1
|
Bioconversion of 4-hydroxyestradiol by extradiol ring-cleavage dioxygenases from Novosphingobium sp. PP1Y. Sci Rep 2023; 13:1835. [PMID: 36725873 PMCID: PMC9892492 DOI: 10.1038/s41598-023-28908-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 01/27/2023] [Indexed: 02/03/2023] Open
Abstract
Livestock breeding activities and pharmaceutical wastes lead to considerable accumulation of steroid hormones and estrogens in wastewaters. Here estrogens act as pro-cancerogenic agents and endocrine disruptors interfering with the sexual development of aquatic animals and having toxic effects in humans. Environmental bacteria play a vital role in estrogens degradation. Their wide reservoir of enzymes, such as ring cleavage dioxygenases (RCDs), can degrade the steroid nucleus, catalyzing the meta-cleavage of A, B or D steroid rings. In this work, 4 extra-diol ring cleavage dioxygenases (ERCDs), PP28735, PP26077, PP00124 and PP00193, were isolated from the marine sphingomonad Novosphingobium sp. PP1Y and characterized. Enzymes kinetic parameters were determined on different synthetic catecholic substrates. Then, the bioconversion of catechol estrogens was evaluated. PP00124 showed to be an efficient catalyst for the degradation of 4-hydroxyestradiol (4-OHE2), a carcinogenic hydroxylated derivate of E2. 4-OHE2 complete cleavage was obtained using PP00124 both in soluble form and in whole recombinant E. coli cells. LC-MS/MS analyses confirmed the generation of a semialdehyde product, through A-ring meta cleavage. To the best of our knowledge, PP00124 is the first characterized enzyme able to directly degrade 4-OHE2 via meta cleavage. Moreover, the complete 4-OHE2 biodegradation using recombinant whole cells highlighted advantages for bioremediation purposes.
Collapse
|
2
|
Suman J, Strejcek M, Zubrova A, Capek J, Wald J, Michalikova K, Hradilova M, Sredlova K, Semerad J, Cajthaml T, Uhlik O. Predominant Biphenyl Dioxygenase From Legacy Polychlorinated Biphenyl (PCB)-Contaminated Soil Is a Part of Unusual Gene Cluster and Transforms Flavone and Flavanone. Front Microbiol 2021; 12:644708. [PMID: 34721309 PMCID: PMC8552027 DOI: 10.3389/fmicb.2021.644708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
In this study, the diversity of bphA genes was assessed in a 13C-enriched metagenome upon stable isotope probing (SIP) of microbial populations in legacy PCB-contaminated soil with 13C-biphenyl (BP). In total, 13 bphA sequence variants (SVs) were identified in the final amplicon dataset. Of these, one SV comprised 59% of all sequences, and when it was translated into a protein sequence, it exhibited 87, 77.4, and 76.7% identity to its homologs from Pseudomonas furukawaii KF707, Cupriavidus sp. WS, and Pseudomonas alcaliphila B-367, respectively. This same BphA sequence also contained unusual amino acid residues, Alanine, Valine, and Serine in region III, which had been reported to be crucial for the substrate specificity of the corresponding biphenyl dioxygenase (BPDO), and was accordingly designated BphA_AVS. The DNA locus of 18 kbp containing the BphA_AVS-coding sequence retrieved from the metagenome was comprised of 16 ORFs and was most likely borne by Paraburkholderia sp. The BPDO corresponding to bphAE_AVS was cloned and heterologously expressed in E. coli, and its substrate specificity toward PCBs and a spectrum of flavonoids was assessed. Although depleting a rather narrow spectrum of PCB congeners, the efficient transformation of flavone and flavanone was demonstrated through dihydroxylation of the B-ring of the molecules. The homology-based functional assignment of the putative proteins encoded by the rest of ORFs in the AVS region suggests their potential involvement in the transformation of aromatic compounds, such as flavonoids. In conclusion, this study contributes to the body of information on the involvement of soil-borne BPDOs in the metabolism of flavonoid compounds, and our paper provides a more advanced context for understanding the interactions between plants, microbes and anthropogenic compounds in the soil.
