1
|
Wang RS, Siao SW, Wang JC, Lin PY, Shen CR. Engineering thioesterase as a driving force for novel itaconate production via its degradation scheme. Metab Eng Commun 2024; 19:e00246. [PMID: 39224858 PMCID: PMC11367265 DOI: 10.1016/j.mec.2024.e00246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Incorporation of irreversible steps in pathway design enhances the overall thermodynamic favorability and often leads to better bioconversion yield given functional enzymes. Using this concept, here we constructed the first non-natural itaconate biosynthesis pathway driven by thioester hydrolysis. Itaconate is a commercially valuable platform chemical with wide applications in the synthetic polymer industry. Production of itaconate has long relied on the decarboxylation of TCA cycle intermediate cis-aconitate as the only biosynthetic route. Inspired by nature's design of itaconate detoxification, here we engineered a novel itaconate producing pathway orthogonal to native metabolism with no requirement of auxotrophic knock-out. The reversed degradation pathway initiates with pyruvate and acetyl-CoA condensation forming (S)-citramalyl-CoA, followed by its dehydration and isomerization into itaconyl-CoA then hydrolysis into itaconate. Phenylacetyl-CoA thioesterase (PaaI) from Escherichia coli was identified via screening to deliver the highest itaconate formation efficiency when coupled to the reversible activity of citramalate lyase and itaconyl-CoA hydratase. The preference of PaaI towards itaconyl-CoA hydrolysis over acetyl-CoA and (S)-citramalyl-CoA also minimized the inevitable precursor loss due to enzyme promiscuity. With acetate recycling, acetyl-CoA conservation, and condition optimization, we achieved a final itaconate titer of 1 g/L using the thioesterase driven pathway, which is a significant improvement compared to the original degradation pathway based on CoA transferase. This study illustrates the significance of thermodynamic favorability as a design principle in pathway engineering.
Collapse
Affiliation(s)
- Ryan S. Wang
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| | - Siang-Wun Siao
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| | - Jessica C. Wang
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| | - Patrick Y. Lin
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| | - Claire R. Shen
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| |
Collapse
|
2
|
Jo JH, Park JH, Kim BK, Kim SJ, Park CM, Kang CK, Choi YJ, Kim H, Lee EY, Moon M, Park GW, Lee S, Lee SY, Lee JS, Lee WH, Kim JI, Kim MS. Improvement of succinate production from methane by combining rational engineering and laboratory evolution in Methylomonas sp. DH-1. Microb Cell Fact 2024; 23:297. [PMID: 39497114 PMCID: PMC11533326 DOI: 10.1186/s12934-024-02557-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/04/2024] [Indexed: 11/06/2024] Open
Abstract
Recently, methane has been considered a next-generation carbon feedstock due to its abundance and it is main component of shale gas and biogas. Methylomonas sp. DH-1 has been evaluated as a promising industrial bio-catalyst candidate. Succinate is considered one of the top building block chemicals in the agricultural, food, and pharmaceutical industries. In this study, succinate production by Methylomonas sp. DH-1 was improved by combining adaptive laboratory evolution (ALE) technology with genetic engineering in the chromosome of Methylomonas sp. DH-1, such as deletion of bypass pathway genes (succinate dehydrogenase and succinate semialdehyde dehydrogenase) or overexpression of genes related with succinate production (citrate synthase, pyruvate carboxylase and phosphoenolpyruvate carboxylase). Through ALE, the maximum consumption rate of substrate gases (methane and oxygen) and the duration maintaining high substrate gas consumption rates was enhanced compared to those of the parental strain. Based on the improved methane consumption, cell growth (OD600) increased more than twice, and the succinate titer increased by ~ 48% from 218 to 323 mg/L. To prevent unwanted succinate consumption, the succinate semialdehyde dehydrogenase gene was deleted from the genome. The first enzyme of TCA cycle (citrate synthase) was overexpressed. Pyruvate carboxylase and phosphoenolpyruvate carboxylase, which produce oxaloacetate, a substrate for citrate synthase, were also overproduced by a newly identified strong promoter. The new strong promoter was screened from RNA sequencing data. When these modifications were combined in one strain, the maximum titer (702 mg/L) was successfully improved by more than three times. This study demonstrates that successful enhancement of succinic acid production can be achieved in methanotrophs through additional genetic engineering following adaptive laboratory evolution.
Collapse
Affiliation(s)
- Jae-Hwan Jo
- Bioenergy and Resources Upcycling Research Laboratory, Korea Institute of Energy Research, Daejeon, 34129, Republic of Korea
- Interdisciplinary Program for Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jeong-Ho Park
- Institute of Biotechnology, CJ CheilJedang Co, Gyeonggi-Do, Suwon-Si, 16495, Republic of Korea
| | - Byung Kwon Kim
- Research Institute, GI Biome Inc., Seongnam, Gyeonggi-Do, 13201, Republic of Korea
| | - Seon Jeong Kim
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research, Gwangju, 61003, Republic of Korea
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Chan Mi Park
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research, Gwangju, 61003, Republic of Korea
| | - Chang Keun Kang
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Yong Jun Choi
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Hyejin Kim
- Department of Chemical Engineering, Kyung Hee University, Gyeonggi-do, 17104, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering, Kyung Hee University, Gyeonggi-do, 17104, Republic of Korea
| | - Myounghoon Moon
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research, Gwangju, 61003, Republic of Korea
| | - Gwon Woo Park
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research, Gwangju, 61003, Republic of Korea
| | - Sangmin Lee
- Department of Bio-Environmental Chemistry, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Soo Youn Lee
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research, Gwangju, 61003, Republic of Korea
| | - Jin-Suk Lee
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research, Gwangju, 61003, Republic of Korea
| | - Won-Heong Lee
- Department of Integrative Food, Bioscience and Biotechnology (BK21 FOUR), Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jeong-Il Kim
- Interdisciplinary Program for Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea.
- Department of Integrative Food, Bioscience and Biotechnology (BK21 FOUR), Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Min-Sik Kim
- Bioenergy and Resources Upcycling Research Laboratory, Korea Institute of Energy Research, Daejeon, 34129, Republic of Korea.
| |
Collapse
|
3
|
Zhao C, Zhao J, Han J, Mei Y, Fang H. Improved consolidated bioprocessing for itaconic acid production by simultaneous optimization of cellulase and metabolic pathway of Neurospora crassa. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:57. [PMID: 38685114 PMCID: PMC11059683 DOI: 10.1186/s13068-024-02505-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/20/2024] [Indexed: 05/02/2024]
Abstract
Lignocellulose was directly used in itaconic acid production by a model filamentous fungus Neurospora crassa. The promoters of two clock control genes and cellobiohydrolase 1 gene were selected for heterologous genes expression by evaluating different types of promoters. The effect of overexpression of different cellulase was compared, and it was found that expression of cellobiohydrolase 2 from Trichoderma reesei increased the filter paper activity by 2 times, the cellobiohydrolase activity by 4.5 times, and that the itaconic acid titer was also significantly improved. A bidirectional cis-aconitic acid accumulation strategy was established by constructing the reverse glyoxylate shunt and expressing the transporter MTTA, which increased itaconic acid production to 637.2 mg/L. The simultaneous optimization of cellulase and metabolic pathway was more conducive to the improvement of cellulase activity than that of cellulase alone, so as to further increase itaconic acid production. Finally, through the combination of fermentation by optimized strains and medium optimization, the titers of itaconic acid using Avicel and corn stover as substrate were 1165.1 mg/L and 871.3 mg/L, respectively. The results prove the potential of the consolidated bioprocessing that directly converts lignocellulose to itaconic acid by a model cellulase synthesizing strain.
Collapse
Affiliation(s)
- Chen Zhao
- College of Life Sciences, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Jiajia Zhao
- College of Life Sciences, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
- The Second Department of Vaccine, Lanzhou Institute of Biological Products Co., Ltd., Lanzhou, 730046, China
| | - Jingjing Han
- College of Life Sciences, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yaojie Mei
- College of Life Sciences, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hao Fang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, 733 Jianshe 3rd Road, Hangzhou, 311200, Zhejiang, China.
| |
Collapse
|
4
|
Egorova SV, Khmelenina VN, Mustakhimov II, But SY. The Role of Serine-Glyoxylate Aminotransferase and Malyl-CoA Lyase in the Metabolism of Methylococcus capsulatus Bath. Curr Microbiol 2023; 80:311. [PMID: 37540350 DOI: 10.1007/s00284-023-03426-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 07/21/2023] [Indexed: 08/05/2023]
Abstract
The genome of aerobic methanotroph Methylococcus capsulatus Bath possesses genes of three biochemical pathways of C1-carbon assimilation: the ribulose monophosphate cycle, the Calvin-Benson-Bassham cycle, and the partial serine cycle. Numerous studies have demonstrated that during methanotrophic growth cells of Methylococcus capsulatus Bath express key enzymes of these routes. In this study, the role of the serine cycle key enzymes, serine-glyoxylate aminotransferase (Sga) and malyl-CoA lyase (Mcl) in metabolism of Methylococcus capsulatus Bath was investigated by gene inactivation. The Δsga mutant obtained by double homologous recombination showed a prolonged lag phase, and after the lag period, the growth rate became similar to that of the wild type strain. The elevated intracellular levels of glutamate, serine, glycine, alanine, methionine, leucine, and succinate suggested significant metabolic changes in the mutant cells. Deletion of the mcl gene resulted in very poor growth and glycine only partially improved growth of the mutant strain. Cells of Δmcl mutant possess lower content of histidine, but enhanced level of alanine, leucine, and lysine than those of the wild type strain. Our data imply the importance of the serine cycle enzymes in metabolism of the methanotroph as well as relationships of the three C1 assimilation pathways in the gammaproteobacterial methanotrophs.
Collapse
Affiliation(s)
- Svetlana V Egorova
- Federal Research Center Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences, Pushchino, Russian Federation
| | - Valentina N Khmelenina
- Federal Research Center Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences, Pushchino, Russian Federation
| | - Ildar I Mustakhimov
- Federal Research Center Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences, Pushchino, Russian Federation
| | - Sergey Y But
- Federal Research Center Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences, Pushchino, Russian Federation.
- Laboratory of Methylotrophy, Federal Research Center Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences, Prospect Nauki 5, Pushchino, Russian Federation, 142290.
| |
Collapse
|
5
|
McLean R, Schwander T, Diehl C, Cortina NS, Paczia N, Zarzycki J, Erb TJ. Exploring alternative pathways for the in vitro establishment of the HOPAC cycle for synthetic CO 2 fixation. SCIENCE ADVANCES 2023; 9:eadh4299. [PMID: 37315145 DOI: 10.1126/sciadv.adh4299] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/08/2023] [Indexed: 06/16/2023]
Abstract
Nature has evolved eight different pathways for the capture and conversion of CO2, including the Calvin-Benson-Bassham cycle of photosynthesis. Yet, these pathways underlie constrains and only represent a fraction of the thousands of theoretically possible solutions. To overcome the limitations of natural evolution, we introduce the HydrOxyPropionyl-CoA/Acrylyl-CoA (HOPAC) cycle, a new-to-nature CO2-fixation pathway that was designed through metabolic retrosynthesis around the reductive carboxylation of acrylyl-CoA, a highly efficient principle of CO2 fixation. We realized the HOPAC cycle in a step-wise fashion and used rational engineering approaches and machine learning-guided workflows to further optimize its output by more than one order of magnitude. Version 4.0 of the HOPAC cycle encompasses 11 enzymes from six different organisms, converting ~3.0 mM CO2 into glycolate within 2 hours. Our work moves the hypothetical HOPAC cycle from a theoretical design into an established in vitro system that forms the basis for different potential applications.
