1
|
Jin P, Dai J, Guo Y, Wang X, Lu J, Zhu Y, Yu F. Genomic Analysis of Mycobacterium abscessus Complex Isolates from Patients with Pulmonary Infection in China. Microbiol Spectr 2022; 10:e0011822. [PMID: 35863029 PMCID: PMC9430165 DOI: 10.1128/spectrum.00118-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/19/2022] [Indexed: 11/20/2022] Open
Abstract
Members of the Mycobacterium abscessus complex (MABC) are multidrug-resistant nontuberculous mycobacteria and increasingly cause opportunistic pulmonary infections. However, the genetic typing of MABC isolates remains largely unclear in China. Genomic analyses were conducted for 69 MABC clinical isolates obtained from patients with lower respiratory tract infections in Shanghai Pulmonary Hospital between 2014 and 2016. The draft genomes of the 69 clinical strains were assembled, with a total length of 4.5 to 5.6 Mb, a percent GC content (GC%) ranging from 63.9 to 68.1%, and 4,492 to 5,404 genes per genome. Susceptibility test shows that most isolates are resistant to many antimicrobials, including clarithromycin, but susceptible to tigecycline. Analyses revealed the presence of genes conferring resistance to antibiotics, including macrolides, aminoglycosides, rifampicin, and tetracyclines. Furthermore, 80 to 114 virulence genes were identified per genome, including those related to the invasion of macrophages, iron incorporation, and avoidance of immune clearance. Mobile genetic elements, including insertion sequences, transposons, and genomic islands, were discovered in the genomes. Phylogenetic analyses of all MABC isolates with another 41 complete MABC genomes identified three clades; 46 isolates were clustered in clade I, corresponding to M. abscessus subsp. abscessus, and 25 strains belonged to existing clonal complexes. Overall, this is the first comparative genomic analysis of MABC clinical isolates in China. These results show significant intraspecies variations in genetic determinants encoding antimicrobial resistance, virulence, and mobile elements and controversial subspecies classification using current marker gene combinations. This information will be useful in understanding the evolution, antimicrobial resistance, and pathogenesis of MABC strains and facilitating future vaccine development and drug design. IMPORTANCE Over the past decade, infections by Mycobacterium abscessus complex (MABC) isolates have been increasingly reported worldwide. MABC strains often show a high incidence in cystic fibrosis (CF) patients, whereas in Asia, these strains are frequently recovered from non-CF patients with significant genomic diversity. The present work involves analyses of the antimicrobial resistance, virulence, and phylogeny of 69 selected MABC isolates from non-CF pulmonary patients in Shanghai Pulmonary Hospital by whole-genome sequencing; it represents the first comprehensive investigation of MABC strains in China at the genomic level. These findings highlight the diversity of this group of nontuberculous mycobacteria and provide a mechanistic understanding of evolution and pathogenesis, which is valuable for the development of novel and effective antimicrobial therapies for deadly MABC infections in China.
