathogenesis. This study is focused on the analysis of MBPs from Orientia tsutsugamushi (Ott), a causal agent of scrub typhus in humans. A total of 321 proteins were predicted as putative MBPs, based on sequence search and three-dimensional structure analysis. Majority of proteins could bind with magnesium, and the order of metal binding was Mg > Ca > Zn > Mn > Fe > Cd > Ni > Co > Cu, respectively. The predicted MBPs were functionally classified into nine broad classes. Among them, gene expression and regulation, metabolism, cell signaling, and transport classes were dominant. It was noted that the putative MBPs were localized in all subcellular compartments of Ott, but majorly found in the cytoplasm. Additionally, it was revealed that out of 321 predicted MBPs 245 proteins were putative bacterial toxins and among them, 98 proteins were nonhomologous to human proteome. Sixty putative MBPs showed the ability to interact with drug or drug-like molecules, which indicate that they may be used as broad-spectrum drug targets. These predicted MBPs from Ott could play vital role(s) in various cellular activities and virulence, hence may serve as plausible therapeutic targets to design metal-based drugs to curtail its infection.
Collapse
Affiliation(s)
- Dixit Sharma
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Kangra, India
| | - Ankita Sharma
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Kangra, India
| | - Birbal Singh
- ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, India
| | - Shailender Kumar Verma
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Kangra, India
| |
Collapse
|
12
|
Choubey S, Kondev J, Sanchez A. Distribution of Initiation Times Reveals Mechanisms of Transcriptional Regulation in Single Cells. Biophys J 2019; 114:2072-2082. [PMID: 29742401 DOI: 10.1016/j.bpj.2018.03.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/18/2018] [Accepted: 03/29/2018] [Indexed: 11/25/2022] Open
Abstract
Transcription is the dominant point of control of gene expression. Biochemical studies have revealed key molecular components of transcription and their interactions, but the dynamics of transcription initiation in cells is still poorly understood. This state of affairs is being remedied with experiments that observe transcriptional dynamics in single cells using fluorescent reporters. Quantitative information about transcription initiation dynamics can also be extracted from experiments that use electron micrographs of RNA polymerases caught in the act of transcribing a gene (Miller spreads). Inspired by these data, we analyze a general stochastic model of transcription initiation and elongation and compute the distribution of transcription initiation times. We show that different mechanisms of initiation leave distinct signatures in the distribution of initiation times that can be compared to experiments. We analyze published data from micrographs of RNA polymerases transcribing ribosomal RNA genes in Escherichia coli and compare the observed distributions of interpolymerase distances with the predictions from previously hypothesized mechanisms for the regulation of these genes. Our analysis demonstrates the potential of measuring the distribution of time intervals between initiation events as a probe for dissecting mechanisms of transcription initiation in live cells.
Collapse
Affiliation(s)
- Sandeep Choubey
- Department of Physics, Brandeis University, Waltham, Massachusetts
| | - Jane Kondev
- Department of Physics, Brandeis University, Waltham, Massachusetts
| | - Alvaro Sanchez
- Rowland Institute at Harvard, Harvard University, Cambridge, Massachusetts; Department of Ecology and Evolutionary Biology, Microbial Sciences Institute, Yale University, New Haven, Connecticut.
| |
Collapse
|
13
|
Puzzling conformational changes affecting proteins binding to the RNA polymerase. Proc Natl Acad Sci U S A 2018; 115:12550-12552. [PMID: 30498028 DOI: 10.1073/pnas.1818361115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
14
|
Cui G, Wang J, Qi X, Su J. Transcription Elongation Factor GreA Plays a Key Role in Cellular Invasion and Virulence of Francisella tularensis subsp. novicida. Sci Rep 2018; 8:6895. [PMID: 29720697 PMCID: PMC5932009 DOI: 10.1038/s41598-018-25271-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/18/2018] [Indexed: 01/24/2023] Open
Abstract
Francisella tularensis is a facultative intracellular Gram-negative bacterium that causes the zoonotic disease tularemia. We identified the transcription elongation factor GreA as a virulence factor in our previous study, but its role was not defined. Here, we investigate the effects of the inactivation of the greA gene, generating a greA mutant of F. tularensis subsp. novicida. Inactivation of greA impaired the bacterial invasion into and growth within host cells, and subsequently virulence in mouse infection model. A transcriptomic analysis (RNA-Seq) showed that the loss of GreA caused the differential expression of 196 bacterial genes, 77 of which were identified as virulence factors in previous studies. To confirm that GreA regulates the expression of virulence factors involved in cell invasion by Francisella, FTN_1186 (pepO) and FTN_1551 (ampD) gene mutants were generated. The ampD deletion mutant showed reduced invasiveness into host cells. These results strongly suggest that GreA plays an important role in the pathogenesis of Francisella by affecting the expression of virulence genes and provide new insights into the complex regulation of Francisella infection.
Collapse
Affiliation(s)
- Guolin Cui
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jun Wang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xinyi Qi
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jingliang Su
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
15
|
Kinfu BM, Jahnke M, Janus M, Besirlioglu V, Roggenbuck M, Meurer R, Vojcic L, Borchert M, Schwaneberg U, Chow J, Streit WR. Recombinant RNA Polymerase from Geobacillus
sp. GHH01 as tool for rapid generation of metagenomic RNAs using in vitro technologies. Biotechnol Bioeng 2017; 114:2739-2752. [DOI: 10.1002/bit.26436] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/09/2017] [Accepted: 08/21/2017] [Indexed: 01/18/2023]
Affiliation(s)
- Birhanu M. Kinfu
- Microbiology and Biotechnology, Biocenter Klein Flottbek; University of Hamburg; Ohnhorststr Hamburg Germany
| | - Maike Jahnke
- Microbiology and Biotechnology, Biocenter Klein Flottbek; University of Hamburg; Ohnhorststr Hamburg Germany
| | - Mareike Janus
- Microbiology and Biotechnology, Biocenter Klein Flottbek; University of Hamburg; Ohnhorststr Hamburg Germany
| | | | | | | | | | | | | | - Jennifer Chow
- Microbiology and Biotechnology, Biocenter Klein Flottbek; University of Hamburg; Ohnhorststr Hamburg Germany
| | - Wolfgang R. Streit
- Microbiology and Biotechnology, Biocenter Klein Flottbek; University of Hamburg; Ohnhorststr Hamburg Germany
| |
Collapse
|
16
|
Alhadid Y, Chung S, Lerner E, Taatjes DJ, Borukhov S, Weiss S. Studying transcription initiation by RNA polymerase with diffusion-based single-molecule fluorescence. Protein Sci 2017; 26:1278-1290. [PMID: 28370550 PMCID: PMC5477543 DOI: 10.1002/pro.3160] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/11/2017] [Accepted: 03/13/2017] [Indexed: 01/30/2023]
Abstract
Over the past decade, fluorescence-based single-molecule studies significantly contributed to characterizing the mechanism of RNA polymerase at different steps in transcription, especially in transcription initiation. Transcription by bacterial DNA-dependent RNA polymerase is a multistep process that uses genomic DNA to synthesize complementary RNA molecules. Transcription initiation is a highly regulated step in E. coli, but it has been challenging to study its mechanism because of its stochasticity and complexity. In this review, we describe how single-molecule approaches have contributed to our understanding of transcription and have uncovered mechanistic details that were not observed in conventional assays because of ensemble averaging.
