1
|
Xia J, Luo Y, Chen M, Liu Y, Wang Z, Deng S, Xu J, Han Y, Sun J, Jiang L, Song H, Cheng C. Characterization of a DsbA family protein reveals its crucial role in oxidative stress tolerance of Listeria monocytogenes. Microbiol Spectr 2023; 11:e0306023. [PMID: 37823664 PMCID: PMC10715225 DOI: 10.1128/spectrum.03060-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/05/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE The adaption and tolerance to various environmental stresses are the fundamental factors for the widespread existence of Listeria monocytogenes. Anti-oxidative stress is the critical mechanism for the survival and pathogenesis of L. monocytogenes. The thioredoxin (Trx) and glutaredoxin (Grx) systems are known to contribute to the anti-oxidative stress of L. monocytogenes, but whether the Dsb system has similar roles remains unknown. This study demonstrated that the DsbA family protein Lmo1059 of L. monocytogenes participates in bacterial oxidative stress tolerance, with Cys36 as the key amino acid of its catalytic activity and anti-oxidative stress ability. It is worth noting that Lmo1059 was involved in the invading and cell-to-cell spread of L. monocytogenes. This study lays a foundation for further understanding the specific mechanisms of oxidative cysteine repair and antioxidant stress regulation of L. monocytogenes, which contributes to an in-depth understanding of the environmental adaptation mechanisms for foodborne bacterial pathogens.
Collapse
Affiliation(s)
- Jing Xia
- College of Animal Science and Technology &College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, China
| | - Yaru Luo
- College of Animal Science and Technology &College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, China
| | - Mianmian Chen
- College of Animal Science and Technology &College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, China
| | - Yuqing Liu
- College of Animal Science and Technology &College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, China
| | - Zhe Wang
- College of Animal Science and Technology &College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, China
| | - Simin Deng
- College of Animal Science and Technology &College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, China
| | - Jiali Xu
- College of Animal Science and Technology &College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, China
| | - Yue Han
- College of Animal Science and Technology &College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, China
| | - Jing Sun
- College of Animal Science and Technology &College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, China
| | - Lingli Jiang
- Ningbo College of Health Sciences, Ningbo, Zhejiang, China
| | - Houhui Song
- College of Animal Science and Technology &College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, China
| | - Changyong Cheng
- College of Animal Science and Technology &College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Abstract
Bacillus anthracis, the anthrax agent, exhibits robust proliferation in diverse niches of mammalian hosts. The metabolic attributes of B. anthracis that permit rapid growth in multiple mammalian tissues have not been established. We posit that branched-chain amino acid (BCAA) (isoleucine, leucine, and valine) metabolism is key to B. anthracis pathogenesis. Increasing evidence indicates the relationships between B. anthracis virulence and the expression of BCAA-related genes. The expression of some BCAA-related genes is altered during culture in bovine blood in vitro, and the bacterium exhibits valine auxotrophy in a blood serum mimic medium. Transcriptome analyses have revealed that the virulence regulator AtxA, which positively affects the expression of the anthrax toxin and capsule genes, negatively regulates genes predicted to be associated with BCAA biosynthesis and transport. Here, we show that B. anthracis growth in defined medium is severely restricted in the absence of exogenous BCAAs, indicating that BCAA transport is required for optimal growth in vitro. We demonstrate functional redundancy among multiple BrnQ-type BCAA transporters. Three transporters are associated with isoleucine and valine transport, and the deletion of one, BrnQ3, attenuates virulence in a murine model for anthrax. Interestingly, an ilvD-null mutant lacking dihydroxy acid dehydratase, an enzyme essential for BCAA synthesis, exhibits unperturbed growth when cultured in medium containing BCAAs but is highly attenuated in the murine model. Finally, our data show that BCAAs enhance AtxA activity in a dose-dependent manner, suggesting a model in which BCAAs serve as a signal for virulence gene expression. IMPORTANCE Infection with B. anthracis can result in systemic disease with large numbers of the bacterium in multiple tissues. We found that branched-chain amino acid (BCAA) synthesis is insufficient for the robust growth of B. anthracis; access to BCAAs is necessary for the proliferation of the pathogen during culture and during infection in a murine model for anthrax. B. anthracis produces an unusually large repertoire of BCAA-related transporters. We identified three isoleucine/valine transporters with partial functional redundancy during culture. The deletion of one of these transporters, BrnQ3, resulted in attenuated virulence. Interestingly, a BCAA biosynthesis mutant grew well in medium containing BCAAs but, like BrnQ3, was attenuated for virulence. These results suggest that BCAAs are limiting in multiple niches during infection and further our understanding of the nutritional requirements of this important pathogen.