Collapse
Affiliation(s)
- Richard McLean
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Thomas Schwander
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Christoph Diehl
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Niña Socorro Cortina
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Nicole Paczia
- Core Facility for Metabolomics and Small Molecule Mass Spectrometry, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Jan Zarzycki
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Tobias J Erb
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- SYNMIKRO Center of Synthetic Microbiology, Marburg, Germany
| |
Collapse
|
6
|
Zhang X, Xia L, Liu J, Wang Z, Yang Y, Wu Y, Yang Q, Huang L, Shen P. Comparative Genomic Analysis of a Methylorubrum rhodesianum MB200 Isolated from Biogas Digesters Provided New Insights into the Carbon Metabolism of Methylotrophic Bacteria. Int J Mol Sci 2023; 24:ijms24087521. [PMID: 37108681 PMCID: PMC10138955 DOI: 10.3390/ijms24087521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Methylotrophic bacteria are widely distributed in nature and can be applied in bioconversion because of their ability to use one-carbon source. The aim of this study was to investigate the mechanism underlying utilization of high methanol content and other carbon sources by Methylorubrum rhodesianum strain MB200 via comparative genomics and analysis of carbon metabolism pathway. The genomic analysis revealed that the strain MB200 had a genome size of 5.7 Mb and two plasmids. Its genome was presented and compared with that of the 25 fully sequenced strains of Methylobacterium genus. Comparative genomics revealed that the Methylorubrum strains had closer collinearity, more shared orthogroups, and more conservative MDH cluster. The transcriptome analysis of the strain MB200 in the presence of various carbon sources revealed that a battery of genes was involved in the methanol metabolism. These genes are involved in the following functions: carbon fixation, electron transfer chain, ATP energy release, and resistance to oxidation. Particularly, the central carbon metabolism pathway of the strain MB200 was reconstructed to reflect the possible reality of the carbon metabolism, including ethanol metabolism. Partial propionate metabolism involved in ethyl malonyl-CoA (EMC) pathway might help to relieve the restriction of the serine cycle. In addition, the glycine cleavage system (GCS) was observed to participate in the central carbon metabolism pathway. The study revealed the coordination of several metabolic pathways, where various carbon sources could induce associated metabolic pathways. To the best of our knowledge, this is the first study providing a more comprehensive understanding of the central carbon metabolism in Methylorubrum. This study provided a reference for potential synthetic and industrial applications of this genus and its use as chassis cells.
Collapse
Affiliation(s)
- Xi Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530005, China
| | - Liqing Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530005, China
| | - Jianyi Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530005, China
| | - Zihao Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530005, China
| | - Yanni Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530005, China
| | - Yiting Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530005, China
| | - Qingshan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530005, China
| | - Luodong Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530005, China
| | - Peihong Shen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530005, China
| |
Collapse
|
7
|
Alloul A, Blansaer N, Cabecas Segura P, Wattiez R, Vlaeminck SE, Leroy B. Dehazing redox homeostasis to foster purple bacteria biotechnology. Trends Biotechnol 2023; 41:106-119. [PMID: 35843758 DOI: 10.1016/j.tibtech.2022.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 12/27/2022]
Abstract
Purple non-sulfur bacteria (PNSB) show great potential for environmental and industrial biotechnology, producing microbial protein, biohydrogen, polyhydroxyalkanoates (PHAs), pigments, etc. When grown photoheterotrophically, the carbon source is typically more reduced than the PNSB biomass, which leads to a redox imbalance. To mitigate the excess of electrons, PNSB can exhibit several 'electron sinking' strategies, such as CO2 fixation, N2 fixation, and H2 and PHA production. The lack of a comprehensive (over)view of these redox strategies is hindering the implementation of PNSB for biotechnology applications. This review aims to present the state of the art of redox homeostasis in phototrophically grown PNSB, presenting known and theoretically expected strategies, and discussing them from stoichiometric, thermodynamic, metabolic, and economic points of view.
Collapse
Affiliation(s)
- Abbas Alloul
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Antwerpen, Belgium.
| | - Naïm Blansaer
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Antwerpen, Belgium
| | | | - Ruddy Wattiez
- Laboratory of Proteomics and Microbiology, University of Mons, Mons, Belgium
| | - Siegfried E Vlaeminck
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Antwerpen, Belgium
| | - Baptiste Leroy
- Laboratory of Proteomics and Microbiology, University of Mons, Mons, Belgium
| |
Collapse
|
8
|
Diehl C, Gerlinger PD, Paczia N, Erb TJ. Synthetic anaplerotic modules for the direct synthesis of complex molecules from CO 2. Nat Chem Biol 2023; 19:168-175. [PMID: 36470994 PMCID: PMC9889269 DOI: 10.1038/s41589-022-01179-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 09/22/2022] [Indexed: 12/12/2022]
Abstract
Anaplerosis is an essential feature of metabolism that allows the continuous operation of natural metabolic networks, such as the citric acid cycle, by constantly replenishing drained intermediates. However, this concept has not been applied to synthetic in vitro metabolic networks, thus far. Here we used anaplerotic strategies to directly access the core sequence of the CETCH cycle, a new-to-nature in vitro CO2-fixation pathway that features several C3-C5 biosynthetic precursors. We drafted four different anaplerotic modules that use CO2 to replenish the CETCH cycle's intermediates and validated our designs by producing 6-deoxyerythronolide B (6-DEB), the C21-macrolide backbone of erythromycin. Our best design allowed the carbon-positive synthesis of 6-DEB via 54 enzymatic reactions in vitro at yields comparable to those with isolated 6-DEB polyketide synthase (DEBS). Our work showcases how new-to-nature anaplerotic modules can be designed and tailored to enhance and expand the synthetic capabilities of complex catalytic in vitro reaction networks.
Collapse
Affiliation(s)
- Christoph Diehl
- grid.419554.80000 0004 0491 8361Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Patrick D. Gerlinger
- grid.419554.80000 0004 0491 8361Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Nicole Paczia
- grid.419554.80000 0004 0491 8361Core Facility for Metabolomics and Small Molecule Mass Spectrometry, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Tobias J. Erb
- grid.419554.80000 0004 0491 8361Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany ,grid.452532.7SYNMIKRO Center for Synthetic Microbiology, Marburg, Germany
| |
Collapse
|
9
|
Improvement of dicarboxylic acid production with Methylorubrum extorquens by reduction of product reuptake. Appl Microbiol Biotechnol 2022; 106:6713-6731. [PMID: 36104545 PMCID: PMC9529712 DOI: 10.1007/s00253-022-12161-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/02/2022]
Abstract
Abstract
The methylotrophic bacterium Methylorubrum extorquens AM1 has the potential to become a platform organism for methanol-driven biotechnology. Its ethylmalonyl-CoA pathway (EMCP) is essential during growth on C1 compounds and harbors several CoA-activated dicarboxylic acids. Those acids could serve as precursor molecules for various polymers. In the past, two dicarboxylic acid products, namely mesaconic acid and 2-methylsuccinic acid, were successfully produced with heterologous thioesterase YciA from Escherichia coli, but the yield was reduced by product reuptake. In our study, we conducted extensive research on the uptake mechanism of those dicarboxylic acid products. By using 2,2-difluorosuccinic acid as a selection agent, we isolated a dicarboxylic acid import mutant. Analysis of the genome of this strain revealed a deletion in gene dctA2, which probably encodes an acid transporter. By testing additional single, double, and triple deletions, we were able to rule out the involvement of the two other DctA transporter homologs and the ketoglutarate transporter KgtP. Uptake of 2-methylsuccinic acid was significantly reduced in dctA2 mutants, while the uptake of mesaconic acid was completely prevented. Moreover, we demonstrated M. extorquens-based synthesis of citramalic acid and a further 1.4-fold increase in product yield using a transport-deficient strain. This work represents an important step towards the development of robust M. extorquens AM1 production strains for dicarboxylic acids.
Key points
• 2,2-Difluorosuccinic acid is used to select for dicarboxylic acid uptake mutations.
• Deletion of dctA2 leads to reduction of dicarboxylic acid uptake.
• Transporter-deficient strains show improved production of citramalic acid.
Collapse
|
10
|
Wang Y, Ma F, Yang J, Guo H, Su D, Yu L. Adaption and Degradation Strategies of Methylotrophic 1,4-Dioxane Degrading Strain Xanthobacter sp. YN2 Revealed by Transcriptome-Scale Analysis. Int J Mol Sci 2021; 22:ijms221910435. [PMID: 34638775 PMCID: PMC8508750 DOI: 10.3390/ijms221910435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 12/21/2022] Open
Abstract
Biodegradation of 1,4-dioxane (dioxane) contamination has gained much attention for decades. In our previous work, we isolated a highly efficient dioxane degrader, Xanthobacter sp. YN2, but the underlying mechanisms of its extraordinary degradation performance remained unresolved. In this study, we performed a comparative transcriptome analysis of YN2 grown on dioxane and citrate to elucidate its genetic degradation mechanism and investigated the transcriptomes of different dioxane degradation stages (T0, T24, T48). We also analyzed the transcriptional response of YN2 over time during which the carbon source switched from citrate to dioxane. The results indicate that strain YN2 was a methylotroph, which provides YN2 a major advantage as a pollutant degrader. A large number of genes involved in dioxane metabolism were constitutively expressed prior to dioxane exposure. Multiple genes related to the catabolism of each intermediate were upregulated by treatment in response to dioxane. Glyoxylate metabolism was essential during dioxane degradation by YN2, and the key intermediate glyoxylate was metabolized through three routes: glyoxylate carboligase pathway, malate synthase pathway, and anaplerotic ethylmalonyl-CoA pathway. Genes related to quorum sensing and transporters were significantly upregulated during the early stages of degradation (T0, T24) prior to dioxane depletion, while the expression of genes encoding two-component systems was significantly increased at late degradation stages (T48) when total organic carbon in the culture was exhausted. This study is the first to report the participation of genes encoding glyoxalase, as well as methylotrophic genes xoxF and mox, in dioxane metabolism. The present study reveals multiple genetic and transcriptional strategies used by YN2 to rapidly increase biomass during growth on dioxane, achieve high degradation efficiency and tolerance, and adapt to dioxane exposure quickly, which provides useful information regarding the molecular basis for efficient dioxane biodegradation.
Collapse
Affiliation(s)
- Yingning Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; (Y.W.); (J.Y.); (D.S.); (L.Y.)
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; (Y.W.); (J.Y.); (D.S.); (L.Y.)