Collapse
Affiliation(s)
- Jachym Suman
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czechia
| | - Michal Strejcek
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czechia
| | - Andrea Zubrova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czechia
| | - Jan Capek
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czechia
| | - Jiri Wald
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czechia
| | - Klara Michalikova
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Miluse Hradilova
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Kamila Sredlova
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Jaroslav Semerad
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czechia.,Faculty of Science, Institute for Environmental Studies, Charles University, Prague, Czechia
| | - Tomas Cajthaml
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czechia.,Faculty of Science, Institute for Environmental Studies, Charles University, Prague, Czechia
| | - Ondrej Uhlik
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czechia
| |
Collapse
|
3
|
Engineering Burkholderia xenovorans LB400 BphA through Site-Directed Mutagenesis at Position 283. Appl Environ Microbiol 2020; 86:AEM.01040-20. [PMID: 32709719 DOI: 10.1128/aem.01040-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/15/2020] [Indexed: 11/20/2022] Open
Abstract
Biphenyl dioxygenase (BPDO), which is a Rieske-type oxygenase (RO), catalyzes the initial dioxygenation of biphenyl and some polychlorinated biphenyls (PCBs). In order to enhance the degradation ability of BPDO in terms of a broader substrate range, the BphAES283M, BphAEp4-S283M, and BphAERR41-S283M variants were created from the parent enzymes BphAELB400, BphAEp4, and BphAERR41, respectively, by a substitution at one residue, Ser283Met. The results of steady-state kinetic parameters show that for biphenyl, the k cat/Km values of BphAES283M, BphAEp4-S283M, and BphAERR41-S283M were significantly increased compared to those of their parent enzymes. Meanwhile, we determined the steady-state kinetics of BphAEs toward highly chlorinated biphenyls. The results suggested that the Ser283Met substitution enhanced the catalytic activity of BphAEs toward 2,3',4,4'-tetrachlorobiphenyl (2,3',4,4'-CB), 2,2',6,6'-tetrachlorobiphenyl (2,2',6,6'-CB), and 2,3',4,4',5-pentachlorobiphenyl (2,3',4,4',5-CB). We compared the catalytic reactions of BphAELB400 and its variants toward 2,2'-dichlorobiphenyl (2,2'-CB), 2,5-dichlorobiphenyl (2,5-CB), and 2,6-dichlorobiphenyl (2,6-CB). The biochemical data indicate that the Ser283Met substitution alters the orientation of the substrate inside the catalytic site and, thereby, its site of hydroxylation, and this was confirmed by docking experiments. We also assessed the substrate ranges of BphAELB400 and its variants with degradation activity. BphAES283M and BphAEp4-S283M were clearly improved in oxidizing some of the 3-6-chlorinated biphenyls, which are generally very poorly oxidized by most dioxygenases. Collectively, the present work showed a significant effect of mutation Ser283Met on substrate specificity/regiospecificity in BPDO. These will certainly be meaningful elements for understanding the effect of the residue corresponding to position 283 in other Rieske oxygenase enzymes.IMPORTANCE The segment from positions 280 to 283 in BphAEs is located at the entrance of the catalytic pocket, and it shows variation in conformation. In previous works, results have suggested but never proved that residue Ser283 of BphAELB400 might play a role in substrate specificity. In the present paper, we found that the Ser283Met substitution significantly increased the specificity of the reaction of BphAE toward biphenyl, 2,3',4,4'-CB, 2,2',6,6'-CB, and 2,3',4,4',5-CB. Meanwhile, the Ser283Met substitution altered the regiospecificity of BphAE toward 2,2'-dichlorobiphenyl and 2,6-dichlorobiphenyl. Additionally, this substitution extended the range of PCBs metabolized by the mutated BphAE. BphAES283M and BphAEp4-S283M were clearly improved in oxidizing some of the more highly chlorinated biphenyls (3 to 6 chlorines), which are generally very poorly oxidized by most dioxygenases. We used modeled and docked enzymes to identify some of the structural features that explain the new properties of the mutant enzymes. Altogether, the results of this study provide better insights into the mechanisms by which BPDO evolves to change and/or expand its substrate range and its regiospecificity.