Collapse
|
3
|
Bier N, Hammerstrom TG, Koehler TM. Influence of the phosphoenolpyruvate:carbohydrate phosphotransferase system on toxin gene expression and virulence in Bacillus anthracis. Mol Microbiol 2019; 113:237-252. [PMID: 31667937 DOI: 10.1111/mmi.14413] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2019] [Indexed: 12/13/2022]
Abstract
AtxA, the master virulence gene regulator of Bacillus anthracis, is a PRD-Containing Virulence Regulator (PCVR) as indicated by the crystal structure, post-translational modifications and activity of the protein. PCVRs are transcriptional regulators, named for PTS Regulatory Domains (PRDs) subject to phosphorylation by the phosphoenolpyruvate phosphotransferase system (PEP-PTS) and for their impact on virulence gene expression. Here we present data from experiments employing physiological, genetic and biochemical approaches that support a model in which the PTS proteins HPr and Enzyme I (EI) are required for transcription of the atxA gene, rather than phosphorylation of AtxA. We show that atxA transcription is reduced 2.5-fold in a mutant lacking HPr and EI, and that this change is sufficient to affect anthrax toxin production. Mutants harboring HPr proteins altered for phosphotransfer activity were unable to restore atxA transcription to parent levels, suggesting that phosphotransfer activity of HPr and EI is important for regulation of atxA. In a mouse model for anthrax, a HPr- EI- mutant was attenuated for virulence. Virulence was restored by expressing atxA from an alternative, PTS-independent, promoter. Our data support a model in which HPr transfers a phosphate to an unidentified downstream transcriptional regulator to influence atxA gene transcription.
Collapse
Affiliation(s)
- Naomi Bier
- Department of Microbiology and Molecular Genetics, McGovern Medical School of the University of Texas - Houston Health Science Center, UTHealth M.D. Anderson Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Troy G Hammerstrom
- Department of Microbiology and Molecular Genetics, McGovern Medical School of the University of Texas - Houston Health Science Center, UTHealth M.D. Anderson Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Theresa M Koehler
- Department of Microbiology and Molecular Genetics, McGovern Medical School of the University of Texas - Houston Health Science Center, UTHealth M.D. Anderson Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
4
|
Ehling-Schulz M, Lereclus D, Koehler TM. The Bacillus cereus Group: Bacillus Species with Pathogenic Potential. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0032-2018. [PMID: 31111815 PMCID: PMC6530592 DOI: 10.1128/microbiolspec.gpp3-0032-2018] [Citation(s) in RCA: 262] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Indexed: 12/17/2022] Open
Abstract
The Bacillus cereus group includes several Bacillus species with closely related phylogeny. The most well-studied members of the group, B. anthracis, B. cereus, and B. thuringiensis, are known for their pathogenic potential. Here, we present the historical rationale for speciation and discuss shared and unique features of these bacteria. Aspects of cell morphology and physiology, and genome sequence similarity and gene synteny support close evolutionary relationships for these three species. For many strains, distinct differences in virulence factor synthesis provide facile means for species assignment. B. anthracis is the causative agent of anthrax. Some B. cereus strains are commonly recognized as food poisoning agents, but strains can also cause localized wound and eye infections as well as systemic disease. Certain B. thuringiensis strains are entomopathogens and have been commercialized for use as biopesticides, while some strains have been reported to cause infection in immunocompromised individuals. In this article we compare and contrast B. anthracis, B. cereus, and B. thuringiensis, including ecology, cell structure and development, virulence attributes, gene regulation and genetic exchange systems, and experimental models of disease.