- Correspondence:
| | - Jixian Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; (Y.W.); (J.Y.); (D.S.); (L.Y.)
| | - Haijuan Guo
- College of Energy and Environmental Engineering, Hebei University of Engineering, Handan 056107, China;
| | - Delin Su
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; (Y.W.); (J.Y.); (D.S.); (L.Y.)
| | - Lan Yu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; (Y.W.); (J.Y.); (D.S.); (L.Y.)
| |
Collapse
|
11
|
Su C, Deng Q, Chen Z, Lu X, Huang Z, Guan X, Chen M. Denitrifying anaerobic methane oxidation process responses to the addition of growth factor betaine in the MFC-granular sludge coupling system: Enhancing mechanism and metagenomic analysis. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126139. [PMID: 34492928 DOI: 10.1016/j.jhazmat.2021.126139] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/27/2021] [Accepted: 05/13/2021] [Indexed: 06/13/2023]
Abstract
To solve the problem of the slow growth of denitrifying anaerobic methane oxidation (DAMO) bacteria during the enrichment process, betaine was added as a growth factor and its influence on the mechanism of DAMO process along with the metagenomic analysis of the process in a MFC-granular sludge coupling system was explored. When the addition of betaine was increased to 0.5 g/L and 1.0 g/L, the NO3--N removal increased to 210 mg/L. Also, the increasing betaine dosage in 1st to 4th chambers resulted in a significant increase in dissolved methane concentration which reached a maximum value of 16.6 ± 1.19 mg/L. When the dosage of betaine was increased from 0 g/L to 1.0 g/L, the dominant bacterial phyla in the 1st to 4th chambers changed to Proteobacteria (20.8-50.7%) from Euryarchaeota (42.0-54.1%) and Methanothrix which was significantly decreased by 17.9-37.4%. There was a slight decline in the DAMO microorganism abundance, possibly due to the increased methyl donors limiting the DAMO microorganism growth. Denitrification metabolism pathway module (increased from 0.10% to 0.15%) of Nitrogen metabolism and Formaldehyde assimilation, and serine pathway of Methane metabolism presented an ascendant trend with the increased betaine dosage as determined by the metagenomics analysis of KEGG metabolism pathway.
Collapse
Affiliation(s)
- Chengyuan Su
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology for Science and Education Combined with Science and Technology Innovation Base, 12 Jiangan Road, Guilin 541004, PR China; University Key Laboratory of Karst Ecology and Environmental Change of Guangxi Province (Guangxi Normal University), 15 Yucai Road, Guilin 541004, PR China.
| | - Qiujin Deng
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Zhengpeng Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Xinya Lu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Zun Huang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Xin Guan
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Menglin Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| |
Collapse
|
12
|
Petushkova E, Mayorova E, Tsygankov A. TCA Cycle Replenishing Pathways in Photosynthetic Purple Non-Sulfur Bacteria Growing with Acetate. Life (Basel) 2021; 11:711. [PMID: 34357087 PMCID: PMC8307300 DOI: 10.3390/life11070711] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/27/2021] [Accepted: 07/14/2021] [Indexed: 11/23/2022] Open
Abstract
Purple non-sulfur bacteria (PNSB) are anoxygenic photosynthetic bacteria harnessing simple organic acids as electron donors. PNSB produce a-aminolevulinic acid, polyhydroxyalcanoates, bacteriochlorophylls a and b, ubiquinones, and other valuable compounds. They are highly promising producers of molecular hydrogen. PNSB can be cultivated in organic waste waters, such as wastes after fermentation. In most cases, wastes mainly contain acetic acid. Therefore, understanding the anaplerotic pathways in PNSB is crucial for their potential application as producers of biofuels. The present review addresses the recent data on presence and diversity of anaplerotic pathways in PNSB and describes different classifications of these pathways.
Collapse
Affiliation(s)
- Ekaterina Petushkova
- Pushchino Scientific Center for Biological Research, Institute of Basic Biological Problems Russian Academy of Sciences, 2, Institutskaya Str, 142290 Pushchino, Moscow Region, Russia; (E.P.); (E.M.)
| | - Ekaterina Mayorova
- Pushchino Scientific Center for Biological Research, Institute of Basic Biological Problems Russian Academy of Sciences, 2, Institutskaya Str, 142290 Pushchino, Moscow Region, Russia; (E.P.); (E.M.)
- Pushchino State Institute of Natural Science, The Federal State Budget Educational Institution of Higher Education, 3, Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia
| | - Anatoly Tsygankov
- Pushchino Scientific Center for Biological Research, Institute of Basic Biological Problems Russian Academy of Sciences, 2, Institutskaya Str, 142290 Pushchino, Moscow Region, Russia; (E.P.); (E.M.)
| |
Collapse
|
13
|
Ma Y, Devi MJ, R. Reddy V, Song L, Gao H, Cao B. Cloning and Characterization of Three Sugar Metabolism Genes ( LBGAE, LBGALA, and LBMS) Regulated in Response to Elevated CO 2 in Goji Berry ( Lycium barbarum L.). PLANTS 2021; 10:plants10020321. [PMID: 33562387 PMCID: PMC7914792 DOI: 10.3390/plants10020321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/22/2022]
Abstract
The composition and content of sugar play a pivotal role in goji berry (Lycium barbarum L.) fruits, determining fruit quality. Long-term exposure of goji berry to elevated CO2 (eCO2) was frequently demonstrated to reduce sugar content and secondary metabolites. In order to understand the regulatory mechanisms and improve the quality of fruit in the changing climate, it is essential to characterize sugar metabolism genes that respond to eCO2. The objectives of this study were to clone full-length cDNA of three sugar metabolism genes—LBGAE (Lycium barbarum UDP-glucuronate 4-epimerase), LBGALA (Lycium barbarum alpha-galactosidase), and LBMS (Lycium barbarum malate synthase)—that were previously identified responding to eCO2, and to analyze sequence characteristics and expression regulation patterns. Sugar metabolism enzymes regulated by these genes were also estimated along with various carbohydrates from goji berry fruits grown under ambient (400 μmol mol−1) and elevated (700 μmol mol−1) CO2 for 90 and 120 days. Homology-based sequence analysis revealed that the protein-contained functional domains are similar to sugar transport regulation and had a high sequence homology with other Solanaceae species. The sucrose metabolism-related enzyme’s activity varied significantly from ambient to eCO2 in 90-day and 120-day samples along with sugars. This study provides fundamental information on sugar metabolism genes to eCO2 in goji berry to enhance fruit quality to climate change.
Collapse
Affiliation(s)
- Yaping Ma
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Y.M.); (H.G.)
- School of Agriculture, Ningxia University, Yinchuan 750021, China;
- USDA-ARS, Adaptive Cropping Systems Laboratory, 10300 Baltimore Ave, Beltsville, MD 20705, USA;
| | - Mura Jyostna Devi
- USDA-ARS, Adaptive Cropping Systems Laboratory, 10300 Baltimore Ave, Beltsville, MD 20705, USA;
- USDA-ARS, Vegetable Crops Research Unit, Madison, WI 53706, USA
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53705, USA
- Correspondence: (M.J.D.); (B.C.)
| | - Vangimalla R. Reddy
- USDA-ARS, Adaptive Cropping Systems Laboratory, 10300 Baltimore Ave, Beltsville, MD 20705, USA;
| | - Lihua Song
- School of Agriculture, Ningxia University, Yinchuan 750021, China;
- USDA-ARS, Adaptive Cropping Systems Laboratory, 10300 Baltimore Ave, Beltsville, MD 20705, USA;
| | - Handong Gao
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Y.M.); (H.G.)
| | - Bing Cao
- School of Agriculture, Ningxia University, Yinchuan 750021, China;
- Correspondence: (M.J.D.); (B.C.)
| |
Collapse
|
14
|
Miller TE, Beneyton T, Schwander T, Diehl C, Girault M, McLean R, Chotel T, Claus P, Cortina NS, Baret JC, Erb TJ. Light-powered CO 2 fixation in a chloroplast mimic with natural and synthetic parts. Science 2020; 368:649-654. [PMID: 32381722 DOI: 10.1126/science.aaz6802] [Citation(s) in RCA: 194] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/24/2020] [Indexed: 12/21/2022]
Abstract
Nature integrates complex biosynthetic and energy-converting tasks within compartments such as chloroplasts and mitochondria. Chloroplasts convert light into chemical energy, driving carbon dioxide fixation. We used microfluidics to develop a chloroplast mimic by encapsulating and operating photosynthetic membranes in cell-sized droplets. These droplets can be energized by light to power enzymes or enzyme cascades and analyzed for their catalytic properties in multiplex and real time. We demonstrate how these microdroplets can be programmed and controlled by adjusting internal compositions and by using light as an external trigger. We showcase the capability of our platform by integrating the crotonyl-coenzyme A (CoA)/ethylmalonyl-CoA/hydroxybutyryl-CoA (CETCH) cycle, a synthetic network for carbon dioxide conversion, to create an artificial photosynthetic system that interfaces the natural and the synthetic biological worlds.
Collapse
Affiliation(s)
- Tarryn E Miller
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
| | - Thomas Beneyton
- University of Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, Pessac 33600, France
| | - Thomas Schwander
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
| | - Christoph Diehl
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
| | | | - Richard McLean
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
| | - Tanguy Chotel
- University of Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, Pessac 33600, France
| | - Peter Claus
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
| | - Niña Socorro Cortina
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
| | - Jean-Christophe Baret
- University of Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, Pessac 33600, France. .,Institut Universitaire de France, Paris 75005, France
| | - Tobias J Erb
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany. .,Center for Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
| |
Collapse
|
15
|
But SY, Egorova SV, Khmelenina VN, Mustakhimov II. Malyl-CoA lyase provides glycine/glyoxylate synthesis in type I methanotrophs. FEMS Microbiol Lett 2020; 367:6029121. [PMID: 33296465 DOI: 10.1093/femsle/fnaa207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/07/2020] [Indexed: 11/14/2022] Open
Abstract
The biochemical routes for assimilation of one-carbon compounds in bacteria require many clarifications. In this study, the role of malyl-CoA lyase in the metabolism of the aerobic type I methanotroph Methylotuvimicrobium alcaliphilum 20Z has been investigated by gene inactivation and biochemical studies. The functionality of the enzyme has been confirmed by heterologous expression in Escherichia coli. The mutant strain lacking Mcl activity demonstrated the phenotype of glycine auxotrophy. The genes encoding malyl-CoA lyase are present in the genomes of all methanotrophs, except for representatives of the phylum Verrucomicrobium. We suppose that malyl-CoA lyase is the enzyme that provides glyoxylate and glycine synthesis in the type I methanotrophs supporting carbon assimilation via the serine cycle in addition to the major ribulose monophosphate cycle.