Collapse
Affiliation(s)
- Peipei Jin
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Dai
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinjuan Guo
- Department of Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xuefeng Wang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Lu
- Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, Victoria, Australia
| | - Yan Zhu
- Immunity and Infection Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Fangyou Yu
- Department of Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Davidson RM, Hasan NA, Epperson LE, Benoit JB, Kammlade SM, Levin AR, Calado de Moura V, Hunkins J, Weakly N, Beagle S, Sagel SD, Martiniano SL, Salfinger M, Daley CL, Nick JA, Strong M. Population Genomics of Mycobacterium abscessus from U.S. Cystic Fibrosis Care Centers. Ann Am Thorac Soc 2021; 18:1960-1969. [PMID: 33856965 PMCID: PMC8641822 DOI: 10.1513/annalsats.202009-1214oc] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 04/14/2021] [Indexed: 12/25/2022] Open
Abstract
Rationale:Mycobacterium abscessus is a significant threat to individuals with cystic fibrosis (CF) because of innate drug resistance and potential transmission between patients. Recent studies described global dominant circulating clones of M. abscessus, but detailed genomic surveys have not yet been described for the United States. Objectives: We examined the genetic diversity of respiratory M. abscessus isolates from U.S. patients with CF and evaluated the potential for transmission events within CF Care Centers. Methods: Whole-genome sequencing was performed on 558 M. abscessus isolates from 266 patients with CF attending 48 CF Care Centers in 28 U.S. states as part of a nationwide surveillance program. U.S. isolates were also compared with 64 isolate genomes from 13 previous studies to evaluate the prevalence of recently described dominant circulating clones. Results: More than half of study patients with CF and M. abscessus had isolates within four dominant clones; two clones of M. abscessus subspecies (subsp.) abscessus (MAB) and two clones of M. abscessus subsp. massiliense (MMAS). Acquired drug resistance mutations for aminoglycosides and macrolides were rare in the isolate population, and they were not significantly enriched in dominant clones compared with unclustered isolates. For a subset of 55 patients, there was no relationship between dominant clones and diagnosis of active lung disease (P = 1.0). Twenty-nine clusters of genetically similar MAB isolates and eight clusters of genetically similar MMAS isolates were identified. Overall, 28 of 204 (14%) patients with MAB and 15 of 64 (23%) patients with MMAS had genetically isolates similar to those of at least one other patient at the same CF Care Center. Genetically similar isolates were also found between 60 of 204 (29%) patients with MAB and 19 of 64 (30%) patients with MMAS from different geographic locations. Conclusions: Our study reveals the predominant genotypes of M. abscessus and frequency of shared strains between patients in U.S. CF Care Centers. Integrated epidemiological and environmental studies would help to explain the widespread presence of dominant clones in the United States, including the potential for broad distribution in the environment. Single site studies using systematic, evidence-based approaches will be needed to establish the contributions of health care-associated transmission versus shared environmental exposures.
Collapse
Affiliation(s)
| | | | | | | | | | - Adrah R. Levin
- Department of Medicine, National Jewish Health, Denver, Colorado
| | | | | | | | | | - Scott D. Sagel
- Department of Pediatrics, Children’s Hospital Colorado–School of Medicine, University of Colorado, Aurora, Colorado; and
| | - Stacey L. Martiniano
- Department of Pediatrics, Children’s Hospital Colorado–School of Medicine, University of Colorado, Aurora, Colorado; and
| | - Max Salfinger
- College of Public Health and
- Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Charles L. Daley
- Department of Medicine, National Jewish Health, Denver, Colorado
- Department of Medicine, School of Medicine, University of Colorado, Aurora, Colorado
| | - Jerry A. Nick
- Department of Medicine, National Jewish Health, Denver, Colorado
- Department of Medicine, School of Medicine, University of Colorado, Aurora, Colorado
| | | |
Collapse
|
3
|
Nick JA, Daley CL, Lenhart-Pendergrass PM, Davidson RM. Nontuberculous mycobacteria in cystic fibrosis. Curr Opin Pulm Med 2021; 27:586-592. [PMID: 34431787 DOI: 10.1097/mcp.0000000000000816] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW Nontuberculous mycobacteria (NTM) are challenging infections among people with cystic fibrosis (pwCF) as the source, modes of transmission, and best practices for diagnosis and treatment are not known. Investigators have defined aspects of NTM infection that are unique to the CF population, as well as features shared with other conditions at risk. This review describes recent advances in our understanding of NTM infection among pwCF. RECENT FINDINGS The presence of dominant circulating clones of Mycobacterium abscessus within the CF community worldwide continue to be described, as well as pathogen phenotypes that could evoke greater environmental fitness and infectivity. The risk of direct or indirect transmission between pwCF remains an active focus of investigation, with divergent findings and conclusions reached in a site-specific fashion. Derived largely from studies in non-CF populations, new clinical guidelines are now available. A wide variety of agents are in preclinical development or early phase trials with promising findings, and new therapeutic targets have been identified as our understanding of the complex biology of NTM continues to expand. SUMMARY Significant challenges remain in the fight against NTM, however, recent advances in our understanding of the genetics, epidemiology and pathophysiology of pulmonary NTM infection in pwCF are leading efforts to improve clinical care.