Collapse
Affiliation(s)
- Monika Ehling-Schulz
- Institute of Microbiology, Department of Pathology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Didier Lereclus
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Theresa M Koehler
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center - Houston, Houston, TX 77030
| |
Collapse
|
5
|
Identification of Redox Partners of the Thiol-Disulfide Oxidoreductase SdbA in Streptococcus gordonii. J Bacteriol 2019; 201:JB.00030-19. [PMID: 30804044 DOI: 10.1128/jb.00030-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/18/2019] [Indexed: 12/13/2022] Open
Abstract
We previously identified a novel thiol-disulfide oxidoreductase, SdbA, in Streptococcus gordonii that formed disulfide bonds in substrate proteins and played a role in multiple phenotypes. In this study, we used mutational, phenotypic, and biochemical approaches to identify and characterize the redox partners of SdbA. Unexpectedly, the results showed that SdbA has multiple redox partners, forming a complex oxidative protein-folding pathway. The primary redox partners of SdbA that maintain its active site in an oxidized state are a surface-exposed thioredoxin family lipoprotein called SdbB (Sgo_1171) and an integral membrane protein annotated as CcdA2. Inactivation of sdbB and ccdA2 simultaneously, but not individually, recapitulated the sdbA mutant phenotype. The sdbB-ccdA2 mutant had defects in a range of cellular processes, including autolysis, bacteriocin production, genetic competence, and extracellular DNA (eDNA) release. AtlS, the natural substrate of SdbA produced by the sdbB-ccdA2 mutant lacked activity and an intramolecular disulfide bond. The redox state of SdbA in the sdbB-ccdA2 mutant was found to be in a reduced form and was restored when sdbB and ccdA2 were knocked back into the mutant. In addition, we showed that SdbB formed a disulfide-linked complex with SdbA in the cell. Recombinant SdbB and CcdA2 exhibited oxidase activity and reoxidized reduced SdbA in vitro Collectively, our results demonstrate that S. gordonii uses multiple redox partners for oxidative protein folding.IMPORTANCE Streptococcus gordonii is a commensal bacterium of the human dental plaque. Previously, we identified an enzyme, SdbA, that forms disulfide bonds in substrate proteins and plays a role in a number of cellular processes in S. gordonii Here, we identified the redox partners of SdbA. We showed that SdbA has multiple redox partners, SdbB and CcdA2, forming a complex oxidative protein-folding pathway. This pathway is essential for autolysis, bacteriocin production, genetic competence, and extracellular DNA (eDNA) release in S. gordonii These cellular processes are considered to be important for the success of S. gordonii as a dental plaque organism. This is the first example of an oxidative protein-folding pathway in Gram-positive bacteria that consists of an enzyme that uses multiple redox partners to function.
Collapse
|
6
|
Raynor MJ, Roh JH, Widen SG, Wood TG, Koehler TM. Regulons and protein-protein interactions of PRD-containing Bacillus anthracis virulence regulators reveal overlapping but distinct functions. Mol Microbiol 2018; 109:10.1111/mmi.13961. [PMID: 29603836 PMCID: PMC6167206 DOI: 10.1111/mmi.13961] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2018] [Indexed: 01/19/2023]
Abstract
Bacillus anthracis produces three regulators, AtxA, AcpA and AcpB, which control virulence gene transcription and belong to an emerging class of regulators termed 'PCVRs' (Phosphoenolpyruvate-dependent phosphotransferase regulation Domain-Containing Virulence Regulators). AtxA, named for its control of toxin gene expression, is the master virulence regulator and archetype PCVR. AcpA and AcpB are less well studied. Reports of PCVR activity suggest overlapping function. AcpA and AcpB independently positively control transcription of the capsule biosynthetic operon capBCADE, and culture conditions that enhance AtxA level or activity result in capBCADE transcription in strains lacking acpA and acpB. We used RNA-Seq to assess the regulons of the paralogous regulators in strains constructed to express individual PCVRs at native levels. Plasmid and chromosome-borne genes were PCVR controlled, with AtxA, AcpA and AcpB having a ≥ 4-fold effect on transcript levels of 145, 130 and 49 genes respectively. Several genes were coregulated by two or three PCVRs. We determined that AcpA and AcpB form homomultimers, as shown previously for AtxA, and we detected AtxA-AcpA heteromultimers. In co-expression experiments, AcpA activity was reduced by increased levels of AtxA. Our data show that the PCVRs have specific and overlapping activity and that PCVR stoichiometry and potential heteromultimerization can influence target gene expression.