Collapse
Affiliation(s)
- S Y But
- Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences», G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences, Pushchino, Russian Federation
| | - S V Egorova
- Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences», G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences, Pushchino, Russian Federation
| | - V N Khmelenina
- Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences», G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences, Pushchino, Russian Federation
| | - I I Mustakhimov
- Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences», G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences, Pushchino, Russian Federation
| |
Collapse
|
16
|
Tang W, Wang Z, Zhang C, Wang C, Min Z, Zhang X, Liu D, Shen J, Xu X. The C-terminal domain conformational switch revealed by the crystal structure of malyl-CoA lyase from Roseiflexus castenholzii. Biochem Biophys Res Commun 2019; 518:72-79. [PMID: 31405562 DOI: 10.1016/j.bbrc.2019.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 08/04/2019] [Indexed: 10/26/2022]
Abstract
Malyl-coenzyme A lyase (MCL) is a carbon-carbon bond lyase that catalyzes the reversible cleavage of coenzyme A (CoA) thioesters in multiple carbon metabolic pathways. This enzyme contains a CitE-like TIM barrel and an additional C-terminal domain that undergoes conformational changes upon substrate binding. However, the structural basis underlying these conformational changes is elusive. Here, we report the crystal structure of MCL from the thermophilic photosynthetic bacterium Roseiflexus castenholzii (RfxMCL) in the apo- and oxalate-bound forms at resolutions of 2.50 and 2.65 Å, respectively. Molecular dynamics simulations and structural comparisons with MCLs from other species reveal the deflection of the C-terminal domain to close the adjacent active site pocket in the trimer and contribute active site residues for CoA coordination. The deflection angles of the C-terminal domain are not only related to the occupation but also the type of bound substrates in the adjacent active site pocket. Our work illustrates that a conformational switch of the C-terminal domain accompanies the substrate-binding of MCLs. The results provide a framework for further investigating the reaction mechanism and multifunctionality of MCLs in different carbon metabolic pathways.
Collapse
Affiliation(s)
- Wanrong Tang
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Zhiguo Wang
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Chenyun Zhang
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Chao Wang
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Zhenzhen Min
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Xin Zhang
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Dan Liu
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Jiejie Shen
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Xiaoling Xu
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
17
|
An essential bifunctional enzyme in Mycobacterium tuberculosis for itaconate dissimilation and leucine catabolism. Proc Natl Acad Sci U S A 2019; 116:15907-15913. [PMID: 31320588 PMCID: PMC6689899 DOI: 10.1073/pnas.1906606116] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) is the etiological agent of tuberculosis. One-fourth of the global population is estimated to be infected with Mtb, accounting for ∼1.3 million deaths in 2017. As part of the immune response to Mtb infection, macrophages produce metabolites with the purpose of inhibiting or killing the bacterial cell. Itaconate is an abundant host metabolite thought to be both an antimicrobial agent and a modulator of the host inflammatory response. However, the exact mode of action of itaconate remains unclear. Here, we show that Mtb has an itaconate dissimilation pathway and that the last enzyme in this pathway, Rv2498c, also participates in l-leucine catabolism. Our results from phylogenetic analysis, in vitro enzymatic assays, X-ray crystallography, and in vivo Mtb experiments, identified Mtb Rv2498c as a bifunctional β-hydroxyacyl-CoA lyase and that deletion of the rv2498c gene from the Mtb genome resulted in attenuation in a mouse infection model. Altogether, this report describes an itaconate resistance mechanism in Mtb and an l-leucine catabolic pathway that proceeds via an unprecedented (R)-3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) stereospecific route in nature.
Collapse
|
18
|
Abstract
ABSTRACT
Peptides, biologically occurring oligomers of amino acids linked by amide bonds, are essential for living organisms. Many peptides isolated as natural products have biological functions such as antimicrobial, antivirus and insecticidal activities. Peptides often possess structural features or modifications not found in proteins, including the presence of nonproteinogenic amino acids, macrocyclic ring formation, heterocyclization, N-methylation and decoration by sugars or acyl groups. Nature employs various strategies to increase the structural diversity of peptides. Enzymes that modify peptides to yield mature natural products are of great interest for discovering new enzyme chemistry and are important for medicinal chemistry applications. We have discovered novel peptide modifying enzymes and have identified: (i) a new class of amide bond forming-enzymes; (ii) a pathway to biosynthesize a carbonylmethylene-containing pseudodipeptide structure; and (iii) two distinct peptide epimerases. In this review, an overview of our findings on peptide modifying enzymes is presented.
Collapse
|
19
|
Possible cross-feeding pathway of facultative methylotroph Methyloceanibacter caenitepidi Gela4 on methanotroph Methylocaldum marinum S8. PLoS One 2019; 14:e0213535. [PMID: 30870453 PMCID: PMC6417678 DOI: 10.1371/journal.pone.0213535] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/22/2019] [Indexed: 11/19/2022] Open
Abstract
Non-methanotrophic bacteria such as methylotrophs often coexist with methane-oxidizing bacteria (methanotrophs) by cross-feeding on methane-derived carbon. Methanol has long been considered a major compound that mediates cross-feeding of methane-derived carbon. Despite the potential importance of cross-feeding in the global carbon cycle, only a few studies have actually explored metabolic responses of a bacteria when cross-feeding on a methanotroph. Recently, we isolated a novel facultative methylotroph, Methyloceanibacter caenitepidi Gela4, which grows syntrophically with the methanotroph, Methylocaldum marinum S8. To assess the potential metabolic pathways in M. caenitepidi Gela4 co-cultured with M. marinum S8, we conducted genomic analyses of the two strains, as well as RNA-Seq and chemical analyses of M. caenitepidi Gela4, both in pure culture with methanol and in co-culture with methanotrophs. Genes involved in the serine pathway were downregulated in M. caenitepidi Gela4 under co-culture conditions, and methanol was below the detection limit (< 310 nM) in both pure culture of M. marinum S8 and co-culture. In contrast, genes involved in the tricarboxylic acid cycle, as well as acetyl-CoA synthetase, were upregulated in M. caenitepidi Gela4 under co-culture conditions. Notably, a pure culture of M. marinum S8 produced acetate (< 16 μM) during growth. These results suggested that an organic compound other than methanol, possibly acetate, might be the major carbon source for M. caenitepidi Gela4 cross-fed by M. marinum S8. Co-culture of M. caenitepidi Gela4 and M. marinum S8 may represent a model system to further study methanol-independent cross-feeding from methanotrophs to non-methanotrophic bacteria.
Collapse
|
20
|
Petushkova E, Iuzhakov S, Tsygankov A. Differences in possible TCA cycle replenishing pathways in purple non-sulfur bacteria possessing glyoxylate pathway. PHOTOSYNTHESIS RESEARCH 2019; 139:523-537. [PMID: 30219941 DOI: 10.1007/s11120-018-0581-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 09/05/2018] [Indexed: 06/08/2023]
Abstract
Pathways replenishing tricarboxylic acid cycle were divided into four major groups based on metabolite serving as source for oxaloacetic acid or other tricarboxylic acid cycle component synthesis. Using this metabolic map, the analysis of genetic potential for functioning of tricarboxylic acid cycle replenishment pathways was carried out for seven strains of purple non-sulfur bacterium Rhodopseudomonas palustris. The results varied from strain to strain. Published microarray data for phototrophic acetate cultures of Rps. palustris CGA009 were analyzed to validate activity of the putative pathways. All the results were compared with the results for another purple non-sulfur bacterium, Rhodobacter capsulatus SB1003 and species-specific differences were clarified.
Collapse
Affiliation(s)
- Ekaterina Petushkova
- Institute of Basic Biological Problems, Russian Academy of Sciences, 2, Institutskaya Str, Pushchino, Moscow Region, Russia, 142290
| | - Sergei Iuzhakov
- Faculty of Biotechnology, Lomonosov Moscow State University, Leninskiye Gory 1, bld. 51, Moscow, Russia, 119991
| | - Anatoly Tsygankov
- Institute of Basic Biological Problems, Russian Academy of Sciences, 2, Institutskaya Str, Pushchino, Moscow Region, Russia, 142290.
| |
Collapse
|
21
|
Erb TJ. Back to the future: Why we need enzymology to build a synthetic metabolism of the future. Beilstein J Org Chem 2019; 15:551-557. [PMID: 30873239 PMCID: PMC6404388 DOI: 10.3762/bjoc.15.49] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/29/2019] [Indexed: 12/26/2022] Open
Abstract
Biology is turning from an analytical into a synthetic discipline. This is especially apparent in the field of metabolic engineering, where the concept of synthetic metabolism has been recently developed. Compared to classical metabolic engineering efforts, synthetic metabolism aims at creating novel metabolic networks in a rational fashion from bottom-up. However, while the theoretical design of synthetic metabolic networks has made tremendous progress, the actual realization of such synthetic pathways is still lacking behind. This is mostly because of our limitations in enzyme discovery and engineering to provide the parts required to build synthetic metabolism. Here I discuss the current challenges and limitations in synthetic metabolic engineering and elucidate how modern day enzymology can help to build a synthetic metabolism of the future.
Collapse
Affiliation(s)
- Tobias J Erb
- Max-Planck-Institute for Terrestrial Microbiology, Department of Biochemistry & Synthetic Metabolism, Karl-von-Frisch-Str. 10, D-35043 Marburg, Germany.,LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| |
Collapse
|
22
|
Erkal NA, Eser MG, Özgür E, Gündüz U, Eroglu I, Yücel M. Transcriptome analysis of Rhodobacter capsulatus grown on different nitrogen sources. Arch Microbiol 2019; 201:661-671. [PMID: 30796473 DOI: 10.1007/s00203-019-01635-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 10/10/2018] [Accepted: 02/18/2019] [Indexed: 01/21/2023]
Abstract
This study investigated the effect of different nitrogen sources, namely, ammonium chloride and glutamate, on photoheterotrophic metabolism of Rhodobacter capsulatus grown on acetate as the carbon source. Genes that were significantly differentially expressed according to Affymetrix microarray data were categorized into Clusters of Orthologous Groups functional categories and those in acetate assimilation, hydrogen production, and photosynthetic electron transport pathways were analyzed in detail. Genes related to hydrogen production metabolism were significantly downregulated in cultures grown on ammonium chloride when compared to those grown on glutamate. In contrast, photosynthetic electron transport and acetate assimilation pathway genes were upregulated. In detail, aceA encoding isocitrate lyase, a unique enzyme of the glyoxylate cycle and ccrA encoding the rate limiting crotonyl-CoA carboxylase/reductase enzyme of ethylmalonyl-coA pathway were significantly upregulated. Our findings indicate for the first time that R. capsulatus can operate both glyoxylate and ethylmalonyl-coA cycles for acetate assimilation.