Collapse
|
4
|
Zhang R, Shi X, Sun Y, Zhang Q, Wang W. Insights into the catalytic mechanism of dehydrogenase BphB: A quantum mechanics/molecular mechanics study. CHEMOSPHERE 2018; 208:69-76. [PMID: 29860146 DOI: 10.1016/j.chemosphere.2018.05.063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/10/2018] [Accepted: 05/11/2018] [Indexed: 06/08/2023]
Abstract
The present study delineated the dehydrogenation mechanism of cis-2,3-dihydro-2,3-dihydroxybiphenyl (2,3-DDBPH) and cis-2,3-dihydro-2,3-dihydroxy-4,4'-dichlorobiphenyl (2,3-DD-4,4'-DBPH) by Pandoraea pnomenusa strain B-356 cis-2,3-dihydro-2,3-dihydroxybiphenyl dehydrogenase (BphB) in atomistic detail. The enzymatic process was investigated by a combined quantum mechanics/molecular mechanics (QM/MM) approach. Five different snapshots were extracted and calculated, which revealed that the Boltzmann-weighted average barriers of 2,3-DDBPH and 2,3-DD-4,4'-DBPH dehydrogenation processes are 10.7 and 11.5 kcal mol-1, respectively. The established dehydrogenation mechanism provides new insight into the degradation processes of other chlorinated 2,3-DDBPH. In addition to Asn115, Ser142, and Lys149, the importance of Ile 89, Asn143, Pro184, Met 187, Thr189, and Lue 191 during the dehydrogenation process of 2,3-DDBPH and 2,3-DD-4,4'-DBPH were also highlighted to search for promising mutation targets for improving the catalytic efficiency of BphB.
Collapse
Affiliation(s)
- Ruiming Zhang
- Environment Research Institute, Shandong University, Jinan, 250100, PR China
| | - Xiangli Shi
- Environment Research Institute, Shandong University, Jinan, 250100, PR China
| | - Yanhui Sun
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Jinan, 250100, PR China.
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Jinan, 250100, PR China
| |
Collapse
|
5
|
Vila MA, Umpiérrez D, Veiga N, Seoane G, Carrera I, Rodríguez Giordano S. Site-Directed Mutagenesis Studies on the Toluene Dioxygenase Enzymatic System: Role of Phenylalanine 366, Threonine 365 and Isoleucine 324 in the Chemo-, Regio-, and Stereoselectivity. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700444] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- María Agustina Vila
- Laboratorio de Biocatálisis y Biotransformaciones; Departamento de Química Orgánica-Departamento de Biociencias; Facultad de Química; Universidad de la República; Montevideo Uruguay
| | - Diego Umpiérrez
- Laboratorio de Biocatálisis y Biotransformaciones; Departamento de Química Orgánica-Departamento de Biociencias; Facultad de Química; Universidad de la República; Montevideo Uruguay
| | - Nicolás Veiga
- Química Inorgánica, Departamento Estrella Campos; Facultad de Química; Universidad de la República; Montevideo Uruguay
| | - Gustavo Seoane
- Laboratorio de Biocatálisis y Biotransformaciones; Departamento de Química Orgánica-Departamento de Biociencias; Facultad de Química; Universidad de la República; Montevideo Uruguay
| | - Ignacio Carrera
- Laboratorio de Biocatálisis y Biotransformaciones; Departamento de Química Orgánica-Departamento de Biociencias; Facultad de Química; Universidad de la República; Montevideo Uruguay
| | - Sonia Rodríguez Giordano
- Laboratorio de Biocatálisis y Biotransformaciones; Departamento de Química Orgánica-Departamento de Biociencias; Facultad de Química; Universidad de la República; Montevideo Uruguay
| |
Collapse
|
6
|
Koubek J, Mackova M, Macek T, Uhlik O. Diversity of chlorobiphenyl-metabolizing bacteria and their biphenyl dioxygenases in contaminated sediment. CHEMOSPHERE 2013; 93:1548-1555. [PMID: 24007621 DOI: 10.1016/j.chemosphere.2013.07.073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 07/22/2013] [Indexed: 06/02/2023]
Abstract
Bacteria and bacterial communities in sites contaminated with polychlorinated biphenyls have been extensively studied in the past decades. However, there are still major gaps in the knowledge of environmental processes, especially in the behavior of previously described bacteria in vitro, their real degradation abilities and the enzymes that are involved in the degradation processes. In this work we analyzed actively degrading bacterial populations by stable isotope probing with (13)C biphenyl and (13)C-4-chlorobiphenyl as labeled substrates in the environment of sediment contaminated with polychlorinated biphenyls. We performed analysis of populations which degrade biphenyl and 4-chlorobiphenyl at concentrations similar to those of the original site. Several bacterial genera were revealed to actively participate in biphenyl and 4-chlorobiphenyl removal, some of which had not previously been described to take part in this process. We also found there are few differences in the communities metabolizing biphenyl and 4-chlorobiphenyl. Analysis of the genes responsible for substrate removal proved most of the genes to be closely related to Pseudomonas pseudoalcaligenes KF707 genes giving bacteria the ability of transforming di-para-chlorinated biphenyls.