Collapse
Affiliation(s)
- Malik J. Raynor
- Department of Microbiology and Molecular Genetics, McGovern Medical School of the University of Texas - Houston Health Science Center, Houston, Texas
- University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| | - Jung-Hyeob Roh
- Department of Microbiology and Molecular Genetics, McGovern Medical School of the University of Texas - Houston Health Science Center, Houston, Texas
| | - Stephen G. Widen
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas
| | - Thomas G. Wood
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas
| | - Theresa M. Koehler
- Department of Microbiology and Molecular Genetics, McGovern Medical School of the University of Texas - Houston Health Science Center, Houston, Texas
- University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| |
Collapse
|
7
|
Davey L, Halperin SA, Lee SF. Thiol-Disulfide Exchange in Gram-Positive Firmicutes. Trends Microbiol 2016; 24:902-915. [PMID: 27426970 DOI: 10.1016/j.tim.2016.06.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/08/2016] [Accepted: 06/28/2016] [Indexed: 11/17/2022]
Abstract
Extracytoplasmic thiol-disulfide oxidoreductases (TDORs) catalyze the oxidation, reduction, and isomerization of protein disulfide bonds. Although these processes have been characterized in Gram-negative bacteria, the majority of Gram-positive TDORs have only recently been discovered. Results from recent studies have revealed distinct trends in the types of TDOR used by different groups of Gram-positive bacteria, and in their biological functions. Actinobacteria TDORs can be essential for viability, while Firmicute TDORs influence various physiological processes, including protein stability, oxidative stress resistance, bacteriocin production, and virulence. In this review we discuss the diverse extracytoplasmic TDORs used by Gram-positive bacteria, with a focus on Gram-positive Firmicutes.
Collapse
Affiliation(s)
- Lauren Davey
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, B3H 1X5 Canada; Canadian Center for Vaccinology, Dalhousie University and the IWK Health Centre, Halifax, NS, B3K 6R8 Canada
| | - Scott A Halperin
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, B3H 1X5 Canada; Canadian Center for Vaccinology, Dalhousie University and the IWK Health Centre, Halifax, NS, B3K 6R8 Canada; Department of Pediatrics, Faculty of Medicine, Dalhousie University and the IWK Health Centre, Halifax, NS, B3K 6R8 Canada
| | - Song F Lee
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, B3H 1X5 Canada; Canadian Center for Vaccinology, Dalhousie University and the IWK Health Centre, Halifax, NS, B3K 6R8 Canada; Department of Pediatrics, Faculty of Medicine, Dalhousie University and the IWK Health Centre, Halifax, NS, B3K 6R8 Canada; Department of Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, NS, B3H 4R2 Canada.
| |
Collapse
|
8
|
Kim JGY, Wilson AC. Loss of σI affects heat-shock response and virulence gene expression in Bacillus anthracis. MICROBIOLOGY-SGM 2016; 162:564-574. [PMID: 26744224 DOI: 10.1099/mic.0.000236] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The pathogenesis of Bacillus anthracis depends on several virulence factors, including the anthrax toxin. Loss of the alternative sigma factor σI results in a coordinate decrease in expression of all three toxin subunits. Our observations suggest that loss of σI alters the activity of the master virulence regulator AtxA, but atxA transcription is unaffected by loss of σI. σI-containing RNA polymerase does not appear to directly transcribe either atxA or the toxin gene pagA. As in Bacillus subtilis, loss of σI in B. anthracis results in increased sensitivity to heat shock and transcription of sigI, encoding σI, is induced by elevated temperature. Encoded immediately downstream of and part of a bicistronic message with sigI is an anti-sigma factor, RsgI, which controls σI activity. Loss of RsgI has no direct effect on virulence gene expression. sigI appears to be expressed from both the σI and σA promoters, and transcription from the σA promoter is likely more significant to virulence regulation. We propose a model in which σI can be induced in response to heat shock, whilst, independently, σI is produced under non-heat-shock, toxin-inducing conditions to indirectly regulate virulence gene expression.