Collapse
Affiliation(s)
- Jerry A Nick
- Department of Medicine, National Jewish Health, Denver
- University of Colorado Denver, School of Medicine
| | - Charles L Daley
- Department of Medicine, National Jewish Health, Denver
- University of Colorado Denver, School of Medicine
| | | | - Rebecca M Davidson
- Center for Genes, Environment and Health and Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado, USA
| |
Collapse
|
4
|
Davidson RM, Benoit JB, Kammlade SM, Hasan NA, Epperson LE, Smith T, Vasireddy S, Brown-Elliott BA, Nick JA, Olivier KN, Zelazny AM, Daley CL, Strong M, Wallace RJ. Genomic characterization of sporadic isolates of the dominant clone of Mycobacterium abscessus subspecies massiliense. Sci Rep 2021; 11:15336. [PMID: 34321532 PMCID: PMC8319421 DOI: 10.1038/s41598-021-94789-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 07/12/2021] [Indexed: 11/16/2022] Open
Abstract
Recent studies have characterized a dominant clone (Clone 1) of Mycobacterium abscessus subspecies massiliense (M. massiliense) associated with high prevalence in cystic fibrosis (CF) patients, pulmonary outbreaks in the United States (US) and United Kingdom (UK), and a Brazilian epidemic of skin infections. The prevalence of Clone 1 in non-CF patients in the US and the relationship of sporadic US isolates to outbreak clones are not known. We surveyed a reference US Mycobacteria Laboratory and a US biorepository of CF-associated Mycobacteria isolates for Clone 1. We then compared genomic variation and antimicrobial resistance (AMR) mutations between sporadic non-CF, CF, and outbreak Clone 1 isolates. Among reference lab samples, 57/147 (39%) of patients with M. massiliense had Clone 1, including pulmonary and extrapulmonary infections, compared to 11/64 (17%) in the CF isolate biorepository. Core and pan genome analyses revealed that outbreak isolates had similar numbers of single nucleotide polymorphisms (SNPs) and accessory genes as sporadic US Clone 1 isolates. However, pulmonary outbreak isolates were more likely to have AMR mutations compared to sporadic isolates. Clone 1 isolates are present among non-CF and CF patients across the US, but additional studies will be needed to resolve potential routes of transmission and spread.
Collapse
Affiliation(s)
- Rebecca M Davidson
- Center for Genes, Environment and Health, National Jewish Health, 1400 Jackson St., Denver, CO, 80206, USA.
| | - Jeanne B Benoit
- Center for Genes, Environment and Health, National Jewish Health, 1400 Jackson St., Denver, CO, 80206, USA
| | - Sara M Kammlade
- Center for Genes, Environment and Health, National Jewish Health, 1400 Jackson St., Denver, CO, 80206, USA
| | - Nabeeh A Hasan
- Center for Genes, Environment and Health, National Jewish Health, 1400 Jackson St., Denver, CO, 80206, USA
| | - L Elaine Epperson
- Center for Genes, Environment and Health, National Jewish Health, 1400 Jackson St., Denver, CO, 80206, USA
| | - Terry Smith
- Department of Microbiology, University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Sruthi Vasireddy
- Department of Microbiology, University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Barbara A Brown-Elliott
- Department of Microbiology, University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Jerry A Nick
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Kenneth N Olivier
- Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Adrian M Zelazny
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Charles L Daley
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Michael Strong
- Center for Genes, Environment and Health, National Jewish Health, 1400 Jackson St., Denver, CO, 80206, USA
| | - Richard J Wallace
- Department of Microbiology, University of Texas Health Science Center at Tyler, Tyler, TX, USA
| |
Collapse
|
5
|
de Moura VCN, Verma D, Everall I, Brown KP, Belardinelli JM, Shanley C, Stapleton M, Parkhill J, Floto RA, Ordway DJ, Jackson M. Increased Virulence of Outer Membrane Porin Mutants of Mycobacterium abscessus. Front Microbiol 2021; 12:706207. [PMID: 34335541 PMCID: PMC8317493 DOI: 10.3389/fmicb.2021.706207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/23/2021] [Indexed: 11/13/2022] Open
Abstract
Chronic pulmonary infections caused by non-tuberculous mycobacteria of the Mycobacterium abscessus complex (MABSC) are emerging as a global health problem and pose a threat to susceptible individuals with structural lung disease such as cystic fibrosis. The molecular mechanisms underlying the pathogenicity and intrinsic resistance of MABSC to antibiotics remain largely unknown. The involvement of Msp-type porins in the virulence and biocide resistance of some rapidly growing non-tuberculous mycobacteria and the finding of deletions and rearrangements in the porin genes of serially collected MABSC isolates from cystic fibrosis patients prompted us to investigate the contribution of these major surface proteins to MABSC infection. Inactivation by allelic replacement of the each of the two Msp-type porin genes of M. abscessus subsp. massiliense CIP108297, mmpA and mmpB, led to a marked increase in the virulence and pathogenicity of both mutants in murine macrophages and infected mice. Neither of the mutants were found to be significantly more resistant to antibiotics. These results suggest that adaptation to the host environment rather than antibiotic pressure is the key driver of the emergence of porin mutants during infection.