Collapse
Affiliation(s)
- Yazan Alhadid
- Interdepartmental Program in Molecular, Cellular, and Integrative Physiology, University of California, Los Angeles, California, 90095
| | - SangYoon Chung
- Department of Chemistry & Biochemistry, University of California, Los Angeles, California, 90095
| | - Eitan Lerner
- Department of Chemistry & Biochemistry, University of California, Los Angeles, California, 90095
| | - Dylan J Taatjes
- Department of Chemistry & Biochemistry, University of Colorado, Boulder, Colorado, 80303
| | - Sergei Borukhov
- Rowan University School of Osteopathic Medicine, Stratford, New Jersey, 08084
| | - Shimon Weiss
- Interdepartmental Program in Molecular, Cellular, and Integrative Physiology, University of California, Los Angeles, California, 90095
- Department of Chemistry & Biochemistry, University of California, Los Angeles, California, 90095
- Molecular Biology Institute (MBI), University of California, Los Angeles, California, 90095
- California NanoSystems Institute, University of California, Los Angeles, California, 90095
- Department of Physiology, University of California, Los Angeles, California, 90095
| |
Collapse
|
17
|
Suppressors of dGTP Starvation in Escherichia coli. J Bacteriol 2017; 199:JB.00142-17. [PMID: 28373271 DOI: 10.1128/jb.00142-17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 03/23/2017] [Indexed: 11/20/2022] Open
Abstract
dGTP starvation, a newly discovered phenomenon in which Escherichia coli cells are starved specifically for the DNA precursor dGTP, leads to impaired growth and, ultimately, cell death. Phenomenologically, it represents an example of nutritionally induced unbalanced growth: cell mass amplifies normally as dictated by the nutritional status of the medium, but DNA content growth is specifically impaired. The other known example of such a condition, thymineless death (TLD), involves starvation for the DNA precursor dTTP, which has been found to have important chemotherapeutic applications. Experimentally, dGTP starvation is induced by depriving an E. coligpt optA1 strain of its required purine source, hypoxanthine. In our studies of this phenomenon, we noted the emergence of a relatively high frequency of suppressor mutants that proved resistant to the treatment. To study such suppressors, we used next-generation sequencing on a collection of independently obtained mutants. A significant fraction was found to carry a defect in the PurR transcriptional repressor, controlling de novo purine biosynthesis, or in its downstream purEK operon. Thus, upregulation of de novo purine biosynthesis appears to be a major mode of overcoming the lethal effects of dGTP starvation. In addition, another large fraction of the suppressors contained a large tandem duplication of a 250- to 300-kb genomic region that included the purEK operon as well as the acrAB-encoded multidrug efflux system. Thus, the suppressive effects of the duplications could potentially involve beneficial effects of a number of genes/operons within the amplified regions.IMPORTANCE Concentrations of the four precursors for DNA synthesis (2'-deoxynucleoside-5'-triphosphates [dNTPs]) are critical for both the speed of DNA replication and its accuracy. Previously, we investigated consequences of dGTP starvation, where the DNA precursor dGTP was specifically reduced to a low level. Under this condition, E. coli cells continued cell growth but eventually developed a DNA replication defect, leading to cell death due to formation of unresolvable DNA structures. Nevertheless, dGTP-starved cultures eventually resumed growth due to the appearance of resistant mutants. Here, we used whole-genome DNA sequencing to identify the responsible suppressor mutations. We show that the majority of suppressors can circumvent death by upregulating purine de novo biosynthesis, leading to restoration of dGTP to acceptable levels.
Collapse
|
18
|
Gaviria-Cantin T, El Mouali Y, Le Guyon S, Römling U, Balsalobre C. Gre factors-mediated control of hilD transcription is essential for the invasion of epithelial cells by Salmonella enterica serovar Typhimurium. PLoS Pathog 2017; 13:e1006312. [PMID: 28426789 PMCID: PMC5398713 DOI: 10.1371/journal.ppat.1006312] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 03/23/2017] [Indexed: 11/19/2022] Open
Abstract
The invasion of epithelial cells by Salmonella enterica serovar Typhimurium is a very tightly regulated process. Signaling cascades triggered by different environmental and physiological signals converge to control HilD, an AraC regulator that coordinates the expression of several virulence factors. The expression of hilD is modulated at several steps of the expression process. Here, we report that the invasion of epithelial cells by S. Typhimurium strains lacking the Gre factors, GreA and GreB, is impaired. By interacting with the RNA polymerase secondary channel, the Gre factors prevent backtracking of paused complexes to avoid arrest during transcriptional elongation. Our results indicate that the Gre factors are required for the expression of the bacterial factors needed for epithelial cell invasion by modulating expression of HilD. This regulation does not occur at transcription initiation and depends on the capacity of the Gre factors to prevent backtracking of the RNA polymerase. Remarkably, genetic analyses indicate that the 3’-untranslated region (UTR) of hilD is required for Gre-mediated regulation of hilD expression. Our data provide new insight into the complex regulation of S. Typhimurium virulence and highlight the role of the hilD 3’-UTR as a regulatory motif. Salmonella enterica serovar Typhimurium is a foodborne pathogen that causes gastroenteritis in humans. To successfully trigger infection, S. Typhimurium invades epithelial cells, a process that requires the coordinated expression of a set of genes. HilD is a pivotal regulator of S. Typhimurium pathogenicity, as it activates the expression of the genes required for invasion of intestinal epithelium. Expression and activity of HilD are tightly regulated and respond to several environmental and physiological conditions. In this report, we introduce the transcription elongation as a novel level of regulation of hilD. We describe that the Gre factors, proteins that prevent backtracking of paused RNA polymerase complexes during transcription elongation, are required for the expression of HilD and the subsequent expression of genes involved in the invasion of epithelial cells.
Collapse
Affiliation(s)
- Tania Gaviria-Cantin
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
| | - Youssef El Mouali
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
| | - Soazig Le Guyon
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Carlos Balsalobre
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
19
|
A Cre Transcription Fidelity Reporter Identifies GreA as a Major RNA Proofreading Factor in Escherichia coli. Genetics 2017; 206:179-187. [PMID: 28341651 PMCID: PMC5419468 DOI: 10.1534/genetics.116.198960] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/04/2017] [Indexed: 12/21/2022] Open
Abstract
We made a coupled genetic reporter that detects rare transcription misincorporation errors to measure RNA polymerase transcription fidelity in Escherichia coli. Using this reporter, we demonstrated in vivo that the transcript cleavage factor GreA, but not GreB, is essential for proofreading of a transcription error where a riboA has been misincorporated instead of a riboG. A greA mutant strain had more than a 100-fold increase in transcription errors relative to wild-type or a greB mutant. However, overexpression of GreB in ΔgreA cells reduced the misincorporation errors to wild-type levels, demonstrating that GreB at high concentration could substitute for GreA in RNA proofreading activity in vivo.