Collapse
Affiliation(s)
- Jenny Gi Yae Kim
- Department of Biology, Georgia State University, Atlanta, GA 30302, USA
| | - Adam C Wilson
- Department of Biology, Georgia State University, Atlanta, GA 30302, USA
| |
Collapse
|
9
|
Khalfaoui-Hassani B, Verissimo AF, Shroff NP, Ekici S, Trasnea PI, Utz M, Koch HG, Daldal F. Biogenesis of Cytochrome c Complexes: From Insertion of Redox Cofactors to Assembly of Different Subunits. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2016. [DOI: 10.1007/978-94-017-7481-9_27] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
10
|
Bocian-Ostrzycka KM, Łasica AM, Dunin-Horkawicz S, Grzeszczuk MJ, Drabik K, Dobosz AM, Godlewska R, Nowak E, Collet JF, Jagusztyn-Krynicka EK. Functional and evolutionary analyses of Helicobacter pylori HP0231 (DsbK) protein with strong oxidative and chaperone activity characterized by a highly diverged dimerization domain. Front Microbiol 2015; 6:1065. [PMID: 26500620 PMCID: PMC4597128 DOI: 10.3389/fmicb.2015.01065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/16/2015] [Indexed: 12/15/2022] Open
Abstract
Helicobacter pylori does not encode the classical DsbA/DsbB oxidoreductases that are crucial for oxidative folding of extracytoplasmic proteins. Instead, this microorganism encodes an untypical two proteins playing a role in disulfide bond formation – periplasmic HP0231, which structure resembles that of EcDsbC/DsbG, and its redox partner, a membrane protein HpDsbI (HP0595) with a β-propeller structure. The aim of presented work was to assess relations between HP0231 structure and function. We showed that HP0231 is most closely related evolutionarily to the catalytic domain of DsbG, even though it possesses a catalytic motif typical for canonical DsbA proteins. Similarly, the highly diverged N-terminal dimerization domain is homologous to the dimerization domain of DsbG. To better understand the functioning of this atypical oxidoreductase, we examined its activity using in vivo and in vitro experiments. We found that HP0231 exhibits oxidizing and chaperone activities but no isomerizing activity, even though H. pylori does not contain a classical DsbC. We also show that HP0231 is not involved in the introduction of disulfide bonds into HcpC (Helicobactercysteine-rich protein C), a protein involved in the modulation of the H. pylori interaction with its host. Additionally, we also constructed a truncated version of HP0231 lacking the dimerization domain, denoted HP0231m, and showed that it acts in Escherichia coli cells in a DsbB-dependent manner. In contrast, HP0231m and classical monomeric EcDsbA (E. coli DsbA protein) were both unable to complement the lack of HP0231 in H. pylori cells, though they exist in oxidized forms. HP0231m is inactive in the insulin reduction assay and possesses high chaperone activity, in contrast to EcDsbA. In conclusion, HP0231 combines oxidative functions characteristic of DsbA proteins and chaperone activity characteristic of DsbC/DsbG, and it lacks isomerization activity.