Collapse
Affiliation(s)
- Vinicius C N de Moura
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Deepshikha Verma
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Isobel Everall
- Molecular Immunity Unit, Medical Research Council (MRC)-Laboratory of Molecular Biology, University of Cambridge Department of Medicine, Cambridge, United Kingdom.,Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Karen P Brown
- Molecular Immunity Unit, Medical Research Council (MRC)-Laboratory of Molecular Biology, University of Cambridge Department of Medicine, Cambridge, United Kingdom.,Cambridge Centre for Lung Infection, Papworth Hospital, Cambridge, United Kingdom
| | - Juan M Belardinelli
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Crystal Shanley
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Megan Stapleton
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - R Andres Floto
- Molecular Immunity Unit, Medical Research Council (MRC)-Laboratory of Molecular Biology, University of Cambridge Department of Medicine, Cambridge, United Kingdom.,Cambridge Centre for Lung Infection, Papworth Hospital, Cambridge, United Kingdom
| | - Diane J Ordway
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
6
|
Genomic Analysis of Mycobacterium abscessus Complex Isolates Collected in Ireland between 2006 and 2017. J Clin Microbiol 2020; 58:JCM.00295-20. [PMID: 32295892 DOI: 10.1128/jcm.00295-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/04/2020] [Indexed: 02/07/2023] Open
Abstract
Members of the Mycobacterium abscessus complex (MABC) are multidrug-resistant nontuberculous mycobacteria and cause opportunistic pulmonary infections in individuals with cystic fibrosis (CF). In this study, genomic analysis of MABC isolates was performed to gain greater insights into the epidemiology of circulating strains in Ireland. Whole-genome sequencing (WGS) was performed on 70 MABC isolates that had been referred to the Irish Mycobacteria Reference Laboratory between 2006 and 2017 across nine Irish health care centers. The MABC isolates studied comprised 52 isolates from 27 CF patients and 18 isolates from 10 non-CF patients. WGS identified 57 (81.4%) as M. abscessus subsp. abscessus, 10 (14.3%) as M. abscessus subsp. massiliense, and 3 (4.3%) as M. abscessus subsp. bolletii Forty-nine (94%) isolates from 25 CF patients were identified as M. abscessus subsp. abscessus, whereas 3 (6%) isolates from 2 CF patients were identified as M. abscessus subsp. massiliense Among the isolates from non-CF patients, 44% (8/18) were identified as M. abscessus subsp. abscessus, 39% (7/18) were identified as M. abscessus subsp. massiliense, and 17% (3/18) were identified as M. abscessus subsp. bolletii WGS detected two clusters of closely related M. abscessus subsp. abscessus isolates that included isolates from different CF centers. There was a greater genomic diversity of MABC isolates among the isolates from non-CF patients than among the isolates from CF patients. Although WGS failed to show direct evidence of patient-to-patient transmission among CF patients, there was a predominance of two different strains of M. abscessus subsp. abscessus Furthermore, some MABC isolates were closely related to global strains, suggesting their international spread. Future prospective real-time epidemiological and clinical data along with contemporary MABC sequence analysis may elucidate the sources and routes of transmission among patients infected with MABC.