Collapse
|
20
|
Lerner E, Ingargiola A, Lee JJ, Borukhov S, Michalet X, Weiss S. Different types of pausing modes during transcription initiation. Transcription 2017; 8:242-253. [PMID: 28332923 DOI: 10.1080/21541264.2017.1308853] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
In many cases, initiation is rate limiting to transcription. This due in part to the multiple cycles of abortive transcription that delay promoter escape and the transition from initiation to elongation. Pausing of transcription in initiation can further delay promoter escape. The previously hypothesized pausing in initiation was confirmed by two recent studies from Duchi et al. 1 and from Lerner, Chung et al. 2 In both studies, pausing is attributed to a lack of forward translocation of the nascent transcript during initiation. However, the two works report on different pausing mechanisms. Duchi et al. report on pausing that occurs during initiation predominantly on-pathway of transcript synthesis. Lerner, Chung et al. report on pausing during initiation as a result of RNAP backtracking, which is off-pathway to transcript synthesis. Here, we discuss these studies, together with additional experimental results from single-molecule FRET focusing on a specific distance within the transcription bubble. We show that the results of these studies are complementary to each other and are consistent with a model involving two types of pauses in initiation: a short-lived pause that occurs in the translocation of a 6-mer nascent transcript and a long-lived pause that occurs as a result of 1-2 nucleotide backtracking of a 7-mer transcript.
Collapse
Affiliation(s)
- Eitan Lerner
- a Department of Chemistry & Biochemistry , University of California , Los Angeles , CA , USA
| | - Antonino Ingargiola
- a Department of Chemistry & Biochemistry , University of California , Los Angeles , CA , USA
| | - Jookyung J Lee
- b Rowan University School of Osteopathic Medicine , Stratford , NJ , USA
| | - Sergei Borukhov
- b Rowan University School of Osteopathic Medicine , Stratford , NJ , USA
| | - Xavier Michalet
- a Department of Chemistry & Biochemistry , University of California , Los Angeles , CA , USA
| | - Shimon Weiss
- a Department of Chemistry & Biochemistry , University of California , Los Angeles , CA , USA.,c Molecular Biology Institute , University of California , Los Angeles , CA , USA.,d Department of Physiology , University of California , Los Angeles , CA , USA
| |
Collapse
|
21
|
Ranawat P, Rawat S. Stress response physiology of thermophiles. Arch Microbiol 2017; 199:391-414. [DOI: 10.1007/s00203-016-1331-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 12/07/2016] [Accepted: 12/16/2016] [Indexed: 10/20/2022]
|
22
|
Chen C, Pan J, Yang X, Xiao H, Zhang Y, Si M, Shen X, Wang Y. Global transcriptomic analysis of the response of Corynebacterium glutamicum to ferulic acid. Arch Microbiol 2016; 199:325-334. [DOI: 10.1007/s00203-016-1306-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 08/24/2016] [Accepted: 10/08/2016] [Indexed: 10/20/2022]
|
23
|
Backtracked and paused transcription initiation intermediate of Escherichia coli RNA polymerase. Proc Natl Acad Sci U S A 2016; 113:E6562-E6571. [PMID: 27729537 DOI: 10.1073/pnas.1605038113] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Initiation is a highly regulated, rate-limiting step in transcription. We used a series of approaches to examine the kinetics of RNA polymerase (RNAP) transcription initiation in greater detail. Quenched kinetics assays, in combination with gel-based assays, showed that RNAP exit kinetics from complexes stalled at later stages of initiation (e.g., from a 7-base transcript) were markedly slower than from earlier stages (e.g., from a 2- or 4-base transcript). In addition, the RNAP-GreA endonuclease accelerated transcription kinetics from otherwise delayed initiation states. Further examination with magnetic tweezers transcription experiments showed that RNAP adopted a long-lived backtracked state during initiation and that the paused-backtracked initiation intermediate was populated abundantly at physiologically relevant nucleoside triphosphate (NTP) concentrations. The paused intermediate population was further increased when the NTP concentration was decreased and/or when an imbalance in NTP concentration was introduced (situations that mimic stress). Our results confirm the existence of a previously hypothesized paused and backtracked RNAP initiation intermediate and suggest it is biologically relevant; furthermore, such intermediates could be exploited for therapeutic purposes and may reflect a conserved state among paused, initiating eukaryotic RNA polymerase II enzymes.
Collapse
|
24
|
Duchi D, Bauer DLV, Fernandez L, Evans G, Robb N, Hwang LC, Gryte K, Tomescu A, Zawadzki P, Morichaud Z, Brodolin K, Kapanidis AN. RNA Polymerase Pausing during Initial Transcription. Mol Cell 2016; 63:939-50. [PMID: 27618490 PMCID: PMC5031556 DOI: 10.1016/j.molcel.2016.08.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 04/12/2016] [Accepted: 08/05/2016] [Indexed: 11/11/2022]
Abstract
In bacteria, RNA polymerase (RNAP) initiates transcription by synthesizing short transcripts that are either released or extended to allow RNAP to escape from the promoter. The mechanism of initial transcription is unclear due to the presence of transient intermediates and molecular heterogeneity. Here, we studied initial transcription on a lac promoter using single-molecule fluorescence observations of DNA scrunching on immobilized transcription complexes. Our work revealed a long pause (“initiation pause,” ∼20 s) after synthesis of a 6-mer RNA; such pauses can serve as regulatory checkpoints. Region sigma 3.2, which contains a loop blocking the RNA exit channel, was a major pausing determinant. We also obtained evidence for RNA backtracking during abortive initial transcription and for additional pausing prior to escape. We summarized our work in a model for initial transcription, in which pausing is controlled by a complex set of determinants that modulate the transition from a 6- to a 7-nt RNA. E. coli RNA polymerase pauses during initial transcription at lac promoters Initiation pausing lasts for ∼20 s and occurs at the transition from 6- to 7-nt RNA Region 3.2 of σ70 is the main protein element controlling pausing Pausing is likely to be controlled further by a complex set of determinants
Collapse
Affiliation(s)
- Diego Duchi
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - David L V Bauer
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Laurent Fernandez
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Geraint Evans
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Nicole Robb
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Ling Chin Hwang
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Kristofer Gryte
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Alexandra Tomescu
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Pawel Zawadzki
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Zakia Morichaud
- CNRS FRE 3689, Centre d'études d'agents Pathogénes et Biotechnologies pour la Santé (CPBS), 1919 route de Mende, 34293 Montpellier, France
| | - Konstantin Brodolin
- CNRS FRE 3689, Centre d'études d'agents Pathogénes et Biotechnologies pour la Santé (CPBS), 1919 route de Mende, 34293 Montpellier, France
| | - Achillefs N Kapanidis
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK.