Collapse
Affiliation(s)
- Katarzyna M Bocian-Ostrzycka
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw Warsaw, Poland
| | - Anna M Łasica
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology Warsaw, Poland
| | - Stanisław Dunin-Horkawicz
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology Warsaw, Poland
| | - Magdalena J Grzeszczuk
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw Warsaw, Poland
| | - Karolina Drabik
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw Warsaw, Poland
| | - Aneta M Dobosz
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw Warsaw, Poland
| | - Renata Godlewska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw Warsaw, Poland
| | - Elżbieta Nowak
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology Warsaw, Poland
| | - Jean-Francois Collet
- de Duve Institute, Université catholique de Louvain (UCL)/Walloon Excellence in Life Sciences and Biotechnology Brussels, Belgium
| | - Elżbieta K Jagusztyn-Krynicka
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw Warsaw, Poland
| |
Collapse
|
11
|
Roszczenko P, Grzeszczuk M, Kobierecka P, Wywial E, Urbanowicz P, Wincek P, Nowak E, Jagusztyn-Krynicka EK. Helicobacter pylori HP0377, a member of the Dsb family, is an untypical multifunctional CcmG that cooperates with dimeric thioldisulfide oxidase HP0231. BMC Microbiol 2015; 15:135. [PMID: 26141380 PMCID: PMC4491210 DOI: 10.1186/s12866-015-0471-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 06/23/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND In the genome of H. pylori 26695, 149 proteins containing the CXXC motif characteristic of thioldisulfide oxidoreductases have been identified to date. However, only two of these proteins have a thioredoxin-like fold (i.e., HP0377 and HP0231) and are periplasm-located. We have previously shown that HP0231 is a dimeric oxidoreductase that catalyzes disulfide bond formation in the periplasm. Although HP0377 was originally described as DsbC homologue, its resolved structure and location of the hp0377 gene in the genome indicate that it is a counterpart of CcmG/DsbE. RESULTS The present work shows that HP0377 is present in H. pylori cells only in a reduced form and that absence of the main periplasmic oxidase HP0231 influences its redox state. Our biochemical analysis indicates that HP0377 is a specific reductase, as it does not reduce insulin. However, it possesses disulfide isomerase activity, as it catalyzes the refolding of scrambled RNase. Additionally, although its standard redox potential is -176 mV, it is the first described CcmG protein having an acidic pKa of the N-terminal cysteine of the CXXC motif, similar to E. coli DsbA or E. coli DsbC. The CcmG proteins that play a role in a cytochrome c-maturation, both in system I and system II, are kept in the reduced form by an integral membrane protein DsbD or its analogue, CcdA. In H. pylori HP0377 is re-reduced by CcdA (HP0265); however in E. coli it remains in the oxidized state as it does not interact with E. coli DsbD. Our in vivo work also suggests that both HP0377, which plays a role in apocytochrome reduction, and HP0378, which is involved in heme transport and its ligation into apocytochrome, provide essential functions in H. pylori. CONCLUSIONS The present data, in combination with the resolved three-dimensional structure of the HP0377, suggest that HP0377 is an unusual, multifunctional CcmG protein.
Collapse
Affiliation(s)
- Paula Roszczenko
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland. .,Present address: Department of Cell Biology, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland.
| | - Magdalena Grzeszczuk
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Patrycja Kobierecka
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Ewa Wywial
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Warsaw, Poland.
| | - Paweł Urbanowicz
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Piotr Wincek
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Elzbieta Nowak
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw, Poland.
| | | |
Collapse
|
12
|
Bocian-Ostrzycka KM, Grzeszczuk MJ, Dziewit L, Jagusztyn-Krynicka EK. Diversity of the Epsilonproteobacteria Dsb (disulfide bond) systems. Front Microbiol 2015; 6:570. [PMID: 26106374 PMCID: PMC4460558 DOI: 10.3389/fmicb.2015.00570] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/24/2015] [Indexed: 12/20/2022] Open
Abstract
The bacterial proteins of the Dsb family-important components of the post-translational protein modification system-catalyze the formation of disulfide bridges, a process that is crucial for protein structure stabilization and activity. Dsb systems play an essential role in the assembly of many virulence factors. Recent rapid advances in global analysis of bacteria have thrown light on the enormous diversity among bacterial Dsb systems. While the Escherichia coli disulfide bond-forming system is quite well understood, the mechanisms of action of Dsb systems in other bacteria, including members of class Epsilonproteobacteria that contain pathogenic and non-pathogenic bacteria colonizing extremely diverse ecological niches, are poorly characterized. Here we present a review of current knowledge on Epsilonproteobacteria Dsb systems. We have focused on the Dsb systems of Campylobacter spp. and Helicobacter spp. because our knowledge about Dsb proteins of Wolinella and Arcobacter spp. is still scarce and comes mainly from bioinformatic studies. Helicobacter pylori is a common human pathogen that colonizes the gastric epithelium of humans with severe consequences. Campylobacter spp. is a leading cause of zoonotic enteric bacterial infections in most developed and developing nations. We focus on various aspects of the diversity of the Dsb systems and their influence on pathogenicity, particularly because Dsb proteins are considered as potential targets for a new class of anti-virulence drugs to treat human infections by Campylobacter or Helicobacter spp.