Collapse
Affiliation(s)
- Nilüfer Afsar Erkal
- Department of Biological Sciences, Middle East Technical University, 06800, Ankara, Turkey
- Mikro Biyositemler Inc, 06530, Ankara, Turkey
| | | | - Ebru Özgür
- Mikro Biyositemler Inc, 06530, Ankara, Turkey
- Department of Chemical Engineering, Middle East Technical University, 06800, Ankara, Turkey
| | - Ufuk Gündüz
- Department of Biological Sciences, Middle East Technical University, 06800, Ankara, Turkey
| | - Inci Eroglu
- Department of Chemical Engineering, Middle East Technical University, 06800, Ankara, Turkey
| | - Meral Yücel
- Department of Biological Sciences, Middle East Technical University, 06800, Ankara, Turkey.
| |
Collapse
|
23
|
Schada von Borzyskowski L, Sonntag F, Pöschel L, Vorholt JA, Schrader J, Erb TJ, Buchhaupt M. Replacing the Ethylmalonyl-CoA Pathway with the Glyoxylate Shunt Provides Metabolic Flexibility in the Central Carbon Metabolism of Methylobacterium extorquens AM1. ACS Synth Biol 2018; 7:86-97. [PMID: 29216425 DOI: 10.1021/acssynbio.7b00229] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ethylmalonyl-CoA pathway (EMCP) is an anaplerotic reaction sequence in the central carbon metabolism of numerous Proteo- and Actinobacteria. The pathway features several CoA-bound mono- and dicarboxylic acids that are of interest as platform chemicals for the chemical industry. The EMCP, however, is essential for growth on C1 and C2 carbon substrates and therefore cannot be simply interrupted to drain these intermediates. In this study, we aimed at reengineering central carbon metabolism of the Alphaproteobacterium Methylobacterium extorquens AM1 for the specific production of EMCP derivatives in the supernatant. Establishing a heterologous glyoxylate shunt in M. extorquens AM1 restored wild type-like growth in several EMCP knockout strains on defined minimal medium with acetate as carbon source. We further engineered one of these strains that carried a deletion of the gene encoding crotonyl-CoA carboxylase/reductase to demonstrate in a proof-of-concept the specific production of crotonic acid in the supernatant on a defined minimal medium. Our experiments demonstrate that it is in principle possible to further exploit the EMCP by establishing an alternative central carbon metabolic pathway in M. extorquens AM1, opening many possibilities for the biotechnological production of EMCP-derived compounds in future.
Collapse
Affiliation(s)
| | - Frank Sonntag
- DECHEMA Research Institute, Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany
| | - Laura Pöschel
- DECHEMA Research Institute, Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany
| | - Julia A. Vorholt
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Jens Schrader
- DECHEMA Research Institute, Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany
| | - Tobias J. Erb
- Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
- Center for Synthetic Microbiology, SYNMIKRO, 35043 Marburg, Germany
| | - Markus Buchhaupt
- DECHEMA Research Institute, Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany
| |
Collapse
|
24
|
Sun J, Jeffryes JG, Henry CS, Bruner SD, Hanson AD. Metabolite damage and repair in metabolic engineering design. Metab Eng 2017; 44:150-159. [PMID: 29030275 DOI: 10.1016/j.ymben.2017.10.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/21/2017] [Accepted: 10/09/2017] [Indexed: 01/05/2023]
Abstract
The necessarily sharp focus of metabolic engineering and metabolic synthetic biology on pathways and their fluxes has tended to divert attention from the damaging enzymatic and chemical side-reactions that pathway metabolites can undergo. Although historically overlooked and underappreciated, such metabolite damage reactions are now known to occur throughout metabolism and to generate (formerly enigmatic) peaks detected in metabolomics datasets. It is also now known that metabolite damage is often countered by dedicated repair enzymes that undo or prevent it. Metabolite damage and repair are highly relevant to engineered pathway design: metabolite damage reactions can reduce flux rates and product yields, and repair enzymes can provide robust, host-independent solutions. Herein, after introducing the core principles of metabolite damage and repair, we use case histories to document how damage and repair processes affect efficient operation of engineered pathways - particularly those that are heterologous, non-natural, or cell-free. We then review how metabolite damage reactions can be predicted, how repair reactions can be prospected, and how metabolite damage and repair can be built into genome-scale metabolic models. Lastly, we propose a versatile 'plug and play' set of well-characterized metabolite repair enzymes to solve metabolite damage problems known or likely to occur in metabolic engineering and synthetic biology projects.
Collapse
Affiliation(s)
- Jiayi Sun
- Horticultural Sciences Department, University of Florida, Gainesville, FL, USA
| | - James G Jeffryes
- Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, USA
| | - Christopher S Henry
- Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, USA; Computation Institute, The University of Chicago, Chicago, IL, USA
| | - Steven D Bruner
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Andrew D Hanson
- Horticultural Sciences Department, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
25
|
Petushkova EP, Tsygankov AA. Acetate Metabolism in the Purple Non-sulfur Bacterium Rhodobacter capsulatus. BIOCHEMISTRY (MOSCOW) 2017; 82:587-605. [PMID: 28601069 DOI: 10.1134/s0006297917050078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The purple non-sulfur bacterium Rhodobacter capsulatus B10 can grow on acetate as the sole carbon source under photoheterotrophic conditions. It is known that the bacterium can use the glyoxylate cycle and, in addition to it, or alternatively to it, an unknown pathway for acetate assimilation. We analyzed the genetic potential for functioning of additional metabolic pathways of oxaloacetic acid (OAA) pool replenishment in R. capsulatus. Using published microarray data of more than 4000 transcripts of genes for R. capsulatus, the genes necessary for acetate assimilation were analyzed. The results of the analysis showed the presence of all genes necessary for functioning of the ethylmalonyl-CoA pathway, and also a combination of pathways of formation of pyruvic acid/phosphoenol pyruvate (PA/PEP) (from acetyl-CoA and formate, from acetyl-CoA and CO2, as well as from 3-phosphoglyceric acid formed in the Calvin-Benson cycle) with their subsequent carboxylation. Using expression analysis, we showed that OAA pool replenishment on acetate medium could be achieved via a combination of PA/PEP synthesis from Calvin-Benson cycle intermediates and their carboxylation (with participation of pyruvate carboxylase, two reversible malate dehydrogenases (decarboxylating) and PEP-carboxykinase) to tricarboxylic acid cycle intermediates, the glyoxylate cycle, and a modified ethylmalonyl-CoA pathway in R. capsulatus under these experimental conditions. It was found that analogs of ethylmalonyl-CoA pathway enzymes exist. These enzymes differ in their specificity for S-enantiomers.
Collapse
Affiliation(s)
- E P Petushkova
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | |
Collapse
|
26
|
González JM, Marti-Arbona R, Chen JCH, Unkefer CJ. Structure of Methylobacterium extorquens malyl-CoA lyase: CoA-substrate binding correlates with domain shift. Acta Crystallogr F Struct Biol Commun 2017; 73:79-85. [PMID: 28177317 PMCID: PMC5297927 DOI: 10.1107/s2053230x17001029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 01/19/2017] [Indexed: 11/10/2022] Open
Abstract
Malyl-CoA lyase (MCL) is an Mg2+-dependent enzyme that catalyzes the reversible cleavage of (2S)-4-malyl-CoA to yield acetyl-CoA and glyoxylate. MCL enzymes, which are found in a variety of bacteria, are members of the citrate lyase-like family and are involved in the assimilation of one- and two-carbon compounds. Here, the 1.56 Å resolution X-ray crystal structure of MCL from Methylobacterium extorquens AM1 with bound Mg2+ is presented. Structural alignment with the closely related Rhodobacter sphaeroides malyl-CoA lyase complexed with Mg2+, oxalate and CoA allows a detailed analysis of the domain motion of the enzyme caused by substrate binding. Alignment of the structures shows that a simple hinge motion centered on the conserved residues Phe268 and Thr269 moves the C-terminal domain by about 30° relative to the rest of the molecule. This domain motion positions a conserved aspartate residue located in the C-terminal domain in the active site of the adjacent monomer, which may serve as a general acid/base in the catalytic mechanism.
Collapse
Affiliation(s)
- Javier M. González
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | | - Julian C.-H. Chen
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Clifford J. Unkefer
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| |
Collapse
|
27
|
Malate Synthase and β-Methylmalyl Coenzyme A Lyase Reactions in the Methylaspartate Cycle in Haloarcula hispanica. J Bacteriol 2017; 199:JB.00657-16. [PMID: 27920298 DOI: 10.1128/jb.00657-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/29/2016] [Indexed: 11/20/2022] Open
Abstract
Haloarchaea are extremely halophilic heterotrophic microorganisms belonging to the class Halobacteria (Euryarchaeota). Almost half of the haloarchaea possesses the genes coding for enzymes of the methylaspartate cycle, a recently discovered anaplerotic acetate assimilation pathway. In this cycle, the enzymes of the tricarboxylic acid cycle together with the dedicated enzymes of the methylaspartate cycle convert two acetyl coenzyme A (acetyl-CoA) molecules to malate. The methylaspartate cycle involves two reactions catalyzed by homologous enzymes belonging to the CitE-like enzyme superfamily, malyl-CoA lyase/thioesterase (haloarchaeal malate synthase [hMS]; Hah_2476 in Haloarcula hispanica) and β-methylmalyl-CoA lyase (haloarchaeal β-methylmalyl-CoA lyase [hMCL]; Hah_1341). Although both enzymes catalyze the same reactions, hMS was previously proposed to preferentially catalyze the formation of malate from acetyl-CoA and glyoxylate (malate synthase activity) and hMCL was proposed to primarily cleave β-methylmalyl-CoA to propionyl-CoA and glyoxylate. Here we studied the physiological functions of these enzymes during acetate assimilation in H. hispanica by using biochemical assays of the wild type and deletion mutants. Our results reveal that the main physiological function of hMS is malyl-CoA (not malate) formation and that hMCL catalyzes a β-methylmalyl-CoA lyase reaction in vivo The malyl-CoA thioesterase activities of both enzymes appear to be not essential for growth on acetate. Interestingly, despite the different physiological functions of hMS and hMCL, structural comparisons predict that these two proteins have virtually identical active sites, thus highlighting the need for experimental validation of their catalytic functions. Our results provide further proof of the operation of the methylaspartate cycle and indicate the existence of a distinct, yet-to-be-discovered malyl-CoA thioesterase in haloarchaea. IMPORTANCE Acetate is one of the most important substances in natural environments. The activated form of acetate, acetyl coenzyme A (acetyl-CoA), is the high-energy intermediate at the crossroads of central metabolism: its oxidation generates energy for the cell, and about a third of all biosynthetic fluxes start directly from acetyl-CoA. Many organic compounds enter the central carbon metabolism via this key molecule. To sustain growth on acetyl-CoA-generating compounds, a dedicated assimilation (anaplerotic) pathway is required. The presence of an anaplerotic pathway is a prerequisite for growth in many environments, being important for environmentally, industrially, and clinically important microorganisms. Here we studied specific reactions of a recently discovered acetate assimilation pathway, the methylaspartate cycle, functioning in extremely halophilic archaea.