| |
Collapse
|
25
|
New Insights into the Formation of Viable but Nonculturable Escherichia coli O157:H7 Induced by High-Pressure CO2. mBio 2016; 7:mBio.00961-16. [PMID: 27578754 PMCID: PMC4999544 DOI: 10.1128/mbio.00961-16] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The formation of viable but nonculturable (VBNC) Escherichia coli O157:H7 induced by high-pressure CO2 (HPCD) was investigated using RNA sequencing (RNA-Seq) transcriptomics and isobaric tag for relative and absolute quantitation (iTRAQ) proteomic methods. The analyses revealed that 97 genes and 56 proteins were significantly changed upon VBNC state entry. Genes and proteins related to membrane transport, central metabolisms, DNA replication, and cell division were mainly downregulated in the VBNC cells. This caused low metabolic activity concurrently with a division arrest in cells, which may be related to VBNC state formation. Cell division repression and outer membrane overexpression were confirmed to be involved in VBNC state formation by homologous expression of z2046 coding for transcriptional repressor and ompF encoding outer membrane protein F. Upon VBNC state entry, pyruvate catabolism in the cells shifted from the tricarboxylic acid (TCA) cycle toward the fermentative route; this led to a low level of ATP. Combating the low energy supply, ATP production in the VBNC cells was compensated by the degradation of l-serine and l-threonine, the increased AMP generation, and the enhanced electron transfer. Furthermore, tolerance of the cells with respect to HPCD-induced acid, oxidation, and high CO2 stresses was enhanced by promoting the production of ammonia and NADPH and by reducing CO2 production during VBNC state formation. Most genes and proteins related to pathogenicity were downregulated in the VBNC cells. This would decrease the cell pathogenicity, which was confirmed by adhesion assays. In conclusion, the decreased metabolic activity, repressed cell division, and enhanced survival ability in E. coli O157:H7 might cause HPCD-induced VBNC state formation. Escherichia coli O157:H7 has been implicated in large foodborne outbreaks worldwide. It has been reported that the presence of as few as 10 cells in food could cause illness. However, the presence of only 0.73 to 1.5 culturable E. coli O157:H7 cells in salted salmon roe caused infection in Japan. Investigators found that E. coli O157:H7 in the viable but nonculturable (VBNC) state was the source of the outbreak. So far, formation mechanisms of VBNC state are not well known. In a previous study, we demonstrated that high-pressure CO2 (HPCD) could induce the transition of E. coli O157:H7 into the VBNC state. In this study, we used RNA-Seq transcriptomic analysis combined with the iTRAQ proteomic method to investigate the formation of VBNC E. coli O157:H7 induced by HPCD treatment. Finally, we proposed a putative formation mechanism of the VBNC cells induced by HPCD, which may provide a theoretical foundation for controlling the VBNC state entry induced by HPCD treatment.
Collapse
|
26
|
New Insights into the Functions of Transcription Factors that Bind the RNA Polymerase Secondary Channel. Biomolecules 2015; 5:1195-209. [PMID: 26120903 PMCID: PMC4598747 DOI: 10.3390/biom5031195] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/06/2015] [Accepted: 06/09/2015] [Indexed: 11/25/2022] Open
Abstract
Transcription elongation is regulated at several different levels, including control by various accessory transcription elongation factors. A distinct group of these factors interacts with the RNA polymerase secondary channel, an opening at the enzyme surface that leads to its active center. Despite investigation for several years, the activities and in vivo roles of some of these factors remain obscure. Here, we review the recent progress in understanding the functions of the secondary channel binding factors in bacteria. In particular, we highlight the surprising role of global regulator DksA in fidelity of RNA synthesis and the resolution of RNA polymerase traffic jams by the Gre factor. These findings indicate a potential link between transcription fidelity and collisions of the transcription and replication machineries.
Collapse
|
27
|
Washburn RS, Gottesman ME. Regulation of transcription elongation and termination. Biomolecules 2015; 5:1063-78. [PMID: 26035374 PMCID: PMC4496710 DOI: 10.3390/biom5021063] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 05/20/2015] [Accepted: 05/21/2015] [Indexed: 11/16/2022] Open
Abstract
This article will review our current understanding of transcription elongation and termination in E. coli. We discuss why transcription elongation complexes pause at certain template sites and how auxiliary host and phage transcription factors affect elongation and termination. The connection between translation and transcription elongation is described. Finally we present an overview indicating where progress has been made and where it has not.
Collapse
Affiliation(s)
- Robert S Washburn
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA.
| | - Max E Gottesman
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA.
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
28
|
Imashimizu M, Takahashi H, Oshima T, McIntosh C, Bubunenko M, Court DL, Kashlev M. Visualizing translocation dynamics and nascent transcript errors in paused RNA polymerases in vivo. Genome Biol 2015; 16:98. [PMID: 25976475 PMCID: PMC4457086 DOI: 10.1186/s13059-015-0666-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 05/05/2015] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Transcription elongation is frequently interrupted by pausing signals in DNA, with downstream effects on gene expression. Transcription errors also induce prolonged pausing, which can lead to a destabilized genome by interfering with DNA replication. Mechanisms of pausing associated with translocation blocks and misincorporation have been characterized in vitro, but not in vivo. RESULTS We investigate the pausing pattern of RNA polymerase (RNAP) in Escherichia coli by a novel approach, combining native elongating transcript sequencing (NET-seq) with RNase footprinting of the transcripts (RNET-seq). We reveal that the G-dC base pair at the 5' end of the RNA-DNA hybrid interferes with RNAP translocation. The distance between the 5' G-dC base pair and the 3' end of RNA fluctuates over a three-nucleotide width. Thus, the G-dC base pair can induce pausing in post-translocated, pre-translocated, and backtracked states of RNAP. Additionally, a CpG sequence of the template DNA strand spanning the active site of RNAP inhibits elongation and induces G-to-A errors, which leads to backtracking of RNAP. Gre factors efficiently proofread the errors and rescue the backtracked complexes. We also find that pausing events are enriched in the 5' untranslated region and antisense transcription of mRNA genes and are reduced in rRNA genes. CONCLUSIONS In E. coli, robust transcriptional pausing involves RNAP interaction with G-dC at the upstream end of the RNA-DNA hybrid, which interferes with translocation. CpG DNA sequences induce transcriptional pausing and G-to-A errors.
Collapse
Affiliation(s)
- Masahiko Imashimizu
- Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| | - Hiroki Takahashi
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8673, Japan.
| | - Taku Oshima
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5, Ikoma, Nara, 630-0192, Japan.
| | - Carl McIntosh
- Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| | - Mikhail Bubunenko
- Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| | - Donald L Court
- Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| | - Mikhail Kashlev
- Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| |
Collapse
|
29
|
Yuzenkova Y, Gamba P, Herber M, Attaiech L, Shafeeq S, Kuipers OP, Klumpp S, Zenkin N, Veening JW. Control of transcription elongation by GreA determines rate of gene expression in Streptococcus pneumoniae. Nucleic Acids Res 2014; 42:10987-99. [PMID: 25190458 PMCID: PMC4176173 DOI: 10.1093/nar/gku790] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 08/18/2014] [Accepted: 08/20/2014] [Indexed: 01/28/2023] Open
Abstract
Transcription by RNA polymerase may be interrupted by pauses caused by backtracking or misincorporation that can be resolved by the conserved bacterial Gre-factors. However, the consequences of such pausing in the living cell remain obscure. Here, we developed molecular biology and transcriptome sequencing tools in the human pathogen Streptococcus pneumoniae and provide evidence that transcription elongation is rate-limiting on highly expressed genes. Our results suggest that transcription elongation may be a highly regulated step of gene expression in S. pneumoniae. Regulation is accomplished via long-living elongation pauses and their resolution by elongation factor GreA. Interestingly, mathematical modeling indicates that long-living pauses cause queuing of RNA polymerases, which results in 'transcription traffic jams' on the gene and thus blocks its expression. Together, our results suggest that long-living pauses and RNA polymerase queues caused by them are a major problem on highly expressed genes and are detrimental for cell viability. The major and possibly sole function of GreA in S. pneumoniae is to prevent formation of backtracked elongation complexes.