Collapse
|
7
|
Davidson RM. A Closer Look at the Genomic Variation of Geographically Diverse Mycobacterium abscessus Clones That Cause Human Infection and Disease. Front Microbiol 2018; 9:2988. [PMID: 30568642 PMCID: PMC6290055 DOI: 10.3389/fmicb.2018.02988] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/19/2018] [Indexed: 01/15/2023] Open
Abstract
Mycobacterium abscessus is a multidrug resistant bacterium that causes pulmonary and extrapulmonary disease. The reported prevalence of pulmonary M. abscessus infections appears to be increasing in the United States (US) and around the world. In the last five years, multiple studies have utilized whole genome sequencing to investigate the genetic epidemiology of two clinically relevant subspecies, M. abscessus subsp. abscessus (MAB) and M. abscessus subsp. massiliense (MMAS). Phylogenomic comparisons of clinical isolates revealed that substantial proportions of patients have MAB and MMAS isolates that belong to genetically similar clusters also known as ‘dominant clones’. Unlike the genetic lineages of Mycobacterium tuberculosis that tend to be geographically clustered, the MAB and MMAS clones have been found in clinical populations from the US, Europe, Australia and South America. Moreover, the clones have been associated with worse clinical outcomes and show increased pathogenicity in macrophage and mouse models. While some have suggested that they may have spread locally and then globally through ‘indirect transmission’ within cystic fibrosis (CF) clinics, isolates of these clones have also been associated with sporadic pulmonary infections in non-CF patients and unrelated hospital-acquired soft tissue infections. M. abscessus has long been thought to be acquired from the environment, but the prevalence, exposure risk and environmental reservoirs of the dominant clones are currently not known. This review summarizes the genomic studies of M. abscessus and synthesizes the current knowledge surrounding the geographically diverse dominant clones identified from patient samples. Furthermore, it discusses the limitations of core genome comparisons for studying these genetically similar isolates and explores the breadth of accessory genome variation that has been observed to date. The combination of both core and accessory genome variation among these isolates may be the key to elucidating the origin, spread and evolution of these frequent genotypes.
Collapse
Affiliation(s)
- Rebecca M Davidson
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, United States
| |
Collapse
|
8
|
Brown-Elliott BA, Philley JV. Rapidly Growing Mycobacteria. Microbiol Spectr 2017; 5:10.1128/microbiolspec.tnmi7-0027-2016. [PMID: 28084211 PMCID: PMC11687460 DOI: 10.1128/microbiolspec.tnmi7-0027-2016] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Indexed: 11/20/2022] Open
Abstract
Rapidly growing mycobacteria (RGM) compose approximately one-half of the currently validated mycobacterial species and are divided into six major groups, including the Mycobacterium fortuitum group, M. chelonae/M. abscessus complex, M. smegmatis group, M. mucogenicum group, M. mageritense/M. wolinskyi, and the pigmented RGM. This review discusses each group and highlights the major types of infections associated with each group. Additionally, phenotypic and molecular laboratory identification methods, including gene sequencing, mass spectrometry, and the newly emerging whole-genome sequencing, are detailed, along with a discussion of the current antimicrobial susceptibility methods and patterns of the most common pathogenic species.