Collapse
Affiliation(s)
- Jiri Koubek
- Institute of Chemical Technology Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Technicka 3, 166 28 Prague, Czech Republic
| | | | | | | |
Collapse
|
7
|
Dror A, Fishman A. Engineering non-heme mono- and dioxygenases for biocatalysis. Comput Struct Biotechnol J 2012; 2:e201209011. [PMID: 24688652 PMCID: PMC3962191 DOI: 10.5936/csbj.201209011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Revised: 10/02/2012] [Accepted: 10/12/2012] [Indexed: 11/25/2022] Open
Abstract
Oxygenases are ubiquitous enzymes that catalyze the introduction of one or two oxygen atoms to unreactive chemical compounds. They require reduction equivalents from NADH or NADPH and comprise metal ions, metal ion complexes, or coenzymes in their active site. Thus, for industrial purposes, oxygenases are most commonly employed using whole cell catalysis, to alleviate the need for co-factor regeneration. Biotechnological applications include bioremediation, chiral synthesis, biosensors, fine chemicals, biofuels, pharmaceuticals, food ingredients and polymers. Controlling activity and selectivity of oxygenases is therefore of great importance and of growing interest to the scientific community. This review focuses on protein engineering of non-heme monooxygenases and dioxygenases for generating improved or novel functionalities. Rational mutagenesis based on x-ray structures and sequence alignment, as well as random methods such as directed evolution, have been utilized. It is concluded that knowledge-based protein engineering accompanied with targeted libraries, is most efficient for the design and tuning of biocatalysts towards novel substrates and enhanced catalytic activity while minimizing the screening efforts.
Collapse
Affiliation(s)
- Adi Dror
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Ayelet Fishman
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| |
Collapse
|
8
|
Uhlik O, Leewis MC, Strejcek M, Musilova L, Mackova M, Leigh MB, Macek T. Stable isotope probing in the metagenomics era: a bridge towards improved bioremediation. Biotechnol Adv 2012; 31:154-65. [PMID: 23022353 DOI: 10.1016/j.biotechadv.2012.09.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 09/17/2012] [Accepted: 09/17/2012] [Indexed: 12/24/2022]
Abstract
Microbial biodegradation and biotransformation reactions are essential to most bioremediation processes, yet the specific organisms, genes, and mechanisms involved are often not well understood. Stable isotope probing (SIP) enables researchers to directly link microbial metabolic capability to phylogenetic and metagenomic information within a community context by tracking isotopically labeled substances into phylogenetically and functionally informative biomarkers. SIP is thus applicable as a tool for the identification of active members of the microbial community and associated genes integral to the community functional potential, such as biodegradative processes. The rapid evolution of SIP over the last decade and integration with metagenomics provide researchers with a much deeper insight into potential biodegradative genes, processes, and applications, thereby enabling an improved mechanistic understanding that can facilitate advances in the field of bioremediation.
Collapse
Affiliation(s)
- Ondrej Uhlik
- Institute of Chemical Technology Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Technicka 3, 166 28 Prague, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
9
|
Plant exudates promote PCB degradation by a rhodococcal rhizobacteria. Appl Microbiol Biotechnol 2011; 95:1589-603. [PMID: 22202970 DOI: 10.1007/s00253-011-3824-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 12/04/2011] [Accepted: 12/07/2011] [Indexed: 10/14/2022]
Abstract
Rhodococcus erythropolis U23A is a polychlorinated biphenyl (PCB)-degrading bacterium isolated from the rhizosphere of plants grown on a PCB-contaminated soil. Strain U23A bphA exhibited 99% identity with bphA1 of Rhodococcus globerulus P6. We grew Arabidopsis thaliana in a hydroponic axenic system, collected, and concentrated the plant secondary metabolite-containing root exudates. Strain U23A exhibited a chemotactic response toward these root exudates. In a root colonizing assay, the number of cells of strain U23A associated to the plant roots (5.7 × 10⁵ CFU g⁻¹) was greater than the number remaining in the surrounding sand (4.5 × 10⁴ CFU g⁻¹). Furthermore, the exudates could support the growth of strain U23A. In a resting cell suspension assay, cells grown in a minimal medium containing Arabidopsis root exudates as sole growth substrate were able to metabolize 2,3,4'- and 2,3',4-trichlorobiphenyl. However, no significant degradation of any of congeners was observed for control cells grown on Luria-Bertani medium. Although strain U23A was unable to grow on any of the flavonoids identified in root exudates, biphenyl-induced cells metabolized flavanone, one of the major root exudate components. In addition, when used as co-substrate with sodium acetate, flavanone was as efficient as biphenyl to induce the biphenyl catabolic pathway of strain U23A. Together, these data provide supporting evidence that some rhodococci can live in soil in close association with plant roots and that root exudates can support their growth and trigger their PCB-degrading ability. This suggests that, like the flagellated Gram-negative bacteria, non-flagellated rhodococci may also play a key role in the degradation of persistent pollutants.