Collapse
Affiliation(s)
- Yulia Yuzenkova
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK
| | - Pamela Gamba
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Martijn Herber
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Laetitia Attaiech
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Sulman Shafeeq
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Oscar P Kuipers
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Stefan Klumpp
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| | - Nikolay Zenkin
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK
| | - Jan-Willem Veening
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
30
|
Nag JK, Shrivastava N, Chahar D, Gupta CL, Bajpai P, Misra-Bhattacharya S. Wolbachia transcription elongation factor "Wol GreA" interacts with α2ββ'σ subunits of RNA polymerase through its dimeric C-terminal domain. PLoS Negl Trop Dis 2014; 8:e2930. [PMID: 24945631 PMCID: PMC4063747 DOI: 10.1371/journal.pntd.0002930] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 04/25/2014] [Indexed: 01/16/2023] Open
Abstract
OBJECTIVES Wolbachia, an endosymbiont of filarial nematode, is considered a promising target for therapy against lymphatic filariasis. Transcription elongation factor GreA is an essential factor that mediates transcriptional transition from abortive initiation to productive elongation by stimulating the escape of RNA polymerase (RNAP) from native prokaryotic promoters. Upon screening of 6257 essential bacterial genes, 57 were suggested as potential future drug targets, and GreA is among these. The current study emphasized the characterization of Wol GreA with its domains. METHODOLOGY/PRINCIPAL FINDINGS Biophysical characterization of Wol GreA with its N-terminal domain (NTD) and C-terminal domain (CTD) was performed with fluorimetry, size exclusion chromatography, and chemical cross-linking. Filter trap and far western blotting were used to determine the domain responsible for the interaction with α2ββ'σ subunits of RNAP. Protein-protein docking studies were done to explore residual interaction of RNAP with Wol GreA. The factor and its domains were found to be biochemically active. Size exclusion and chemical cross-linking studies revealed that Wol GreA and CTD exist in a dimeric conformation while NTD subsists in monomeric conformation. Asp120, Val121, Ser122, Lys123, and Ser134 are the residues of CTD through which monomers of Wol GreA interact and shape into a dimeric conformation. Filter trap, far western blotting, and protein-protein docking studies revealed that dimeric CTD of Wol GreA through Lys82, Ser98, Asp104, Ser105, Glu106, Tyr109, Glu116, Asp120, Val121, Ser122, Ser127, Ser129, Lys140, Glu143, Val147, Ser151, Glu153, and Phe163 residues exclusively participates in binding with α2ββ'σ subunits of polymerase. CONCLUSIONS/SIGNIFICANCE To the best of our knowledge, this research is the first documentation of the residual mode of action in wolbachial mutualist. Therefore, findings may be crucial to understanding the transcription mechanism of this α-proteobacteria and in deciphering the role of Wol GreA in filarial development.
Collapse
Affiliation(s)
- Jeetendra Kumar Nag
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Nidhi Shrivastava
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Dhanvantri Chahar
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research, New Delhi, India
| | | | - Preeti Bajpai
- Department of Biosciences, Integral University, Lucknow, India
| | - Shailja Misra-Bhattacharya
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research, New Delhi, India
| |
Collapse
|
31
|
Margaret I, Lucas MM, Acosta-Jurado S, Buendía-Clavería AM, Fedorova E, Hidalgo Á, Rodríguez-Carvajal MA, Rodriguez-Navarro DN, Ruiz-Sainz JE, Vinardell JM. The Sinorhizobium fredii HH103 lipopolysaccharide is not only relevant at early soybean nodulation stages but also for symbiosome stability in mature nodules. PLoS One 2013; 8:e74717. [PMID: 24098345 PMCID: PMC3788101 DOI: 10.1371/journal.pone.0074717] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 08/04/2013] [Indexed: 11/25/2022] Open
Abstract
In this work we have characterised the Sinorhizobium fredii HH103 greA lpsB lpsCDE genetic region and analysed for the first time the symbiotic performance of Sinorhizobium fredii lps mutants on soybean. The organization of the S. fredii HH103 greA, lpsB, and lpsCDE genes was equal to that of Sinorhizobium meliloti 1021. S. fredii HH103 greA, lpsB, and lpsE mutant derivatives produced altered LPS profiles that were characteristic of the gene mutated. In addition, S. fredii HH103 greA mutants showed a reduction in bacterial mobility and an increase of auto-agglutination in liquid cultures. RT-PCR and qPCR experiments demonstrated that the HH103 greA gene has a positive effect on the transcription of lpsB. Soybean plants inoculated with HH103 greA, lpsB or lpsE mutants formed numerous ineffective pseudonodules and showed severe symptoms of nitrogen starvation. However, HH103 greA and lps mutants were also able to induce the formation of a reduced number of soybean nodules of normal external morphology, allowing the possibility of studying the importance of bacterial LPS in later stages of the S. fredii HH103-soybean symbiosis. The infected cells of these nodules showed signs of early termination of symbiosis and lytical clearance of bacteroids. These cells also had very thick walls and accumulation of phenolic-like compounds, pointing to induced defense reactions. Our results show the importance of bacterial LPS in later stages of the S. fredii HH103-soybean symbiosis and their role in preventing host cell defense reactions. S. fredii HH103 lpsB mutants also showed reduced nodulation with Vigna unguiculata, although the symbiotic impairment was less pronounced than in soybean.
Collapse
Affiliation(s)
- Isabel Margaret
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla. Sevilla, Spain
| | | | | | | | | | - Ángeles Hidalgo
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla. Sevilla, Spain
| | | | | | - José E. Ruiz-Sainz
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla. Sevilla, Spain
| | - José M. Vinardell
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla. Sevilla, Spain
| |
Collapse
|
32
|
Imashimizu M, Oshima T, Lubkowska L, Kashlev M. Direct assessment of transcription fidelity by high-resolution RNA sequencing. Nucleic Acids Res 2013; 41:9090-104. [PMID: 23925128 PMCID: PMC3799451 DOI: 10.1093/nar/gkt698] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cancerous and aging cells have long been thought to be impacted by transcription errors that cause genetic and epigenetic changes. Until now, a lack of methodology for directly assessing such errors hindered evaluation of their impact to the cells. We report a high-resolution Illumina RNA-seq method that can assess noncoded base substitutions in mRNA at 10−4–10−5 per base frequencies in vitro and in vivo. Statistically reliable detection of changes in transcription fidelity through ∼103 nt DNA sites assures that the RNA-seq can analyze the fidelity in a large number of the sites where errors occur. A combination of the RNA-seq and biochemical analyses of the positions for the errors revealed two sequence-specific mechanisms that increase transcription fidelity by Escherichia coli RNA polymerase: (i) enhanced suppression of nucleotide misincorporation that improves selectivity for the cognate substrate, and (ii) increased backtracking of the RNA polymerase that decreases a chance of error propagation to the full-length transcript after misincorporation and provides an opportunity to proofread the error. This method is adoptable to a genome-wide assessment of transcription fidelity.
