1
|
Tu Z, Setlow P, Brul S, Kramer G. Molecular Physiological Characterization of a High Heat Resistant Spore Forming Bacillus subtilis Food Isolate. Microorganisms 2021; 9:667. [PMID: 33807113 PMCID: PMC8005191 DOI: 10.3390/microorganisms9030667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 02/07/2023] Open
Abstract
Bacterial endospores (spores) are among the most resistant living forms on earth. Spores of Bacillus subtilis A163 show extremely high resistance to wet heat compared to spores of laboratory strains. In this study, we found that spores of B. subtilis A163 were indeed very wet heat resistant and released dipicolinic acid (DPA) very slowly during heat treatment. We also determined the proteome of vegetative cells and spores of B. subtilis A163 and the differences in these proteomes from those of the laboratory strain PY79, spores of which are much less heat resistant. This proteomic characterization identified 2011 proteins in spores and 1901 proteins in vegetative cells of B. subtilis A163. Surprisingly, spore morphogenic protein SpoVM had no homologs in B. subtilis A163. Comparing protein expression between these two strains uncovered 108 proteins that were differentially present in spores and 93 proteins differentially present in cells. In addition, five of the seven proteins on an operon in strain A163, which is thought to be primarily responsible for this strain's spores high heat resistance, were also identified. These findings reveal proteomic differences of the two strains exhibiting different resistance to heat and form a basis for further mechanistic analysis of the high heat resistance of B. subtilis A163 spores.
Collapse
Affiliation(s)
- Zhiwei Tu
- Laboratory for Molecular Biology and Microbial Food Safety, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
- Laboratory for Mass Spectrometry of Biomolecules, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
| | - Peter Setlow
- Department of Molecular Biology and Biophysics, UCONN Health, Farmington, CT 06030-3303, USA;
| | - Stanley Brul
- Laboratory for Molecular Biology and Microbial Food Safety, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
| | - Gertjan Kramer
- Laboratory for Mass Spectrometry of Biomolecules, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
| |
Collapse
|
2
|
Martínez-Lumbreras S, Alfano C, Evans NJ, Collins KM, Flanagan KA, Atkinson RA, Krysztofinska EM, Vydyanath A, Jackter J, Fixon-Owoo S, Camp AH, Isaacson RL. Structural and Functional Insights into Bacillus subtilis Sigma Factor Inhibitor, CsfB. Structure 2018; 26:640-648.e5. [PMID: 29526435 PMCID: PMC5890618 DOI: 10.1016/j.str.2018.02.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/17/2017] [Accepted: 02/06/2018] [Indexed: 11/23/2022]
Abstract
Global changes in bacterial gene expression can be orchestrated by the coordinated activation/deactivation of alternative sigma (σ) factor subunits of RNA polymerase. Sigma factors themselves are regulated in myriad ways, including via anti-sigma factors. Here, we have determined the solution structure of anti-sigma factor CsfB, responsible for inhibition of two alternative sigma factors, σG and σE, during spore formation by Bacillus subtilis. CsfB assembles into a symmetrical homodimer, with each monomer bound to a single Zn2+ ion via a treble-clef zinc finger fold. Directed mutagenesis indicates that dimer formation is critical for CsfB-mediated inhibition of both σG and σE, and we have characterized these interactions in vitro. This work represents an advance in our understanding of how CsfB mediates inhibition of two alternative sigma factors to drive developmental gene expression in a bacterium.
Collapse
MESH Headings
- Amino Acid Sequence
- Bacillus subtilis/chemistry
- Bacillus subtilis/genetics
- Bacillus subtilis/metabolism
- Binding Sites
- Cations, Divalent
- Cloning, Molecular
- Crystallography, X-Ray
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Expression Regulation, Bacterial
- Genetic Vectors/chemistry
- Genetic Vectors/metabolism
- Models, Molecular
- Mutation
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- Protein Isoforms/antagonists & inhibitors
- Protein Isoforms/chemistry
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Protein Multimerization
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Repressor Proteins/chemistry
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Sequence Alignment
- Sequence Homology, Amino Acid
- Sigma Factor/antagonists & inhibitors
- Sigma Factor/chemistry
- Sigma Factor/genetics
- Sigma Factor/metabolism
- Spores, Bacterial/chemistry
- Spores, Bacterial/genetics
- Spores, Bacterial/metabolism
- Zinc/chemistry
- Zinc/metabolism
Collapse
Affiliation(s)
| | - Caterina Alfano
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, UK; Structural Biology and Biophysics Unit, Fondazione Ri.MED, Via Bandiera, 11, 90133 Palermo, Italy
| | - Nicola J Evans
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, UK
| | - Katherine M Collins
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, UK
| | - Kelly A Flanagan
- Department of Biological Sciences, Mount Holyoke College, 50 College Street, South Hadley, MA 01075, USA
| | - R Andrew Atkinson
- Centre for Biomolecular Spectroscopy and Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Ewelina M Krysztofinska
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, UK
| | - Anupama Vydyanath
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, UK
| | - Jacquelin Jackter
- Department of Biological Sciences, Mount Holyoke College, 50 College Street, South Hadley, MA 01075, USA
| | - Sarah Fixon-Owoo
- Department of Biological Sciences, Mount Holyoke College, 50 College Street, South Hadley, MA 01075, USA
| | - Amy H Camp
- Department of Biological Sciences, Mount Holyoke College, 50 College Street, South Hadley, MA 01075, USA
| | - Rivka L Isaacson
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, UK.