Collapse
Affiliation(s)
| | - Julie V Philley
- Department of Medicine, The University of Texas Health Science Center, Tyler, TX 75708
| |
Collapse
|
9
|
Garcia BJ, Datta G, Davidson RM, Strong M. MycoBASE: expanding the functional annotation coverage of mycobacterial genomes. BMC Genomics 2015; 16:1102. [PMID: 26704706 PMCID: PMC4690229 DOI: 10.1186/s12864-015-2311-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/15/2015] [Indexed: 01/01/2023] Open
Abstract
Background Central to most omic scale experiments is the interpretation and examination of resulting gene lists corresponding to differentially expressed, regulated, or observed gene or protein sets. Complicating interpretation is a lack of functional annotation assigned to a large percentage of many microbial genomes. This is particularly noticeable in mycobacterial genomes, which are significantly divergent from many of the microbial model species used for gene and protein functional characterization, but which are extremely important clinically. Mycobacterial species, ranging from M. tuberculosis to M. abscessus, are responsible for deadly infectious diseases that kill over 1.5 million people each year across the world. A better understanding of the coding capacity of mycobacterial genomes is therefore necessary to shed increasing light on putative mechanisms of virulence, pathogenesis, and functional adaptations. Description Here we describe the improved functional annotation coverage of 11 important mycobacterial genomes, many involved in human diseases including tuberculosis, leprosy, and nontuberculous mycobacterial (NTM) infections. Of the 11 mycobacterial genomes, we provide 9899 new functional annotations, compared to NCBI and TBDB annotations, for genes previously characterized as genes of unknown function, hypothetical, and hypothetical conserved proteins. Functional annotations are available at our newly developed web resource MycoBASE (Mycobacterial Annotation Server) at strong.ucdenver.edu/mycobase. Conclusion Improved annotations allow for better understanding and interpretation of genomic and transcriptomic experiments, including analyzing the functional implications of insertions, deletions, and mutations, inferring the function of understudied genes, and determining functional changes resulting from differential expression studies. MycoBASE provides a valuable resource for mycobacterial researchers, through improved and searchable functional annotations and functional enrichment strategies. MycoBASE will be continually supported and updated to include new genomes, enabling a powerful resource to aid the quest to better understand these important pathogenic and environmental species.
Collapse
Affiliation(s)
- Benjamin J Garcia
- Computational Bioscience Program, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA. .,Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA.
| | - Gargi Datta
- Computational Bioscience Program, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA.,Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Rebecca M Davidson
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Michael Strong
- Computational Bioscience Program, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA.,Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| |
Collapse
|
10
|
Tettelin H, Davidson RM, Agrawal S, Aitken ML, Shallom S, Hasan NA, Strong M, de Moura VCN, De Groote MA, Duarte RS, Hine E, Parankush S, Su Q, Daugherty SC, Fraser CM, Brown-Elliott BA, Wallace RJ, Holland SM, Sampaio EP, Olivier KN, Jackson M, Zelazny AM. High-level relatedness among Mycobacterium abscessus subsp. massiliense strains from widely separated outbreaks. Emerg Infect Dis 2015; 20:364-71. [PMID: 24565502 PMCID: PMC3944860 DOI: 10.3201/eid2003.131106] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Three recently sequenced strains isolated from patients during an outbreak of Mycobacterium abscessus subsp. massiliense infections at a cystic fibrosis center in the United States were compared with 6 strains from an outbreak at a cystic fibrosis center in the United Kingdom and worldwide strains. Strains from the 2 cystic fibrosis outbreaks showed high-level relatedness with each other and major-level relatedness with strains that caused soft tissue infections during an epidemic in Brazil. We identified unique single-nucleotide polymorphisms in cystic fibrosis and soft tissue outbreak strains, separate single-nucleotide polymorphisms only in cystic fibrosis outbreak strains, and unique genomic traits for each subset of isolates. Our findings highlight the necessity of identifying M. abscessus to the subspecies level and screening all cystic fibrosis isolates for relatedness to these outbreak strains. We propose 2 diagnostic strategies that use partial sequencing of rpoB and secA1 genes and a multilocus sequence typing protocol.
Collapse
|
11
|
Howard ST. Recent progress towards understanding genetic variation in the Mycobacterium abscessus complex. Tuberculosis (Edinb) 2014; 93 Suppl:S15-20. [PMID: 24388643 DOI: 10.1016/s1472-9792(13)70005-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mycobacterium abscessus is an emerging cause of respiratory disease and soft tissue infections. Whole genome sequencing and other molecular approaches are enhancing our understanding of outbreaks, antibiotic resistance mechanisms, and virulence properties, and of the phylogeny of the M. abscessus complex. Infection models are providing further insights into factors such as colony phenotype that impact host-pathogen interactions. This paper reviews recent developments in our understanding of genetic variation in M. abscessus and the potential relevance for disease and treatment.