Collapse
Affiliation(s)
- Masahiko Imashimizu
- Gene Regulation and Chromosome Biology Laboratory, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA and Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0192, Japan
| | | | | | | |
Collapse
|
33
|
Rangeshwaran R, Ashwitha K, Sivakumar G, Jalali SK. Analysis of Proteins Expressed by an Abiotic Stress Tolerant Pseudomonas putida (NBAII-RPF9) Isolate Under Saline and High Temperature Conditions. Curr Microbiol 2013; 67:659-67. [DOI: 10.1007/s00284-013-0416-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 06/05/2013] [Indexed: 11/24/2022]
|
34
|
Heritable change caused by transient transcription errors. PLoS Genet 2013; 9:e1003595. [PMID: 23825966 PMCID: PMC3694819 DOI: 10.1371/journal.pgen.1003595] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 05/13/2013] [Indexed: 01/01/2023] Open
Abstract
Transmission of cellular identity relies on the faithful transfer of information from the mother to the daughter cell. This process includes accurate replication of the DNA, but also the correct propagation of regulatory programs responsible for cellular identity. Errors in DNA replication (mutations) and protein conformation (prions) can trigger stable phenotypic changes and cause human disease, yet the ability of transient transcriptional errors to produce heritable phenotypic change ('epimutations') remains an open question. Here, we demonstrate that transcriptional errors made specifically in the mRNA encoding a transcription factor can promote heritable phenotypic change by reprogramming a transcriptional network, without altering DNA. We have harnessed the classical bistable switch in the lac operon, a memory-module, to capture the consequences of transient transcription errors in living Escherichia coli cells. We engineered an error-prone transcription sequence (A9 run) in the gene encoding the lac repressor and show that this 'slippery' sequence directly increases epigenetic switching, not mutation in the cell population. Therefore, one altered transcript within a multi-generational series of many error-free transcripts can cause long-term phenotypic consequences. Thus, like DNA mutations, transcriptional epimutations can instigate heritable changes that increase phenotypic diversity, which drives both evolution and disease.
Collapse
|
35
|
Uplekar S, Rougemont J, Cole ST, Sala C. High-resolution transcriptome and genome-wide dynamics of RNA polymerase and NusA in Mycobacterium tuberculosis. Nucleic Acids Res 2012; 41:961-77. [PMID: 23222129 PMCID: PMC3553938 DOI: 10.1093/nar/gks1260] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
To construct a regulatory map of the genome of the human pathogen, Mycobacterium tuberculosis, we applied two complementary high-resolution approaches: strand-specific RNA-seq, to survey the global transcriptome, and ChIP-seq, to monitor the genome-wide dynamics of RNA polymerase (RNAP) and the anti-terminator NusA. Although NusA does not bind directly to DNA, but rather to RNAP and/or to the nascent transcript, we demonstrate that NusA interacts with RNAP ubiquitously throughout the chromosome, and that its profile mirrors RNAP distribution in both the exponential and stationary phases of growth. Generally, promoter-proximal peaks for RNAP and NusA were observed, followed by a decrease in signal strength reflecting transcriptional polarity. Differential binding of RNAP and NusA in the two growth conditions correlated with transcriptional activity as reflected by RNA abundance. Indeed, a significant association between expression levels and the presence of NusA throughout the gene body was detected, confirming the peculiar transcription-promoting role of NusA. Integration of the data sets pinpointed transcriptional units, mapped promoters and uncovered new anti-sense and non-coding transcripts. Highly expressed transcriptional units were situated mainly on the leading strand, despite the relatively unbiased distribution of genes throughout the genome, thus helping the replicative and transcriptional complexes to align.
Collapse
Affiliation(s)
- Swapna Uplekar
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Station 19, CH-1015 Lausanne, Switzerland
| | | | | | | |
Collapse
|
36
|
Ceylan S, Yilan G, Akbulut BS, Poli A, Kazan D. Interplay of adaptive capabilities of Halomonas sp. AAD12 under salt stress. J Biosci Bioeng 2012; 114:45-52. [DOI: 10.1016/j.jbiosc.2012.02.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 02/28/2012] [Accepted: 02/29/2012] [Indexed: 10/28/2022]
|
37
|
Gene order and chromosome dynamics coordinate spatiotemporal gene expression during the bacterial growth cycle. Proc Natl Acad Sci U S A 2011; 109:E42-50. [PMID: 22184251 DOI: 10.1073/pnas.1108229109] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In Escherichia coli crosstalk between DNA supercoiling, nucleoid-associated proteins and major RNA polymerase σ initiation factors regulates growth phase-dependent gene transcription. We show that the highly conserved spatial ordering of relevant genes along the chromosomal replichores largely corresponds both to their temporal expression patterns during growth and to an inferred gradient of DNA superhelical density from the origin to the terminus. Genes implicated in similar functions are related mainly in trans across the chromosomal replichores, whereas DNA-binding transcriptional regulators interact predominantly with targets in cis along the replichores. We also demonstrate that macrodomains (the individual structural partitions of the chromosome) are regulated differently. We infer that spatial and temporal variation of DNA superhelicity during the growth cycle coordinates oxygen and nutrient availability with global chromosome structure, thus providing a mechanistic insight into how the organization of a complete bacterial chromosome encodes a spatiotemporal program integrating DNA replication and global gene expression.
Collapse
|
38
|
Effects on growth by changes of the balance between GreA, GreB, and DksA suggest mutual competition and functional redundancy in Escherichia coli. J Bacteriol 2011; 194:261-73. [PMID: 22056927 DOI: 10.1128/jb.06238-11] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is well known that ppGpp and DksA interact with bacterial RNA polymerase (RNAP) to alter promoter activity. This study suggests that GreA plays a major role and GreB plays a minor role in the ppGpp-DksA regulatory network. We present evidence that DksA and GreA/GreB are redundant and/or share similar functions: (i) on minimal medium GreA overproduction suppresses the growth defects of a dksA mutant; (ii) GreA and DksA overexpression partially suppresses the auxotrophy of a ppGpp-deficient strain; (iii) microarrays show that many genes are regulated similarly by GreA and DksA. We also find instances where GreA and DksA seem to act in opposition: (i) complete suppression of auxotrophy occurs by overexpression of GreA or DksA only in the absence of the other protein; (ii) PgadA and PgadE promoter fusions, along with many other genes, are dramatically affected in vivo by GreA overproduction only when DksA is absent; (iii) GreA and DksA show opposite regulation of a subset of genes. Mutations in key acidic residues of GreA and DksA suggest that properties seen here probably are not explained by known biochemical activities of these proteins. Our results indicate that the general pattern of gene expression and, in turn, the ability of Escherichia coli to grow under a defined condition are the result of a complex interplay between GreA, GreB, and DksA that also involves mutual control of their gene expression, competition for RNA polymerase binding, and similar or opposite action on RNA polymerase activity.
Collapse
|
39
|
Imashimizu M, Tanaka K, Shimamoto N. Comparative Study of Cyanobacterial and E. coli RNA Polymerases: Misincorporation, Abortive Transcription, and Dependence on Divalent Cations. GENETICS RESEARCH INTERNATIONAL 2011; 2011:572689. [PMID: 22567357 PMCID: PMC3335489 DOI: 10.4061/2011/572689] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 07/31/2011] [Indexed: 11/20/2022]
Abstract
If Mg2+ ion is replaced by Mn2+ ion, RNA polymerase tends to misincorporate noncognate nucleotide, which is thought to be one of the reasons for the toxicity of Mn2+ ion. Therefore, most cells have Mn2+ ion at low intracellular concentrations, but cyanobacteria need the ion at a millimolar concentration to maintain photosynthetic machinery. To analyse the mechanism for resistance against the abundant Mn2+ ion, we compared the properties of cyanobacterial and E. coli RNA polymerases. The cyanobacterial enzyme showed a lower level of abortive transcription and less misincorporation than the E. coli enzyme. Moreover, the cyanobacterial enzyme showed a slower rate of the whole elongation by an order of magnitude, paused more frequently, and cleaved its transcript faster in the absence of NTPs. In conclusion, cyanobacterial RNA polymerase maintains the fidelity of transcription against Mn2+ ion by deliberate incorporation of a nucleotide at the cost of the elongation rate. The cyanobacterial and the E. coli enzymes showed different sensitivities to Mg2+ ion, and the physiological role of the difference is also discussed.