| |
Collapse
|
3
|
Abstract
Despite being resistant to a variety of environmental insults, the bacterial endospore can sense the presence of small molecules and respond by germinating, losing the specialized structures of the dormant spore, and resuming active metabolism, before outgrowing into vegetative cells. Our current level of understanding of the spore germination process in bacilli and clostridia is reviewed, with particular emphasis on the germinant receptors characterized in Bacillus subtilis, Bacillus cereus, and Bacillus anthracis. The recent evidence for a local clustering of receptors in a "germinosome" would begin to explain how signals from different receptors could be integrated. The SpoVA proteins, involved in the uptake of Ca2+-dipicolinic acid into the forespore during sporulation, are also responsible for its release during germination. Lytic enzymes SleB and CwlJ, found in bacilli and some clostridia, hydrolyze the spore cortex: other clostridia use SleC for this purpose. With genome sequencing has come the appreciation that there is considerable diversity in the setting for the germination machinery between bacilli and clostridia.
Collapse
|
4
|
Replication-Transcription Conflicts Generate R-Loops that Orchestrate Bacterial Stress Survival and Pathogenesis. Cell 2017; 170:787-799.e18. [PMID: 28802046 DOI: 10.1016/j.cell.2017.07.044] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 05/09/2017] [Accepted: 07/25/2017] [Indexed: 12/31/2022]
Abstract
Replication-transcription collisions shape genomes, influence evolution, and promote genetic diseases. Although unclear why, head-on transcription (lagging strand genes) is especially disruptive to replication and promotes genomic instability. Here, we find that head-on collisions promote R-loop formation in Bacillus subtilis. We show that pervasive R-loop formation at head-on collision regions completely blocks replication, elevates mutagenesis, and inhibits gene expression. Accordingly, the activity of the R-loop processing enzyme RNase HIII at collision regions is crucial for stress survival in B. subtilis, as many stress response genes are head-on to replication. Remarkably, without RNase HIII, the ability of the intracellular pathogen Listeria monocytogenes to infect and replicate in hosts is weakened significantly, most likely because many virulence genes are head-on to replication. We conclude that the detrimental effects of head-on collisions stem primarily from excessive R-loop formation and that the resolution of these structures is critical for bacterial stress survival and pathogenesis.
Collapse
|
5
|
Abstract
Spores of Clostridiales and Bacillales are encased in a complex series of concentric shells that provide protection, facilitate germination, and mediate interactions with the environment. Analysis of diverse spore-forming species by thin-section transmission electron microscopy reveals that the number and morphology of these encasing shells vary greatly. In some species, they appear to be composed of a small number of discrete layers. In other species, they can comprise multiple, morphologically complex layers. In addition, spore surfaces can possess elaborate appendages. For all their variability, there is a consistent architecture to the layers encasing the spore. A hallmark of all Clostridiales and Bacillales spores is the cortex, a layer made of peptidoglycan. In close association with the cortex, all species examined possess, at a minimum, a series of proteinaceous layers, called the coat. In some species, including Bacillus subtilis, only the coat is present. In other species, including Bacillus anthracis, an additional layer, called the exosporium, surrounds the coat. Our goals here are to review the present understanding of the structure, composition, assembly, and functions of the coat, primarily in the model organism B. subtilis, but also in the small but growing number of other spore-forming species where new data are showing that there is much to be learned beyond the relatively well-developed basis of knowledge in B. subtilis. To help summarize this large field and define future directions for research, we will focus on key findings in recent years.