Collapse
Affiliation(s)
- Susan T Howard
- Department of Microbiology, University of Texas Health Science Center at Tyler, Tyler, TX, 75708, USA.
| |
Collapse
|
12
|
Genome sequencing of Mycobacterium abscessus isolates from patients in the united states and comparisons to globally diverse clinical strains. J Clin Microbiol 2014; 52:3573-82. [PMID: 25056330 DOI: 10.1128/jcm.01144-14] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nontuberculous mycobacterial infections caused by Mycobacterium abscessus are responsible for a range of disease manifestations from pulmonary to skin infections and are notoriously difficult to treat, due to innate resistance to many antibiotics. Previous population studies of clinical M. abscessus isolates utilized multilocus sequence typing or pulsed-field gel electrophoresis, but high-resolution examinations of genetic diversity at the whole-genome level have not been well characterized, particularly among clinical isolates derived in the United States. We performed whole-genome sequencing of 11 clinical M. abscessus isolates derived from eight U.S. patients with pulmonary nontuberculous mycobacterial infections, compared them to 30 globally diverse clinical isolates, and investigated intrapatient genomic diversity and evolution. Phylogenomic analyses revealed a cluster of closely related U.S. and Western European M. abscessus subsp. abscessus isolates that are genetically distinct from other European isolates and all Asian isolates. Large-scale variation analyses suggested genome content differences of 0.3 to 8.3%, relative to the reference strain ATCC 19977(T). Longitudinally sampled isolates showed very few single-nucleotide polymorphisms and correlated genomic deletion patterns, suggesting homogeneous infection populations. Our study explores the genomic diversity of clinical M. abscessus strains from multiple continents and provides insight into the genome plasticity of an opportunistic pathogen.
Collapse
|
13
|
Nontuberculous mycobacteria: the changing epidemiology and treatment challenges in cystic fibrosis. Curr Opin Pulm Med 2014; 19:662-9. [PMID: 24048085 DOI: 10.1097/mcp.0b013e328365ab33] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Although patients with cystic fibrosis (CF) face numerous infectious pathogens over the course of their lifespan, increasing attention has recently been paid to nontuberculous mycobacteria (NTM). As reported prevalence rates rise across many countries such as the United States, the ability to recognize disease caused by NTM and subsequently treat such disease has become increasingly important. This review summarizes new observations on the epidemiology of NTM in CF as well as key elements to consider during the treatment phase. RECENT FINDINGS Although overall rates of NTM isolation appear to be increasing, particular concern has focused on the emerging predominance of Mycobacterium abscessus. New data suggest that chronic macrolide therapy now part of routine CF care has contributed to this rise; however, these have yet to be confirmed prospectively. Transmission of M. abscessus between CF patients has also now been described through the use of genome sequencing. Although the greater virulence of M. abscessus makes it a challenging species to treat, identification of the subspecies type can now determine the presence of inducible macrolide resistance, thereby helping to guide treatment. SUMMARY Given increasing prevalence rates, clinicians should maintain a high level of suspicion for NTM as disease-causing organisms in CF, particularly for M. abscessus. New knowledge regarding this species, however, can help to tailor appropriate therapy.
Collapse
|
14
|
Kim BJ, Kim BR, Lee SY, Kook YH, Kim BJ. Rough colony morphology of Mycobacterium massiliense Type II genotype is due to the deletion of glycopeptidolipid locus within its genome. BMC Genomics 2013; 14:890. [PMID: 24341808 PMCID: PMC3878547 DOI: 10.1186/1471-2164-14-890] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 12/10/2013] [Indexed: 01/15/2023] Open
Abstract
Background Recently, we introduced the complete genome sequence of Mycobacterium massiliense clinical isolates, Asan 50594 belonging to Type II genotype with rough colony morphology. Here, to address the issue of whether the rough colony morphotype of M. massiliense Type II genotype is genetically determined or not, we compared polymorphisms of the glycopeptidolipid (GPL) gene locus between M. massiliense Type II Asan 50594 and other rapidly growing mycobacteria (RGM) strains via analysis of genome databases. Results We found deletions of 10 genes (24.8 kb), in the GPL biosynthesis related gene cluster of Asan 50594 genome, but no deletions in those of other smooth RGMs. To check the presence of deletions of GPL biosynthesis related genes in Mycobacterium abscessus − complex strains, PCRs targeting 12 different GPL genes (10 genes deleted in Asan 50594 genome as well as 2 conserved genes) were applied into 76 clinical strains of the M. abscessus complex strains [54 strains (Type I: 33, and Type II: 21) of M. massiliense and 22 strains (rough morphoype: 11 and smooth morphotype: 11) of M. abscessus]. No strains of the Type II genotype produced PCR amplicons in a total of 10 deleted GPL genes, suggesting loss of GPL biosynthesis genes in the genome of M. massiliense type II genotype strains. Conclusions Our data suggested that the rough colony morphotype of the M. massiliense Type II genotype may be acquired via deletion events at the GPL gene locus for evolutionary adaptation between the host and pathogen.