Collapse
Affiliation(s)
- Masahiko Imashimizu
- Structural Biology Center, National Institute of Genetics, and Department of Genetics, The Graduate University for Advanced Studies, Mishima, Shizuoka 411-8540, Japan
| | | | | |
Collapse
|
40
|
Proshkin SA, Mironov AS. Regulation of bacterial transcription elongation. Mol Biol 2011. [DOI: 10.1134/s0026893311020154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Transcription factor GreA contributes to resolving promoter-proximal pausing of RNA polymerase in Bacillus subtilis cells. J Bacteriol 2011; 193:3090-9. [PMID: 21515770 DOI: 10.1128/jb.00086-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial Gre factors associate with RNA polymerase (RNAP) and stimulate intrinsic cleavage of the nascent transcript at the active site of RNAP. Biochemical and genetic studies to date have shown that Escherichia coli Gre factors prevent transcriptional arrest during elongation and enhance transcription fidelity. Furthermore, Gre factors participate in the stimulation of promoter escape and the suppression of promoter-proximal pausing during the beginning of RNA synthesis in E. coli. Although Gre factors are conserved in general bacteria, limited functional studies have been performed in bacteria other than E. coli. In this investigation, ChAP-chip analysis (chromatin affinity precipitation coupled with DNA microarray) was conducted to visualize the distribution of Bacillus subtilis GreA on the chromosome and to determine the effects of GreA inactivation on core RNAP trafficking. Our data show that GreA is uniformly distributed in the transcribed region from the promoter to coding region with core RNAP, and its inactivation induces RNAP accumulation at many promoter or promoter-proximal regions. Based on these findings, we propose that GreA would constantly associate with core RNAP during transcriptional initiation and elongation and resolves its stalling at promoter or promoter-proximal regions, thus contributing to the even distribution of RNAP along the promoter and coding regions in B. subtilis cells.
Collapse
|
42
|
Poteete AR. Recombination phenotypes of Escherichia coli greA mutants. BMC Mol Biol 2011; 12:12. [PMID: 21453489 PMCID: PMC3078854 DOI: 10.1186/1471-2199-12-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Accepted: 03/31/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The elongation factor GreA binds to RNA polymerase and modulates transcriptional pausing. Some recent research suggests that the primary role of GreA may not be to regulate gene expression, but rather, to promote the progression of replication forks which collide with RNA polymerase, and which might otherwise collapse. Replication fork collapse is known to generate dsDNA breaks, which can be recombinogenic. It follows that GreA malfunction could have consequences affecting homologous recombination. RESULTS Escherichia coli mutants bearing substitutions of the active site acidic residues of the transcription elongation factor GreA, D41N and E44K, were isolated as suppressors of growth inhibition by a toxic variant of the bacteriophage lambda Red-beta recombination protein. These mutants, as well as a D41A greA mutant and a greA deletion, were tested for proficiency in recombination events. The mutations were found to increase the efficiency of RecA-RecBCD-mediated and RecA-Red-mediated recombination, which are replication-independent, and to decrease the efficiency of replication-dependent Red-mediated recombination. CONCLUSION These observations provide new evidence for a role of GreA in resolving conflicts between replication and transcription.
Collapse
Affiliation(s)
- Anthony R Poteete
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
43
|
Shih TW, Pan TM. Stress responses of thermophilic Geobacillus sp. NTU 03 caused by heat and heat-induced stress. Microbiol Res 2010; 166:346-59. [PMID: 20869219 DOI: 10.1016/j.micres.2010.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 08/02/2010] [Accepted: 08/08/2010] [Indexed: 11/26/2022]
Abstract
A batch culture of Geobacillus sp. NTU 03 was subjected to a rapid temperature shift for investigating the stress response. Several known heat-shock responses for protein, DNA, and cell membrane recurring were observed on two-dimensional (2D) gels. Heat caused protein and cell membrane disruption greatly affected the electron transport chain. Further, heat caused lower dissolved oxygen (DO) solubility resulting in insufficient oxygen to be electron acceptor, and the NADH could not be reoxidized. Hence, we observed seven dehydrogenase that used NADH as electron donor were downregulated on the 2D gels. In contrast, succinate dehydrogenase that used FADH(2) as electron donor was upregulated. However, this induction may simultaneously increase generation of superoxide; therefore the cellular redox state was imbalanced. We observed that superoxide dismutase (2D gel) and zinc ion ABC transporter (mRNA quantification) were upregulated, whereas ferric ion ABC transporter (2D gel and mRNA quantification) was downregulated. Increase in the reactive oxygen or nitrogen species scavenging activities were also observed. For responding the lower DO solubility, a transient activation of nitrate respiration was observed at transcriptional level. Our results support the view that both heat stress and heat-induced stress should be considered together when investigating the stress responses of thermophiles.
Collapse
Affiliation(s)
- Tsung-Wei Shih
- Department of Biochemical Science & Technology, College of Life Science, National Taiwan University, 1, Sec. 4, Roosevelt Road, Taipei, Taiwan
| | | |
Collapse
|
44
|
Yamada YR, Peskin CS. The Influence of Look-Ahead on the Error Rate of Transcription. MATHEMATICAL MODELLING OF NATURAL PHENOMENA 2010; 5:206-227. [PMID: 22162915 PMCID: PMC3235181 DOI: 10.1051/mmnp/20105313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In this paper we study the error rate of RNA synthesis in the look-ahead model for the random walk of RNA polymerase along DNA during transcription. The model's central assumption is the existence of a window of activity in which ribonucleoside triphosphates (rNTPs) bind reversibly to the template DNA strand before being hydrolyzed and linked covalently to the nascent RNA chain. An unknown, but important, integer parameter of this model is the window size w. Here, we use mathematical analysis and computer simulation to study the rate at which transcriptional errors occur as a function of w. We find dramatic reduction in the error rate of transcription as w increases, especially for small values of w. The error reduction method provided by look-ahead occurs before hydrolysis and covalent linkage of rNTP to the nascent RNA chain, and is therefore distinct from error correction mechanisms that have previously been considered.
Collapse
Affiliation(s)
- Y. R. Yamada
- Department of Mathematics, University of Michigan, 48109-1043 Ann Arbor, MI, USA
| | - C. S. Peskin
- Courant Institute of Mathematical Sciences, New York University, New York, NY, USA
| |
Collapse
|
45
|
Stepanova E, Wang M, Severinov K, Borukhov S. Early transcriptional arrest at Escherichia coli rplN and ompX promoters. J Biol Chem 2010; 284:35702-13. [PMID: 19854830 DOI: 10.1074/jbc.m109.053983] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacterial transcription elongation factors GreA and GreB stimulate the intrinsic RNase activity of RNA polymerase (RNAP), thus helping the enzyme to read through pausing and arresting sites on DNA. Gre factors also accelerate RNAP transition from initiation to elongation. Here, we characterized the molecular mechanism by which Gre factors facilitate transcription at two Escherichia coli promoters, PrplN and PompX, that require GreA for optimal in vivo activity. Using in vitro transcription assays, KMnO(4) footprinting, and Fe(2+)-induced hydroxyl radical mapping, we show that during transcription initiation at PrplN and PompX in the absence of Gre factors, RNAP falls into a condition of promoter-proximal transcriptional arrest that prevents production of full-length transcripts both in vitro and in vivo. Arrest occurs when RNAP synthesizes 9-14-nucleotide-long transcripts and backtracks by 5-7 (PrplN) or 2-4 (PompX) nucleotides. Initiation factor sigma(70) contributes to the formation of arrested complexes at both promoters. The signal for promoter-proximal arrest at PrplN is bipartite and requires two elements: the extended -10 promoter element and the initial transcribed region from positions +2 to +6. GreA and GreB prevent arrest at PrplN and PompX by inducing cleavage of the 3'-proximal backtracked portion of RNA at the onset of arrested complex formation and stimulate productive transcription by allowing RNAP to elongate the 5'-proximal transcript cleavage products in the presence of substrates. We propose that promoter-proximal arrest is a common feature of many bacterial promoters and may represent an important physiological target of regulation by transcript cleavage factors.