Collapse
|
6
|
Zwick JV, Noble S, Ellaicy YK, Coe GD, Hakey DJ, King AN, Sadauskas AJ, Faulkner MJ. AhpA is a peroxidase expressed during biofilm formation in Bacillus subtilis. Microbiologyopen 2016; 6. [PMID: 27683249 PMCID: PMC5300871 DOI: 10.1002/mbo3.403] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/17/2016] [Accepted: 08/23/2016] [Indexed: 11/10/2022] Open
Abstract
Organisms growing aerobically generate reactive oxygen species such as hydrogen peroxide. These reactive oxygen molecules damage enzymes and DNA, potentially causing cell death. In response, Bacillus subtilis produces at least nine potential peroxide-scavenging enzymes; two belong to the alkylhydroperoxide reductase (Ahp) class of peroxidases. Here, we explore the role of one of these Ahp homologs, AhpA. While previous studies demonstrated that AhpA can scavenge peroxides and thus defend cells against peroxides, they did not clarify when during growth the cell produces AhpA. The results presented here show that the expression of ahpA is regulated in a manner distinct from that of the other peroxide-scavenging enzymes in B. subtilis. While the primary Ahp, AhpC, is expressed during exponential growth and stationary phase, these studies demonstrate that the expression of ahpA is dependent on the transition-state regulator AbrB and the sporulation and biofilm formation transcription factor Spo0A. Furthermore, these results show that ahpA is specifically expressed during biofilm formation, and not during sporulation or stationary phase, suggesting that derepression of ahpA by AbrB requires a signal other than those present upon entry into stationary phase. Despite this expression pattern, ahpA mutant strains still form and maintain robust biofilms, even in the presence of peroxides. Thus, the role of AhpA with regard to protecting cells within biofilms from environmental stresses is still uncertain. These studies highlight the need to further study the Ahp homologs to better understand how they differ from one another and the unique roles they may play in oxidative stress resistance.
Collapse
Affiliation(s)
- Joelie V Zwick
- Department of Biology, Bradley University, Peoria, IL, USA
| | - Sarah Noble
- Department of Biology, Bradley University, Peoria, IL, USA
| | | | | | - Dylan J Hakey
- Department of Biology, Bradley University, Peoria, IL, USA
| | - Alyssa N King
- Department of Biology, Bradley University, Peoria, IL, USA
| | | | | |
Collapse
|
7
|
The Regulation of Exosporium-Related Genes in Bacillus thuringiensis. Sci Rep 2016; 6:19005. [PMID: 26805020 PMCID: PMC4750369 DOI: 10.1038/srep19005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 12/02/2015] [Indexed: 11/09/2022] Open
Abstract
Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis (Bt) are spore-forming members of the Bacillus cereus group. Spores of B. cereus group species are encircled by exosporium, which is composed of an external hair-like nap and a paracrystalline basal layer. Despite the extensive studies on the structure of the exosporium-related proteins, little is known about the transcription and regulation of exosporium gene expression in the B. cereus group. Herein, we studied the regulation of several exosporium-related genes in Bt. A SigK consensus sequence is present upstream of genes encoding hair-like nap proteins (bclA and bclB), basal layer proteins (bxpA, bxpB, cotB, and exsY ), and inosine hydrolase (iunH). Mutation of sigK decreased the transcriptional activities of all these genes, indicating that the transcription of these genes is controlled by SigK. Furthermore, mutation of gerE decreased the transcriptional activities of bclB, bxpB, cotB, and iunH but increased the expression of bxpA, and GerE binds to the promoters of bclB, bxpB, cotB, bxpA, and iunH. These results suggest that GerE directly regulates the transcription of these genes, increasing the expression of bclB, bxpB, cotB, and iunH and decreasing that of bxpA. These findings provide insight into the exosporium assembly process at the transcriptional level.
Collapse
|
8
|
Ebmeier SE, Tan IS, Clapham KR, Ramamurthi KS. Small proteins link coat and cortex assembly during sporulation in Bacillus subtilis. Mol Microbiol 2012; 84:682-96. [PMID: 22463703 DOI: 10.1111/j.1365-2958.2012.08052.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mature spores of the bacterium Bacillus subtilis are encased by two concentric shells: an inner shell (the 'cortex'), made of peptidoglycan; and an outer proteinaceous shell (the 'coat'), whose basement layer is anchored to the surface of the developing spore via a 26-amino-acid-long protein called SpoVM. During sporulation, initiation of cortex assembly depends on the successful initiation of coat assembly, but the mechanisms that co-ordinate the morphogenesis of both structures are largely unknown. Here, we describe a sporulation pathway involving SpoVM and a 37-amino-acid-long protein named 'CmpA' that is encoded by a previously un-annotated gene and is expressed under control of two sporulation-specific transcription factors (σ(E) and SpoIIID). CmpA localized to the surface of the developing spore and deletion of cmpA resulted in cells progressing through the sporulation programme more quickly. Overproduction of CmpA did not affect normal growth or cell division, but delayed entry into sporulation and abrogated cortex assembly. In those cells that had successfully initiated coat assembly, CmpA was removed by a post-translational mechanism, presumably in order to overcome the sporulation inhibition it imposed. We propose a model in which CmpA participates in a developmental checkpoint that ensures the proper orchestration of coat and cortex morphogenesis by repressing cortex assembly until coat assembly successfully initiates.