Collapse
|
13
|
Han H, Iakovenko L, Wilson AC. Loss of Homogentisate 1,2-Dioxygenase Activity in Bacillus anthracis Results in Accumulation of Protective Pigment. PLoS One 2015; 10:e0128967. [PMID: 26047497 PMCID: PMC4457819 DOI: 10.1371/journal.pone.0128967] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 05/04/2015] [Indexed: 01/28/2023] Open
Abstract
Melanin production is important to the pathogenicity and survival of some bacterial pathogens. In Bacillus anthracis, loss of hmgA, encoding homogentisate 1,2-dioxygenase, results in accumulation of a melanin-like pigment called pyomelanin. Pyomelanin is produced in the mutant as a byproduct of disrupted catabolism of L-tyrosine and L-phenylalanine. Accumulation of pyomelanin protects B. anthracis cells from UV damage but not from oxidative damage. Neither loss of hmgA nor accumulation of pyomelanin alter virulence gene expression, sporulation or germination. This is the first investigation of homogentisate 1,2-dioxygenase activity in the Gram-positive bacteria, and these results provide insight into a conserved aspect of bacterial physiology.
Collapse
Affiliation(s)
- Hesong Han
- Department of Biology, Georgia State University, Atlanta, GA, United States of America
| | - Liudmyla Iakovenko
- Department of Biology, Georgia State University, Atlanta, GA, United States of America
| | - Adam C. Wilson
- Department of Biology, Georgia State University, Atlanta, GA, United States of America
- * E-mail:
| |
Collapse
|
14
|
Cytochrome c551 and the cytochrome c maturation pathway affect virulence gene expression in Bacillus cereus ATCC 14579. J Bacteriol 2014; 197:626-35. [PMID: 25422307 DOI: 10.1128/jb.02125-14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Loss of the cytochrome c maturation system in Bacillus cereus results in increased transcription of the major enterotoxin genes nhe, hbl, and cytK and the virulence regulator plcR. Increased virulence factor production occurs at 37°C under aerobic conditions, similar to previous findings in Bacillus anthracis. Unlike B. anthracis, much of the increased virulence gene expression can be attributed to loss of only c551, one of the two small c-type cytochromes. Additional virulence factor expression occurs with loss of resBC, encoding cytochrome c maturation proteins, independently of the presence of the c-type cytochrome genes. Hemolytic activity of strains missing either cccB or resBC is increased relative to that in the parental strain, while sporulation efficiency is unaffected in the mutants. Increased virulence gene expression in the ΔcccB and ΔresBC mutants occurs only in the presence of an intact plcR gene, indicating that this process is PlcR dependent. These findings suggest a new mode of regulation of B. cereus virulence and reveal intriguing similarities and differences in virulence regulation between B. cereus and B. anthracis.
Collapse
|
15
|
Verissimo AF, Daldal F. Cytochrome c biogenesis System I: an intricate process catalyzed by a maturase supercomplex? BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:989-98. [PMID: 24631867 DOI: 10.1016/j.bbabio.2014.03.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 03/03/2014] [Accepted: 03/06/2014] [Indexed: 11/16/2022]
Abstract
Cytochromes c are ubiquitous heme proteins that are found in most living organisms and are essential for various energy production pathways as well as other cellular processes. Their biosynthesis relies on a complex post-translational process, called cytochrome c biogenesis, responsible for the formation of stereo-specific thioether bonds between the vinyl groups of heme b (protoporphyrin IX-Fe) and the thiol groups of apocytochromes c heme-binding site (C1XXC2H) cysteine residues. In some organisms this process involves up to nine (CcmABCDEFGHI) membrane proteins working together to achieve heme ligation, designated the Cytochrome c maturation (Ccm)-System I. Here, we review recent findings related to the Ccm-System I found in bacteria, archaea and plant mitochondria, with an emphasis on protein interactions between the Ccm components and their substrates (apocytochrome c and heme). We discuss the possibility that the Ccm proteins may form a multi subunit supercomplex (dubbed "Ccm machine"), and based on the currently available data, we present an updated version of a mechanistic model for Ccm. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.
Collapse
Affiliation(s)
- Andreia F Verissimo
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6019, USA
| | - Fevzi Daldal
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6019, USA.
| |
Collapse
|