Collapse
|
10
|
Stephenson GR, Anson CE, Swinson GJ. Biphenyl-cis-diol chemistry to access enantiopure aryl-substituted organoiron complexes. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2011.03.088] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Mohammadi M, Viger JF, Kumar P, Barriault D, Bolin JT, Sylvestre M. Retuning Rieske-type oxygenases to expand substrate range. J Biol Chem 2011; 286:27612-21. [PMID: 21653696 DOI: 10.1074/jbc.m111.255174] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rieske-type oxygenases are promising biocatalysts for the destruction of persistent pollutants or for the synthesis of fine chemicals. In this work, we explored pathways through which Rieske-type oxygenases evolve to expand their substrate range. BphAE(p4), a variant biphenyl dioxygenase generated from Burkholderia xenovorans LB400 BphAE(LB400) by the double substitution T335A/F336M, and BphAE(RR41), obtained by changing Asn(338), Ile(341), and Leu(409) of BphAE(p4) to Gln(338), Val(341), and Phe(409), metabolize dibenzofuran two and three times faster than BphAE(LB400), respectively. Steady-state kinetic measurements of single- and multiple-substitution mutants of BphAE(LB400) showed that the single T335A and the double N338Q/L409F substitutions contribute significantly to enhanced catalytic activity toward dibenzofuran. Analysis of crystal structures showed that the T335A substitution relieves constraints on a segment lining the catalytic cavity, allowing a significant displacement in response to dibenzofuran binding. The combined N338Q/L409F substitutions alter substrate-induced conformational changes of protein groups involved in subunit assembly and in the chemical steps of the reaction. This suggests a responsive induced fit mechanism that retunes the alignment of protein atoms involved in the chemical steps of the reaction. These enzymes can thus expand their substrate range through mutations that alter the constraints or plasticity of the catalytic cavity to accommodate new substrates or that alter the induced fit mechanism required to achieve proper alignment of reaction-critical atoms or groups.
Collapse
Affiliation(s)
- Mahmood Mohammadi
- Institut National de la Recherche Scientifique-Institut Armand-Frappier, Laval, Quebec H7V 1B7, Canada
| | | | | | | | | | | |
Collapse
|
12
|
Expression in Escherichia coli of biphenyl 2,3-dioxygenase genes from a Gram-positive polychlorinated biphenyl degrader, Rhodococcus jostii RHA1. Biosci Biotechnol Biochem 2011; 75:26-33. [PMID: 21228494 DOI: 10.1271/bbb.100452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Rhodococcus jostii RHA1 is a polychlorinated biphenyl degrader. Multi-component biphenyl 2,3-dioxygenase (BphA) genes of RHA1 encode large and small subunits of oxygenase component and ferredoxin and reductase components. They did not express enzyme activity in Escherichia coli. To obtain BphA activity in E. coli, hybrid BphA gene derivatives were constructed by replacing ferredoxin and/or reductase component genes of RHA1 with those of Pseudomonas pseudoalcaligenes KF707. The results obtained indicate a lack of catalytic activity of the RHA1 ferredoxin component gene, bphAc in E. coli. To determine the cause of inability of RHA1 bphAc to express in E. coli, the bphAc gene was introduced into Rosetta (DE3) pLacI, which has extra tRNA genes for rare codons in E. coli. The resulting strain abundantly produced the bphAc product, and showed activity. These results suggest that codon usage bias is involved in inability of RHA1 bphAc to express its catalytic activity in E. coli.