Collapse
Affiliation(s)
- Ekaterina Stepanova
- Department of Cell Biology, School of Osteopathic Medicine at Stratford, University of Medicine and Dentistry of New Jersey, Stratford, New Jersey 08084, USA
| | | | | | | |
Collapse
|
46
|
Potrykus K, Murphy H, Chen X, Epstein JA, Cashel M. Imprecise transcription termination within Escherichia coli greA leader gives rise to an array of short transcripts, GraL. Nucleic Acids Res 2009; 38:1636-51. [PMID: 20008510 PMCID: PMC2836576 DOI: 10.1093/nar/gkp1150] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We report that greA expression is driven by two strong, overlapping P1 and P2 promoters. The P1 promoter is σ70-dependent and P2 is σE-dependent. Two-thirds of transcripts terminate within the leader region and the remaining third comprises greA mRNA. Termination efficiency seems to be unaffected by growth phase. Two collections of small 40–50 (initiating from P2) and 50–60 nt (from P1) RNA chains, termed GraL, are demonstrable in vivo and in vitro. We document that GraL arrays arise from an intrinsic terminator with an 11 bp stem followed by an AU7GCU2 sequence. Atypical chain termination occurs at multiple sites; the 3′-ends differ by 1 nt over a range of 10 nt. Transcripts observed are shown to be insensitive to Gre factors and physically released from RNAP–DNA complexes. The abundance of individual chains within each cluster displays a characteristic pattern, which can be differentially altered by oligonucleotide probes. Multiple termination sites are particularly sensitive to changes at the bottom of the stem. Evolutionarily conserved GraL stem structures and fitness assays suggest a biological function for the RNA clusters themselves. Although GraL overexpression induces ≥3-fold transcriptional changes of over 100 genes, a direct target remains elusive.
Collapse
Affiliation(s)
- Katarzyna Potrykus
- Laboratory of Molecular Genetics, Program in Genomics of Development, Eunice Kennedy Shriver NICHD, NIH, Bethesda, MD 20892-2785, USA.
| | | | | | | | | |
Collapse
|
47
|
Stepanova EV, Shevelev AB, Borukhov SI, Severinov KV. Mechanisms of action of RNA polymerase-binding transcription factors that do not bind to DNA. Biophysics (Nagoya-shi) 2009. [DOI: 10.1134/s0006350909050017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
48
|
van Hijum SAFT, Medema MH, Kuipers OP. Mechanisms and evolution of control logic in prokaryotic transcriptional regulation. Microbiol Mol Biol Rev 2009; 73:481-509, Table of Contents. [PMID: 19721087 PMCID: PMC2738135 DOI: 10.1128/mmbr.00037-08] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A major part of organismal complexity and versatility of prokaryotes resides in their ability to fine-tune gene expression to adequately respond to internal and external stimuli. Evolution has been very innovative in creating intricate mechanisms by which different regulatory signals operate and interact at promoters to drive gene expression. The regulation of target gene expression by transcription factors (TFs) is governed by control logic brought about by the interaction of regulators with TF binding sites (TFBSs) in cis-regulatory regions. A factor that in large part determines the strength of the response of a target to a given TF is motif stringency, the extent to which the TFBS fits the optimal TFBS sequence for a given TF. Advances in high-throughput technologies and computational genomics allow reconstruction of transcriptional regulatory networks in silico. To optimize the prediction of transcriptional regulatory networks, i.e., to separate direct regulation from indirect regulation, a thorough understanding of the control logic underlying the regulation of gene expression is required. This review summarizes the state of the art of the elements that determine the functionality of TFBSs by focusing on the molecular biological mechanisms and evolutionary origins of cis-regulatory regions.
Collapse
Affiliation(s)
- Sacha A F T van Hijum
- Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands.
| | | | | |
Collapse
|
49
|
Babu M, Musso G, Díaz-Mejía JJ, Butland G, Greenblatt JF, Emili A. Systems-level approaches for identifying and analyzing genetic interaction networks in Escherichia coli and extensions to other prokaryotes. MOLECULAR BIOSYSTEMS 2009; 5:1439-55. [PMID: 19763343 DOI: 10.1039/b907407d] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Molecular interactions define the functional organization of the cell. Epistatic (genetic, or gene-gene) interactions, one of the most informative and commonly encountered forms of functional relationships, are increasingly being used to map process architecture in model eukaryotic organisms. In particular, 'systems-level' screens in yeast and worm aimed at elucidating genetic interaction networks have led to the generation of models describing the global modular organization of gene products and protein complexes within a cell. However, comparable data for prokaryotic organisms have not been available. Given its ease of growth and genetic manipulation, the Gram-negative bacterium Escherichia coli appears to be an ideal model system for performing comprehensive genome-scale examinations of genetic redundancy in bacteria. In this review, we highlight emerging experimental and computational techniques that have been developed recently to examine functional relationships and redundancy in E. coli at a systems-level, and their potential application to prokaryotes in general. Additionally, we have scanned PubMed abstracts and full-text published articles to manually curate a list of approximately 200 previously reported synthetic sick or lethal genetic interactions in E. coli derived from small-scale experimental studies.
Collapse
Affiliation(s)
- Mohan Babu
- Banting and Best Department of Medical Research, Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada M5S 3E1
| | | | | | | | | | | |
Collapse
|
50
|
Similar and divergent effects of ppGpp and DksA deficiencies on transcription in Escherichia coli. J Bacteriol 2009; 191:3226-36. [PMID: 19251846 DOI: 10.1128/jb.01410-08] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The concerted action of ppGpp and DksA in transcription has been widely documented. In disparity with this model, phenotypic studies showed that ppGpp and DksA might also have independent and opposing roles in gene expression in Escherichia coli. In this study we used a transcriptomic approach to compare the global transcriptional patterns of gene expression in strains deficient in ppGpp (ppGpp(0)) and/or DksA (DeltadksA). Approximately 6 and 7% of all genes were significantly affected by more than twofold in ppGpp- and DksA-deficient strains, respectively, increasing to 13% of all genes in the ppGpp(0) DeltadksA strain. Although the data indicate that most of the affected genes were copositively or conegatively regulated by ppGpp and DksA, some genes that were independently and/or differentially regulated by the two factors were found. The large functional group of chemotaxis and flagellum synthesis genes were notably differentially affected, with all genes being upregulated in the DksA-deficient strain but 60% of them being downregulated in the ppGpp-deficient strain. Revealingly, mutations in the antipausing Gre factors suppress the upregulation observed in the DksA-deficient strain, emphasizing the importance of the secondary channel of the RNA polymerase for regulation and fine-tuning of gene expression in E. coli.
Collapse
|