Collapse
|
28
|
Kawata J, Naoe T, Ogasawara Y, Dairi T. Biosynthesis of the Carbonylmethylene Structure Found in the Ketomemicin Class of Pseudotripeptides. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Junpei Kawata
- Graduate School of Engineering; Hokkaido University; Sapporo, Hokkaido 060-8628 Japan
| | - Taiki Naoe
- Graduate School of Engineering; Hokkaido University; Sapporo, Hokkaido 060-8628 Japan
| | - Yasushi Ogasawara
- Graduate School of Engineering; Hokkaido University; Sapporo, Hokkaido 060-8628 Japan
| | - Tohru Dairi
- Graduate School of Engineering; Hokkaido University; Sapporo, Hokkaido 060-8628 Japan
| |
Collapse
|
29
|
Kawata J, Naoe T, Ogasawara Y, Dairi T. Biosynthesis of the Carbonylmethylene Structure Found in the Ketomemicin Class of Pseudotripeptides. Angew Chem Int Ed Engl 2017; 56:2026-2029. [DOI: 10.1002/anie.201611005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 12/21/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Junpei Kawata
- Graduate School of Engineering; Hokkaido University; Sapporo, Hokkaido 060-8628 Japan
| | - Taiki Naoe
- Graduate School of Engineering; Hokkaido University; Sapporo, Hokkaido 060-8628 Japan
| | - Yasushi Ogasawara
- Graduate School of Engineering; Hokkaido University; Sapporo, Hokkaido 060-8628 Japan
| | - Tohru Dairi
- Graduate School of Engineering; Hokkaido University; Sapporo, Hokkaido 060-8628 Japan
| |
Collapse
|
30
|
Schwander T, Schada von Borzyskowski L, Burgener S, Cortina NS, Erb TJ. A synthetic pathway for the fixation of carbon dioxide in vitro. Science 2016; 354:900-904. [PMID: 27856910 PMCID: PMC5892708 DOI: 10.1126/science.aah5237] [Citation(s) in RCA: 382] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 10/05/2016] [Indexed: 01/20/2023]
Abstract
Carbon dioxide (CO2) is an important carbon feedstock for a future green economy. This requires the development of efficient strategies for its conversion into multicarbon compounds. We describe a synthetic cycle for the continuous fixation of CO2 in vitro. The crotonyl-coenzyme A (CoA)/ethylmalonyl-CoA/hydroxybutyryl-CoA (CETCH) cycle is a reaction network of 17 enzymes that converts CO2 into organic molecules at a rate of 5 nanomoles of CO2 per minute per milligram of protein. The CETCH cycle was drafted by metabolic retrosynthesis, established with enzymes originating from nine different organisms of all three domains of life, and optimized in several rounds by enzyme engineering and metabolic proofreading. The CETCH cycle adds a seventh, synthetic alternative to the six naturally evolved CO2 fixation pathways, thereby opening the way for in vitro and in vivo applications.
Collapse
Affiliation(s)
- Thomas Schwander
- Biochemistry and Synthetic Biology of Microbial Metabolism Group, Max Planck Institute for Terrestrial Microbiology Marburg, D-35043 Marburg, Germany
| | - Lennart Schada von Borzyskowski
- Biochemistry and Synthetic Biology of Microbial Metabolism Group, Max Planck Institute for Terrestrial Microbiology Marburg, D-35043 Marburg, Germany
- Institute for Microbiology, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Simon Burgener
- Biochemistry and Synthetic Biology of Microbial Metabolism Group, Max Planck Institute for Terrestrial Microbiology Marburg, D-35043 Marburg, Germany
- Institute for Microbiology, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Niña Socorro Cortina
- Biochemistry and Synthetic Biology of Microbial Metabolism Group, Max Planck Institute for Terrestrial Microbiology Marburg, D-35043 Marburg, Germany
| | - Tobias J Erb
- Biochemistry and Synthetic Biology of Microbial Metabolism Group, Max Planck Institute for Terrestrial Microbiology Marburg, D-35043 Marburg, Germany.
- Institute for Microbiology, ETH Zürich, CH-8093 Zürich, Switzerland
- LOEWE Center for Synthetic Microbiology, Universität Marburg, D-35037 Marburg, Germany
| |
Collapse
|
31
|
Fuchs G, Berg IA. Unfamiliar metabolic links in the central carbon metabolism. J Biotechnol 2014; 192 Pt B:314-22. [PMID: 24576434 DOI: 10.1016/j.jbiotec.2014.02.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/13/2014] [Accepted: 02/17/2014] [Indexed: 11/18/2022]
Abstract
The central carbon metabolism of all organisms is considered to follow a well established fixed scheme. However, recent studies of autotrophic carbon fixation in prokaryotes revealed unfamiliar metabolic links. A new route interconnects acetyl-coenzyme A (CoA) via 3-hydroxypropionate with succinyl-CoA. Succinyl-CoA in turn may be metabolized via 4-hydroxybutyrate to two molecules of acetyl-CoA; a reversal of this route would result in the assimilation of two molecules of acetyl-CoA into C4 compounds. C5-dicarboxylic acids are a rather neglected class of metabolites; yet, they play a key role not only in one of the CO2 fixation cycles, but also in two acetate assimilation pathways that replace the glyoxylate cycle. C5 compounds such as ethylmalonate, methylsuccinate, methylmalate, mesaconate, itaconate and citramalate or their CoA esters are thereby linked to the acetyl-CoA, propionyl-CoA, glyoxylate and pyruvate pools. A novel carboxylase/reductase converts crotonyl-CoA into ethylmalonyl-CoA; similar reductive carboxylations apply to other alpha-beta-unsaturated carboxy-CoA thioesters. These unfamiliar metabolic links may provide useful tools for metabolic engineering.
Collapse
Affiliation(s)
- Georg Fuchs
- Mikrobiologie, Fakultät für Biologie, Universität Freiburg, Schänzlestr. 1, D 79104 Freiburg, Germany.
| | - Ivan A Berg
- Mikrobiologie, Fakultät für Biologie, Universität Freiburg, Schänzlestr. 1, D 79104 Freiburg, Germany.
| |
Collapse
|
32
|
Strittmatter L, Li Y, Nakatsuka NJ, Calvo SE, Grabarek Z, Mootha VK. CLYBL is a polymorphic human enzyme with malate synthase and β-methylmalate synthase activity. Hum Mol Genet 2013; 23:2313-23. [PMID: 24334609 DOI: 10.1093/hmg/ddt624] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
CLYBL is a human mitochondrial enzyme of unknown function that is found in multiple eukaryotic taxa and conserved to bacteria. The protein is expressed in the mitochondria of all mammalian organs, with highest expression in brown fat and kidney. Approximately 5% of all humans harbor a premature stop polymorphism in CLYBL that has been associated with reduced levels of circulating vitamin B12. Using comparative genomics, we now show that CLYBL is strongly co-expressed with and co-evolved specifically with other components of the mitochondrial B12 pathway. We confirm that the premature stop polymorphism in CLYBL leads to a loss of protein expression. To elucidate the molecular function of CLYBL, we used comparative operon analysis, structural modeling and enzyme kinetics. We report that CLYBL encodes a malate/β-methylmalate synthase, converting glyoxylate and acetyl-CoA to malate, or glyoxylate and propionyl-CoA to β-methylmalate. Malate synthases are best known for their established role in the glyoxylate shunt of plants and lower organisms and are traditionally described as not occurring in humans. The broader role of a malate/β-methylmalate synthase in human physiology and its mechanistic link to vitamin B12 metabolism remain unknown.
Collapse
Affiliation(s)
- Laura Strittmatter
- Department of Molecular Biology, Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | | | |
Collapse
|
33
|
Zarzycki J, Kerfeld CA. The crystal structures of the tri-functional Chloroflexus aurantiacus and bi-functional Rhodobacter sphaeroides malyl-CoA lyases and comparison with CitE-like superfamily enzymes and malate synthases. BMC STRUCTURAL BIOLOGY 2013; 13:28. [PMID: 24206647 PMCID: PMC3832036 DOI: 10.1186/1472-6807-13-28] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 11/04/2013] [Indexed: 11/18/2022]
Abstract
Background Malyl-CoA lyase (MCL) is a promiscuous carbon-carbon bond lyase that catalyzes the reversible cleavage of structurally related Coenzyme A (CoA) thioesters. This enzyme plays a crucial, multifunctional role in the 3-hydroxypropionate bi-cycle for autotrophic CO2 fixation in Chloroflexus aurantiacus. A second, phylogenetically distinct MCL from Rhodobacter sphaeroides is involved in the ethylmalonyl-CoA pathway for acetate assimilation. Both MCLs belong to the large superfamily of CitE-like enzymes, which includes the name-giving β-subunit of citrate lyase (CitE), malyl-CoA thioesterases and other enzymes of unknown physiological function. The CitE-like enzyme superfamily also bears sequence and structural resemblance to the malate synthases. All of these different enzymes share highly conserved catalytic residues, although they catalyze distinctly different reactions: C-C bond formation and cleavage, thioester hydrolysis, or both (the malate synthases). Results Here we report the first crystal structures of MCLs from two different phylogenetic subgroups in apo- and substrate-bound forms. Both the C. aurantiacus and the R. sphaeroides MCL contain elaborations on the canonical β8/α8 TIM barrel fold and form hexameric assemblies. Upon ligand binding, changes in the C-terminal domains of the MCLs result in closing of the active site, with the C-terminal domain of one monomer forming a lid over and contributing side chains to the active site of the adjacent monomer. The distinctive features of the two MCL subgroups were compared to known structures of other CitE-like superfamily enzymes and to malate synthases, providing insight into the structural subtleties that underlie the functional versatility of these enzymes. Conclusions Although the C. aurantiacus and the R. sphaeroides MCLs have divergent primary structures (~37% identical), their tertiary and quaternary structures are very similar. It can be assumed that the C-C bond formation catalyzed by the MCLs occurs as proposed for malate synthases. However, a comparison of the two MCL structures with known malate synthases raised the question why the MCLs are not also able to hydrolyze CoA thioester bonds. Our results suggest the previously proposed reaction mechanism for malate synthases may be incomplete or not entirely correct. Further studies involving site-directed mutagenesis based on these structures may be required to solve this puzzling question.
Collapse
Affiliation(s)
| | - Cheryl A Kerfeld
- Department of Biochemistry and Molecular Biology, Plant Research Laboratories, Michigan State University, Plant Biology Building, 612 Wilson Road, East Lansing, MI 48824, USA.
| |
Collapse
|
34
|
Mainguet SE, Gronenberg LS, Wong SS, Liao JC. A reverse glyoxylate shunt to build a non-native route from C4 to C2 in Escherichia coli. Metab Eng 2013; 19:116-27. [PMID: 23938029 DOI: 10.1016/j.ymben.2013.06.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 06/11/2013] [Accepted: 06/21/2013] [Indexed: 11/25/2022]
Abstract
Most central metabolic pathways such as glycolysis, fatty acid synthesis, and the TCA cycle have complementary pathways that run in the reverse direction to allow flexible storage and utilization of resources. However, the glyoxylate shunt, which allows for the synthesis of four-carbon TCA cycle intermediates from acetyl-CoA, has not been found to be reversible to date. As a result, glucose can only be converted to acetyl-CoA via the decarboxylation of the three-carbon molecule pyruvate in heterotrophs. A reverse glyoxylate shunt (rGS) could be extended into a pathway that converts C4 carboxylates into two molecules of acetyl-CoA without loss of CO2. Here, as a proof of concept, we engineered in Escherichia coli such a pathway to convert malate and succinate to oxaloacetate and two molecules of acetyl-CoA. We introduced ATP-coupled heterologous enzymes at the thermodynamically unfavorable steps to drive the pathway in the desired direction. This synthetic pathway in essence reverses the glyoxylate shunt at the expense of ATP. When integrated with central metabolism, this pathway has the potential to increase the carbon yield of acetate and biofuels from many carbon sources in heterotrophic microorganisms, and could be the basis of novel carbon fixation cycles.