Collapse
|
13
|
Abstract
As one of the persistent organic pollutants, polychlorinated biphenyls are harmful to the environment and humans. Biodegradation is the most potential way to remove PCBs. Biodegradation can mainly be divided into microbial degradation, phytoremediation, plant and microbial combined remediation. Here, we introduced isolation of the PCBs-degrading strains, cloning and modification of the related degradation genes. Additionally, on the other hand, the natural remediation of plant, plant and microbial combined remediation, plant transgenic remediation were described.
Collapse
|
14
|
Structural insight into the expanded PCB-degrading abilities of a biphenyl dioxygenase obtained by directed evolution. J Mol Biol 2010; 405:531-47. [PMID: 21073881 DOI: 10.1016/j.jmb.2010.11.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 11/01/2010] [Accepted: 11/02/2010] [Indexed: 11/23/2022]
Abstract
The biphenyl dioxygenase of Burkholderia xenovorans LB400 is a multicomponent Rieske-type oxygenase that catalyzes the dihydroxylation of biphenyl and many polychlorinated biphenyls (PCBs). The structural bases for the substrate specificity of the enzyme's oxygenase component (BphAE(LB400)) are largely unknown. BphAE(p4), a variant previously obtained through directed evolution, transforms several chlorobiphenyls, including 2,6-dichlorobiphenyl, more efficiently than BphAE(LB400), yet differs from the parent oxygenase at only two positions: T335A/F336M. Here, we compare the structures of BphAE(LB400) and BphAE(p4) and examine the biochemical properties of two BphAE(LB400) variants with single substitutions, T335A or F336M. Our data show that residue 336 contacts the biphenyl and influences the regiospecificity of the reaction, but does not enhance the enzyme's reactivity toward 2,6-dichlorobiphenyl. By contrast, residue 335 does not contact biphenyl but contributes significantly to expansion of the enzyme's substrate range. Crystal structures indicate that Thr335 imposes constraints through hydrogen bonds and nonbonded contacts to the segment from Val320 to Gln322. These contacts are lost when Thr is replaced by Ala, relieving intramolecular constraints and allowing for significant movement of this segment during binding of 2,6-dichlorobiphenyl, which increases the space available to accommodate the doubly ortho-chlorinated congener 2,6-dichlorobiphenyl. This study provides important insight about how Rieske-type oxygenases can expand substrate range through mutations that increase the plasticity and/or mobility of protein segments lining the catalytic cavity.
Collapse
|
15
|
Peng RH, Xiong AS, Xue Y, Fu XY, Gao F, Zhao W, Tian YS, Yao QH. A profile of ring-hydroxylating oxygenases that degrade aromatic pollutants. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2010; 206:65-94. [PMID: 20652669 DOI: 10.1007/978-1-4419-6260-7_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Numerous aromatic compounds are pollutants to which exposure exists or is possible, and are of concern because they are mutagenic, carcinogenic, or display other toxic characteristics. Depending on the types of dioxygenation reactions of which microorganisms are capable, they utilize ring-hydroxylating oxygenases (RHOs) to initiate the degradation and detoxification of such aromatic compound pollutants. Gene families encoding for RHOs appear to be most common in bacteria. Oxygenases are important in degrading both natural and synthetic aromatic compounds and are particularly important for their role in degrading toxic pollutants; for this reason, it is useful for environmental scientists and others to understand more of their characteristics and capabilities. It is the purpose of this review to address RHOs and to describe much of their known character, starting with a review as to how RHOs are classified. A comprehensive phylogenetic analysis has revealed that all RHOs are, in some measure, related, presumably by divergent evolution from a common ancestor, and this is reflected in how they are classified. After we describe RHO classification schemes, we address the relationship between RHO structure and function. Structural differences affect substrate specificity and product formation. In the alpha subunit of the known terminal oxygenase of RHOs, there is a catalytic domain with a mononuclear iron center that serves as a substrate-binding site and a Rieske domain that retains a [2Fe-2S] cluster that acts as an entity of electron transfer for the mononuclear iron center. Oxygen activation and substrate dihydroxylation occurring at the catalytic domain are dependent on the binding of substrate at the active site and the redox state of the Rieske center. The electron transfer from NADH to the catalytic pocket of RHO and catalyzing mechanism of RHOs is depicted in our review and is based on the results of recent studies. Electron transfer involving the RHO system typically involves four steps: NADH-ferredoxin reductase receives two electrons from NADH; ferredoxin binds with NADH-ferredoxin reductase and accepts electron from it; the reduced ferredoxin dissociates from NADH-ferredoxin reductase and shuttles the electron to the Rieske domain of the terminal oxygenase; the Rieske cluster donates electrons to O2 through the mononuclear iron. On the basis of crystal structure studies, it has been proposed that the broad specificity of the RHOs results from the large size and specific topology of its hydrophobic substrate-binding pocket. Several amino acids that determine the substrate specificity and enantioselectivity of RHOs have been identified through sequence comparison and site-directed mutagenesis at the active site. Exploiting the crystal structure data and the available active site information, engineered RHO enzymes have been and can be designed to improve their capacity to degrade environmental pollutants. Such attempts to enhance degradation capabilities of RHOs have been made. Dioxygenases have been modified to improve the degradation capacities toward PCBs, PAHs, dioxins, and some other aromatic hydrocarbons. We hope that the results of this review and future research on enhancing RHOs will promote their expanded usage and effectiveness for successfully degrading environmental aromatic pollutants.