Collapse
Affiliation(s)
- Sarah E Ebmeier
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
9
|
Papalazaridou A, Kanata E, Sivropoulou A. Germinant generation from δ-endotoxin of Bacillus thuringiensis strain 1.1. Curr Microbiol 2011; 62:1431-7. [PMID: 21286721 DOI: 10.1007/s00284-011-9878-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 01/10/2011] [Indexed: 10/18/2022]
Abstract
The novel finding of this study is that the δ-endotoxin present in the spore coat of Bacillus thuringiensis strain 1.1 (Bt1.1), plays a central role in spore germination by generation of germinant via its β-glucosidase activity and is based on the following: (i) the crystals of Bt1.1 consist of the 140 kDa δ-endotoxin which exhibits β-glucosidase enzymatic activity. Besides crystals, δ-endotoxin is also located in the spore coat and at this site displays β-glucosidase activity, resulting in glucose production; (ii) glucose is an efficient germinant of both Bt1.1 and acrystalliferous Bt4.1 strain; (iii) substrates of β-glucosidase can activate the germination of Bt1.1 spores, but not those of the acrystalliferous Bt4.1 sister strain that do not contain the 140 kDa δ-endotoxin; (iv) Reduction or enhancement of enzymatic activity of δ-endotoxin, results in retardation or acceleration of germination and outgrowth, respectively. Bt1.1 cells secrete a 60 kDa polypeptide which displays β-glucosidase activity as indicated by zymogram analysis and which is immunologically related to the 140 kDa δ-endotoxin.
Collapse
Affiliation(s)
- Anastasia Papalazaridou
- Department of Genetics, Development and Molecular Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | |
Collapse
|
10
|
Abstract
Using an oligonucleotide microarray, we searched for previously unrecognized transcription units in intergenic regions in the genome of Bacillus subtilis, with an emphasis on identifying small genes activated during spore formation. Nineteen transcription units were identified, 11 of which were shown to depend on one or more sporulation-regulatory proteins for their expression. A high proportion of the transcription units contained small, functional open reading frames (ORFs). One such newly identified ORF is a member of a family of six structurally similar genes that are transcribed under the control of sporulation transcription factor σ(E) or σ(K). A multiple mutant lacking all six genes was found to sporulate with slightly higher efficiency than the wild type, suggesting that under standard laboratory conditions the expression of these genes imposes a small cost on the production of heat-resistant spores. Finally, three of the transcription units specified small, noncoding RNAs; one of these was under the control of the sporulation transcription factor σ(E), and another was under the control of the motility sigma factor σ(D).
Collapse
|
11
|
Development of natto with germination-defective mutants of Bacillus subtilis (natto). Appl Microbiol Biotechnol 2009; 82:741-8. [PMID: 19205688 DOI: 10.1007/s00253-009-1894-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 01/14/2009] [Accepted: 01/22/2009] [Indexed: 10/21/2022]
Abstract
The effects of cortex-lysis related genes with the pdaA, sleB, and cwlD mutations of Bacillus subtilis (natto) NAFM5 on sporulation and germination were investigated. Single or double mutations did not prevent normal sporulation, but did affect germination. Germination was severely inhibited by the double mutation of sleB and cwlD. The quality of natto made with the sleB cwlD double mutant was tested, and the amounts of glutamic acid and ammonia were very similar to those in the wild type. The possibility of industrial development of natto containing a reduced number of viable spores is presented.
Collapse
|
12
|
The Bacillus cereus GerN and GerT protein homologs have distinct roles in spore germination and outgrowth, respectively. J Bacteriol 2008; 190:6148-52. [PMID: 18641133 DOI: 10.1128/jb.00789-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The GerT protein of Bacillus cereus shares 74% amino acid identity with its homolog GerN. The latter is a Na(+)/H(+)-K(+) antiporter that is required for normal spore germination in inosine. The germination properties of single and double mutants of B. cereus ATCC 10876 reveal that unlike GerN, which is required for all germination responses that involve the GerI germinant receptor, the GerT protein does not have a significant role in germination, although it is required for the residual GerI-mediated inosine germination response of a gerN mutant. In contrast, GerT has a significant role in outgrowth; gerT mutant spores do not outgrow efficiently under alkaline conditions and outgrow more slowly than the wild type in the presence of high NaCl concentrations. The GerT protein in B. cereus therefore contributes to the success of spore outgrowth from the germinated state during alkaline or Na(+) stress.
Collapse
|