Collapse
Affiliation(s)
- Samuel E Mainguet
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
35
|
Mehdi AM, Sehgal MSB, Kobe B, Bailey TL, Bodén M. DLocalMotif: a discriminative approach for discovering local motifs in protein sequences. ACTA ACUST UNITED AC 2012; 29:39-46. [PMID: 23142965 DOI: 10.1093/bioinformatics/bts654] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
MOTIVATION Local motifs are patterns of DNA or protein sequences that occur within a sequence interval relative to a biologically defined anchor or landmark. Current protein motif discovery methods do not adequately consider such constraints to identify biologically significant motifs that are only weakly over-represented but spatially confined. Using negatives, i.e. sequences known to not contain a local motif, can further increase the specificity of their discovery. RESULTS This article introduces the method DLocalMotif that makes use of positional information and negative data for local motif discovery in protein sequences. DLocalMotif combines three scoring functions, measuring degrees of motif over-representation, entropy and spatial confinement, specifically designed to discriminatively exploit the availability of negative data. The method is shown to outperform current methods that use only a subset of these motif characteristics. We apply the method to several biological datasets. The analysis of peroxisomal targeting signals uncovers several novel motifs that occur immediately upstream of the dominant peroxisomal targeting signal-1 signal. The analysis of proline-tyrosine nuclear localization signals uncovers multiple novel motifs that overlap with C2H2 zinc finger domains. We also evaluate the method on classical nuclear localization signals and endoplasmic reticulum retention signals and find that DLocalMotif successfully recovers biologically relevant sequence properties. AVAILABILITY http://bioinf.scmb.uq.edu.au/dlocalmotif/
Collapse
Affiliation(s)
- Ahmed M Mehdi
- Institute for Molecular Bioscience, The University of Queensland, Australia
| | | | | | | | | |
Collapse
|
36
|
Oxalyl-coenzyme A reduction to glyoxylate is the preferred route of oxalate assimilation in Methylobacterium extorquens AM1. J Bacteriol 2012; 194:3144-55. [PMID: 22493020 DOI: 10.1128/jb.00288-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oxalate catabolism is conducted by phylogenetically diverse organisms, including Methylobacterium extorquens AM1. Here, we investigate the central metabolism of this alphaproteobacterium during growth on oxalate by using proteomics, mutant characterization, and (13)C-labeling experiments. Our results confirm that energy conservation proceeds as previously described for M. extorquens AM1 and other characterized oxalotrophic bacteria via oxalyl-coenzyme A (oxalyl-CoA) decarboxylase and formyl-CoA transferase and subsequent oxidation to carbon dioxide via formate dehydrogenase. However, in contrast to other oxalate-degrading organisms, the assimilation of this carbon compound in M. extorquens AM1 occurs via the operation of a variant of the serine cycle as follows: oxalyl-CoA reduction to glyoxylate and conversion to glycine and its condensation with methylene-tetrahydrofolate derived from formate, resulting in the formation of C3 units. The recently discovered ethylmalonyl-CoA pathway operates during growth on oxalate but is nevertheless dispensable, indicating that oxalyl-CoA reductase is sufficient to provide the glyoxylate required for biosynthesis. Analysis of an oxalyl-CoA synthetase- and oxalyl-CoA-reductase-deficient double mutant revealed an alternative, although less efficient, strategy for oxalate assimilation via one-carbon intermediates. The alternative process consists of formate assimilation via the tetrahydrofolate pathway to fuel the serine cycle, and the ethylmalonyl-CoA pathway is used for glyoxylate regeneration. Our results support the notion that M. extorquens AM1 has a plastic central metabolism featuring multiple assimilation routes for C1 and C2 substrates, which may contribute to the rapid adaptation of this organism to new substrates and the eventual coconsumption of substrates under environmental conditions.
Collapse
|
37
|
Schneider K, Peyraud R, Kiefer P, Christen P, Delmotte N, Massou S, Portais JC, Vorholt JA. The ethylmalonyl-CoA pathway is used in place of the glyoxylate cycle by Methylobacterium extorquens AM1 during growth on acetate. J Biol Chem 2011; 287:757-766. [PMID: 22105076 DOI: 10.1074/jbc.m111.305219] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Acetyl-CoA assimilation was extensively studied in organisms harboring the glyoxylate cycle. In this study, we analyzed the metabolism of the facultative methylotroph Methylobacterium extorquens AM1, which lacks isocitrate lyase, the key enzyme in the glyoxylate cycle, during growth on acetate. MS/MS-based proteomic analysis revealed that the protein repertoire of M. extorquens AM1 grown on acetate is similar to that of cells grown on methanol and includes enzymes of the ethylmalonyl-CoA (EMC) pathway that were recently shown to operate during growth on methanol. Dynamic 13C labeling experiments indicate the presence of distinct entry points for acetate: the EMC pathway and the TCA cycle. 13C steady-state metabolic flux analysis showed that oxidation of acetyl-CoA occurs predominantly via the TCA cycle and that assimilation occurs via the EMC pathway. Furthermore, acetyl-CoA condenses with the EMC pathway product glyoxylate, resulting in malate formation. The latter, also formed by the TCA cycle, is converted to phosphoglycerate by a reaction sequence that is reversed with respect to the serine cycle. Thus, the results obtained in this study reveal the utilization of common pathways during the growth of M. extorquens AM1 on C1 and C2 compounds, but with a major redirection of flux within the central metabolism. Furthermore, our results indicate that the metabolic flux distribution is highly complex in this model methylotroph during growth on acetate and is fundamentally different from organisms using the glyoxylate cycle.
Collapse
Affiliation(s)
| | - Rémi Peyraud
- Institute of Microbiology, ETH Zurich, 8093 Zurich, Switzerland
| | - Patrick Kiefer
- Institute of Microbiology, ETH Zurich, 8093 Zurich, Switzerland
| | | | | | - Stéphane Massou
- Université de Toulouse, Institut National des Sciences Appliquées, Université Paul Sabatier, Institut National Polytechnique de Toulouse, Laboratoire D'Ingénierie des Systèmes Biologiques et des Procédés, F-31077 Toulouse, France; INRA, UMR792, Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France; CNRS, UMR5504, F-31400 Toulouse, France
| | - Jean-Charles Portais
- Université de Toulouse, Institut National des Sciences Appliquées, Université Paul Sabatier, Institut National Polytechnique de Toulouse, Laboratoire D'Ingénierie des Systèmes Biologiques et des Procédés, F-31077 Toulouse, France; INRA, UMR792, Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France; CNRS, UMR5504, F-31400 Toulouse, France
| | - Julia A Vorholt
- Institute of Microbiology, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
38
|
Peyraud R, Schneider K, Kiefer P, Massou S, Vorholt JA, Portais JC. Genome-scale reconstruction and system level investigation of the metabolic network of Methylobacterium extorquens AM1. BMC SYSTEMS BIOLOGY 2011; 5:189. [PMID: 22074569 PMCID: PMC3227643 DOI: 10.1186/1752-0509-5-189] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Accepted: 11/10/2011] [Indexed: 01/21/2023]
Abstract
Background Methylotrophic microorganisms are playing a key role in biogeochemical processes - especially the global carbon cycle - and have gained interest for biotechnological purposes. Significant progress was made in the recent years in the biochemistry, genetics, genomics, and physiology of methylotrophic bacteria, showing that methylotrophy is much more widespread and versatile than initially assumed. Despite such progress, system-level description of the methylotrophic metabolism is currently lacking, and much remains to understand regarding the network-scale organization and properties of methylotrophy, and how the methylotrophic capacity emerges from this organization, especially in facultative organisms. Results In this work, we report on the integrated, system-level investigation of the metabolic network of the facultative methylotroph Methylobacterium extorquens AM1, a valuable model of methylotrophic bacteria. The genome-scale metabolic network of the bacterium was reconstructed and contains 1139 reactions and 977 metabolites. The sub-network operating upon methylotrophic growth was identified from both in silico and experimental investigations, and 13C-fluxomics was applied to measure the distribution of metabolic fluxes under such conditions. The core metabolism has a highly unusual topology, in which the unique enzymes that catalyse the key steps of C1 assimilation are tightly connected by several, large metabolic cycles (serine cycle, ethylmalonyl-CoA pathway, TCA cycle, anaplerotic processes). The entire set of reactions must operate as a unique process to achieve C1 assimilation, but was shown to be structurally fragile based on network analysis. This observation suggests that in nature a strong pressure of selection must exist to maintain the methylotrophic capability. Nevertheless, substantial substrate cycling could be measured within C2/C3/C4 inter-conversions, indicating that the metabolic network is highly versatile around a flexible backbone of central reactions that allows rapid switching to multi-carbon sources. Conclusions This work emphasizes that the metabolism of M. extorquens AM1 is adapted to its lifestyle not only in terms of enzymatic equipment, but also in terms of network-level structure and regulation. It suggests that the metabolism of the bacterium has evolved both structurally and functionally to an efficient but transitory utilization of methanol. Besides, this work provides a basis for metabolic engineering to convert methanol into value-added products.
Collapse
Affiliation(s)
- Rémi Peyraud
- Institute of Microbiology, ETH Zürich, 8093 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
Carboxylases are among the most important enzymes in the biosphere, because they catalyze a key reaction in the global carbon cycle: the fixation of inorganic carbon (CO₂). This minireview discusses the physiological roles of carboxylases in different microbial pathways that range from autotrophy, carbon assimilation, and anaplerosis to biosynthetic and redox-balancing functions. In addition, the current and possible future uses of carboxylation reactions in synthetic biology are discussed. Such uses include the possible transformation of the greenhouse gas carbon dioxide into value-added compounds and the production of novel antibiotics.
Collapse
|
40
|
|
41
|
iRsp1095: a genome-scale reconstruction of the Rhodobacter sphaeroides metabolic network. BMC SYSTEMS BIOLOGY 2011; 5:116. [PMID: 21777427 PMCID: PMC3152904 DOI: 10.1186/1752-0509-5-116] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Accepted: 07/21/2011] [Indexed: 11/10/2022]
Abstract
BACKGROUND Rhodobacter sphaeroides is one of the best studied purple non-sulfur photosynthetic bacteria and serves as an excellent model for the study of photosynthesis and the metabolic capabilities of this and related facultative organisms. The ability of R. sphaeroides to produce hydrogen (H₂), polyhydroxybutyrate (PHB) or other hydrocarbons, as well as its ability to utilize atmospheric carbon dioxide (CO₂) as a carbon source under defined conditions, make it an excellent candidate for use in a wide variety of biotechnological applications. A genome-level understanding of its metabolic capabilities should help realize this biotechnological potential. RESULTS Here we present a genome-scale metabolic network model for R. sphaeroides strain 2.4.1, designated iRsp1095, consisting of 1,095 genes, 796 metabolites and 1158 reactions, including R. sphaeroides-specific biomass reactions developed in this study. Constraint-based analysis showed that iRsp1095 agreed well with experimental observations when modeling growth under respiratory and phototrophic conditions. Genes essential for phototrophic growth were predicted by single gene deletion analysis. During pathway-level analyses of R. sphaeroides metabolism, an alternative route for CO₂ assimilation was identified. Evaluation of photoheterotrophic H2 production using iRsp1095 indicated that maximal yield would be obtained from growing cells, with this predicted maximum ~50% higher than that observed experimentally from wild type cells. Competing pathways that might prevent the achievement of this theoretical maximum were identified to guide future genetic studies. CONCLUSIONS iRsp1095 provides a robust framework for future metabolic engineering efforts to optimize the solar- and nutrient-powered production of biofuels and other valuable products by R. sphaeroides and closely related organisms.