Collapse
Affiliation(s)
- Ri-He Peng
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Seo J, Kang SI, Kim M, Won D, Takahashi H, Ahn JH, Chong Y, Lee E, Lim Y, Kanaly RA, Han J, Hur HG. Time-dependent density functional theory-assisted absolute configuration determination of cis-dihydrodiol metabolite produced from isoflavone by biphenyl dioxygenase. Anal Biochem 2009; 397:29-36. [PMID: 19854147 DOI: 10.1016/j.ab.2009.10.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 09/14/2009] [Accepted: 10/08/2009] [Indexed: 11/20/2022]
Abstract
Escherichia coli cells containing the biphenyl dioxygenase genes bphA1A2A3A4 from Pseudomonas pseudoalcaligenes KF707 were found to biotransform isoflavone and produced a metabolite that was not found in a control experiment. Liquid chromatography/mass spectrometry (LC/MS) and (1)H and (13)C nuclear magnetic resonance (NMR) analyses indicated that biphenyl dioxygenase induced 2',3'-cis-dihydroxylation of the B-ring of isoflavone. In a previous report, the same enzyme showed dioxygenase activity toward flavone, producing flavone 2',3'-cis-dihydrodiol. Due to growing interest in flavone chemistry and the absolute configuration of natural products, time-dependent density functional theory (TD-DFT) calculations were combined with circular dichroism (CD) spectroscopy to determine the absolute configuration of the isoflavone dihydrodiol. By computational methods, the structure of the isoflavone metabolite was determined to be 3-[(5S,6R)-5,6-dihydroxycyclohexa-1,3-dienyl]-4H-chromen-4-one. This structure was confirmed further by the modified Mosher's method. The same protocol was applied to the flavone metabolite, and the absolute configuration was determined to be 2-[(5S,6R)-5,6-dihydroxycyclohexa-1,3-dienyl]-4H-chromen-4-one. After determination of the absolute configurations of the biotransformation products, we suggest the binding mode of these substrate analogs to the enzyme active site.
Collapse
Affiliation(s)
- Jiyoung Seo
- Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Sylvestre M, Macek T, Mackova M. Transgenic plants to improve rhizoremediation of polychlorinated biphenyls (PCBs). Curr Opin Biotechnol 2009; 20:242-7. [PMID: 19250817 DOI: 10.1016/j.copbio.2009.01.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 01/22/2009] [Accepted: 01/26/2009] [Indexed: 10/21/2022]
Abstract
Recent investigations have shown that the three components of the biphenyl dioxygenase and the 2,3-dihydroxybiphenyl dioxygenase can be produced actively in transgenic plants. Both enzymes catalyze critical steps of the bacterial polychlorinated biphenyl (PCB) degrading pathway. On the basis of these observations, optimized plant-microbe bioremediation processes in which transgenic plants would initiate PCB metabolism and release the metabolites for further degradation by rhizobacteria has been proposed. Since this is still a relatively new approach for PCB remediation, its successful application will require efforts first, to engineer improved PCB-degrading enzymes; second, to co-ordinately express these enzymes' components in plants; and third, to better understand the mechanisms by which plants and rhizobacteria interact to degrade organic pollutants.
Collapse
Affiliation(s)
- Michel Sylvestre
- Institut national de la recherche scientifique, INRS-Institut Armand-Frappier, Laval, Québec, Canada.
| | | | | |
Collapse
|