Collapse
Affiliation(s)
| | | | | | | | - Bum-Joon Kim
- Department of Microbiology and Immunology, Biomedical Sciences, Liver Research Institute, Cancer Research Institute and Seoul National University Medical Research Center (SNUMRC), Seoul National University College of Medicine, Seoul 110-799, Republic of Korea.
| |
Collapse
|
15
|
Davidson RM, Hasan NA, de Moura VCN, Duarte RS, Jackson M, Strong M. Phylogenomics of Brazilian epidemic isolates of Mycobacterium abscessus subsp. bolletii reveals relationships of global outbreak strains. INFECTION GENETICS AND EVOLUTION 2013; 20:292-7. [PMID: 24055961 DOI: 10.1016/j.meegid.2013.09.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 09/09/2013] [Accepted: 09/10/2013] [Indexed: 10/26/2022]
Abstract
Rapidly growing, non-tuberculous mycobacteria (NTM) in the Mycobacterium abscessus (MAB) species are emerging pathogens that cause various diseases including skin and respiratory infections. The species has undergone recent taxonomic nomenclature refinement, and is currently recognized as two subspecies, M. abscessus subsp. abscessus (MAB-A) and M. abscessus subsp. bolletii (MAB-B). The recently reported outbreaks of MAB-B in surgical patients in Brazil from 2004 to 2009 and in cystic fibrosis patients in the United Kingdom (UK) in 2006 to 2012 underscore the need to investigate the genetic diversity of clinical MAB strains. To this end, we sequenced the genomes of two Brazilian MAB-B epidemic isolates (CRM-0019 and CRM-0020) derived from an outbreak of skin infections in Rio de Janeiro, two unrelated MAB strains from patients with pulmonary infections in the United States (US) (NJH8 and NJH11) and one type MAB-B strain (CCUG 48898) and compared them to 25 publically available genomes of globally diverse MAB strains. Genome-wide analyses of 27,598 core genome single nucleotide polymorphisms (SNPs) revealed that the two Brazilian derived CRM strains are nearly indistinguishable from one another and are more closely related to UK outbreak isolates infecting CF patients than to strains from the US, Malaysia or France. Comparative genomic analyses of six closely related outbreak strains revealed geographic-specific large-scale insertion/deletion variation that corresponds to bacteriophage insertions and recombination hotspots. Our study integrates new genome sequence data with existing genomic information to explore the global diversity of infectious M. abscessus isolates and to compare clinically relevant outbreak strains from different continents.
Collapse
Affiliation(s)
- Rebecca M Davidson
- Integrated Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | | | | | | | | | | |
Collapse
|
16
|
Genome Sequence of an Epidemic Isolate of Mycobacterium abscessus subsp. bolletii from Rio de Janeiro, Brazil. GENOME ANNOUNCEMENTS 2013; 1:1/4/e00617-13. [PMID: 23950125 PMCID: PMC3744681 DOI: 10.1128/genomea.00617-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Multiple isolates of Mycobacterium abscessus subsp. bolletii, collectively called BRA100, were associated with outbreaks of postsurgical skin infections across various regions of Brazil from 2003 to 2009. We announce the draft genome sequence of a newly sequenced BRA100 strain, M. abscessus subsp. bolletii CRM-0020, isolated from a patient in Rio de Janeiro, Brazil.
Collapse
|