Collapse
|
42
|
Coassimilation of organic substrates via the autotrophic 3-hydroxypropionate bi-cycle in Chloroflexus aurantiacus. Appl Environ Microbiol 2011; 77:6181-8. [PMID: 21764971 DOI: 10.1128/aem.00705-11] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chloroflexus aurantiacus is a facultative autotrophic green nonsulfur bacterium that grows phototrophically in thermal springs and forms microbial mats with cyanobacteria. Cyanobacteria produce glycolate during the day (photorespiration) and excrete fermentation products at night. C. aurantiacus uses the 3-hydroxypropionate bi-cycle for autotrophic carbon fixation. This pathway was thought to be also suited for the coassimilation of various organic substrates such as glycolate, acetate, propionate, 3-hydroxypropionate, lactate, butyrate, or succinate. To test this possibility, we added these compounds at a 5 mM concentration to autotrophically pregrown cells. Although the provided amounts of H(2) and CO(2) allowed continuing photoautotrophic growth, cells immediately consumed most substrates at rates equaling the rate of autotrophic carbon fixation. Using [(14)C]acetate, half of the labeled organic carbon was incorporated into cell mass. Our data suggest that C. aurantiacus uses the 3-hydroxypropionate bi-cycle, together with the glyoxylate cycle, to channel organic substrates into the central carbon metabolism. Enzyme activities of the 3-hydroxypropionate bi-cycle were marginally affected when cells were grown heterotrophically with such organic substrates. The 3-hydroxypropionate bi-cycle in Chloroflexi is unique and was likely fostered in an environment in which traces of organic compounds can be coassimilated. Other bacteria living under oligotrophic conditions acquired genes of a rudimentary 3-hydroxypropionate bi-cycle, possibly for the same purpose. Examples are Chloroherpeton thalassium, Erythrobacter sp. strain NAP-1, Nitrococcus mobilis, and marine gammaproteobacteria of the OM60/NOR5 clade such as Congregibacter litoralis.
Collapse
|
43
|
|
44
|
Khomyakova M, Bükmez Ö, Thomas LK, Erb TJ, Berg IA. A methylaspartate cycle in haloarchaea. Science 2011; 331:334-7. [PMID: 21252347 DOI: 10.1126/science.1196544] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Access to novel ecological niches often requires adaptation of metabolic pathways to cope with new environments. For conversion to cellular building blocks, many substrates enter central carbon metabolism via acetyl-coenzyme A (acetyl-CoA). Until now, only two such pathways have been identified: the glyoxylate cycle and the ethylmalonyl-CoA pathway. Prokaryotes in the haloarchaea use a third pathway by which acetyl-CoA is oxidized to glyoxylate via the key intermediate methylaspartate. Glyoxylate condensation with another acetyl-CoA molecule yields malate, the final assimilation product. This cycle combines reactions that originally belonged to different metabolic processes in different groups of prokaryotes, which suggests lateral gene transfer and evolutionary tinkering of acetate assimilation. Moreover, it requires elevated intracellular glutamate concentrations, as well as coupling carbon assimilation with nitrogen metabolism.
Collapse
Affiliation(s)
- Maria Khomyakova
- Mikrobiologie, Fakultät Biologie, Universität Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany
| | | | | | | | | |
Collapse
|
45
|
Anthony C. How half a century of research was required to understand bacterial growth on C1 and C2 compounds; the story of the serine cycle and the ethylmalonyl-CoA pathway. Sci Prog 2011; 94:109-37. [PMID: 21805909 PMCID: PMC10365475 DOI: 10.3184/003685011x13044430633960] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
For bacterial growth on substrates with only one or two carbon atoms, special assimilation pathways are required. In 1957, the glyoxylate cycle of Kornberg and Krebs was described for bacterial growth on C2 compounds such as ethanol and acetate. However this pathway did not operate in some photosynthetic bacteria and in some methylotrophs when they were growing on C2 compounds, so an alternative pathway must exist. By 1973 Quayle's serine cycle had been described for methylotrophs growing on C1 compounds such as methanol, but the pathway was incomplete, the unknown part also functioning during growth on C2 compounds. After more than 35 further years of research, the ethylmalonyl-CoA (EMC) pathway for growth on C2 compounds, of photosynthetic bacteria has recently been elucidated. This pathway also operates in methylotrophs during growth on C2 compounds, and on C1 compounds by way of the serine cycle. This review is a celebration of half a century of research and of the fascinating result of that research.
Collapse
|
46
|
Lewis RA, Laing E, Allenby N, Bucca G, Brenner V, Harrison M, Kierzek AM, Smith CP. Metabolic and evolutionary insights into the closely-related species Streptomyces coelicolor and Streptomyces lividans deduced from high-resolution comparative genomic hybridization. BMC Genomics 2010; 11:682. [PMID: 21122120 PMCID: PMC3017869 DOI: 10.1186/1471-2164-11-682] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 12/01/2010] [Indexed: 11/12/2022] Open
Abstract
Background Whilst being closely related to the model actinomycete Streptomyces coelicolor A3(2), S. lividans 66 differs from it in several significant and phenotypically observable ways, including antibiotic production. Previous comparative gene hybridization studies investigating such differences have used low-density (one probe per gene) PCR-based spotted arrays. Here we use new experimentally optimised 104,000 × 60-mer probe arrays to characterize in detail the genomic differences between wild-type S. lividans 66, a derivative industrial strain, TK24, and S. coelicolor M145. Results The high coverage and specificity (detection of three nucleotide differences) of the new microarrays used has highlighted the macroscopic genomic differences between two S. lividans strains and S. coelicolor. In a series of case studies we have validated the microarray and have identified subtle changes in genomic structure which occur in the Asp-activating adenylation domains of CDA non-ribosomal peptide synthetase genes which provides evidence of gene shuffling between these domains. We also identify single nucleotide sequence inter-species differences which exist in the actinorhodin biosynthetic gene cluster. As the glyoxylate bypass is non-functional in both S. lividans strains due to the absence of the gene encoding isocitrate lyase it is likely that the ethylmalonyl-CoA pathway functions as the alternative mechanism for the assimilation of C2 compounds. Conclusions This study provides evidence for widespread genetic recombination, rather than it being focussed at 'hotspots', suggesting that the previously proposed 'archipelago model' of genomic differences between S. coelicolor and S. lividans is unduly simplistic. The two S. lividans strains investigated differ considerably in genetic complement, with TK24 lacking 175 more genes than its wild-type parent when compared to S. coelicolor. Additionally, we confirm the presence of bldB in S. lividans and deduce that S. lividans 66 and TK24, both deficient in the glyoxylate bypass, possess an alternative metabolic mechanism for the assimilation of C2 compounds. Given that streptomycetes generally display high genetic instability it is envisaged that these high-density arrays will find application for rapid assessment of genome content (particularly amplifications/deletions) in mutational studies of S. coelicolor and related species.
Collapse
Affiliation(s)
- Richard A Lewis
- Microbial Sciences Division, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Smejkalová H, Erb TJ, Fuchs G. Methanol assimilation in Methylobacterium extorquens AM1: demonstration of all enzymes and their regulation. PLoS One 2010; 5. [PMID: 20957036 PMCID: PMC2948502 DOI: 10.1371/journal.pone.0013001] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 08/30/2010] [Indexed: 11/18/2022] Open
Abstract
Background Methylobacterium extorquens AM1 is an aerobic facultative methylotrophic α-proteobacterium that can use reduced one-carbon compounds such as methanol, but also multi-carbon substrates like acetate (C2) or succinate (C4) as sole carbon and energy source. The organism has gained interest as future biotechnological production platform based on methanol as feedstock. Methodology/Principal Findings We present a comprehensive study of all postulated enzymes for the assimilation of methanol and their regulation in response to the carbon source. Formaldehyde, which is derived from methanol oxidation, is assimilated via the serine cycle, which starts with glyoxylate and forms acetyl-CoA. Acetyl-CoA is assimilated via the proposed ethylmalonyl-CoA pathway, which thereby regenerates glyoxylate. To further the understanding of the central carbon metabolism we identified and quantified all enzymes of the pathways involved in methanol assimilation. We observed a strict differential regulation of their activity level depending on whether C1, C2 or C4 compounds are used. The enzymes, which are specifically required for the utilization of the individual substrates, were several-fold up-regulated and those not required were down-regulated. The enzymes of the ethylmalonyl-CoA pathway showed specific activities, which were higher than the calculated minimal values that can account for the observed growth rate. Yet, some enzymes of the serine cycle, notably its first and last enzymes serine hydroxymethyl transferase and malate thiokinase, exhibit much lower values and probably are rate limiting during methylotrophic growth. We identified the natural C1 carrying coenzyme as tetrahydropteroyl-tetraglutamate rather than tetrahydrofolate. Conclusion/Significance This study provides the first complete picture of the enzymes required for methanol assimilation, the regulation of their activity levels in response to the growth substrate, and the identification of potential growth limiting steps.
Collapse
Affiliation(s)
- Hana Smejkalová
- Mikrobiologie, Fakultät für Biologie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | | | | |
Collapse
|
48
|
Alber BE. Biotechnological potential of the ethylmalonyl-CoA pathway. Appl Microbiol Biotechnol 2010; 89:17-25. [PMID: 20882276 DOI: 10.1007/s00253-010-2873-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 08/22/2010] [Accepted: 08/24/2010] [Indexed: 11/26/2022]
Abstract
The ethylmalonyl-CoA pathway is central to the carbon metabolism of many α-proteobacteria, like Rhodobacter sphaeroides and Methylobacterium extorquens as well as actinomycetes, like Streptomyces spp. Its function is to convert acetyl-CoA, a central carbon intermediate, to other precursor metabolites for cell carbon biosynthesis. In contrast to the glyoxylate cycle--another widely distributed acetyl-CoA assimilation strategy--the ethylmalonyl-CoA pathway contains many unique CoA-ester intermediates, such as (2R)- and (2S)-ethylmalonyl-CoA, (2S)-methylsuccinyl-CoA, mesaconyl-(C1)-CoA, and (2R, 3S)-methylmalyl-CoA. With this come novel catalysts that interconvert these compounds. Among these unique enzymes is a novel carboxylase that reductively carboxylates crotonyl-CoA, crotonyl-CoA carboxylase/reductase, and (3S)-malyl-CoA thioesterase. The latter represents the first example of a non-Claisen condensation enzyme of the malate synthase superfamily and defines a new class of thioesterases apart from the hotdog-fold and α/β-fold thioesterases. The biotechnological implications of the ethylmalonyl-CoA pathway are tremendous as one looks to tap into the potential of using these new intermediates and catalysts to produce value-added products.
Collapse
Affiliation(s)
- Birgit E Alber
- The Department of Microbiology, Ohio State University, 484 West 12th Ave, Room 417, Columbus, OH, USA.
| |
Collapse
|