1
|
Boiangiu RS, Brinza I, Honceriu I, Mihasan M, Hritcu L. Insights into Pharmacological Activities of Nicotine and 6-Hydroxy-L-nicotine, a Bacterial Nicotine Derivative: A Systematic Review. Biomolecules 2023; 14:23. [PMID: 38254623 PMCID: PMC10813004 DOI: 10.3390/biom14010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
The purported cognitive benefits associated with nicotine and its metabolites in the brain are a matter of debate. In this review, the impact of the pharmacologically active metabolite of a nicotine derivative produced by bacteria named 6-hydroxy-L-nicotine (6HLN) on memory, oxidative stress, and the activity of the cholinergic system in the brain was examined. A search in the PubMed, Science Direct, Web of Science, and Google Scholar databases, limiting entries to those published between 1992 and 2023, was conducted. The search focused specifically on articles about nicotine metabolites, memory, oxidative stress, and cholinergic system activity, as well as enzymes or pathways related to nicotine degradation in bacteria. The preliminary search resulted in 696 articles, and following the application of exclusion criteria, 212 articles were deemed eligible for inclusion. This review focuses on experimental studies supporting nicotine catabolism in bacteria, and the chemical and pharmacological activities of nicotine and its metabolite 6HLN.
Collapse
Affiliation(s)
| | | | | | - Marius Mihasan
- BioActive Research Group, Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (R.S.B.); (I.B.); (I.H.)
| | - Lucian Hritcu
- BioActive Research Group, Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (R.S.B.); (I.B.); (I.H.)
| |
Collapse
|
2
|
El-Sabeh A, Mlesnita AM, Munteanu IT, Honceriu I, Kallabi F, Boiangiu RS, Mihasan M. Characterisation of the Paenarthrobacter nicotinovorans ATCC 49919 genome and identification of several strains harbouring a highly syntenic nic-genes cluster. BMC Genomics 2023; 24:536. [PMID: 37697273 PMCID: PMC10494377 DOI: 10.1186/s12864-023-09644-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/01/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Paenarthrobacter nicotinovorans ATCC 49919 uses the pyridine-pathway to degrade nicotine and could provide a renewable source of precursors from nicotine-containing waste as well as a model for studying the molecular evolution of catabolic pathways and their spread by horizontal gene transfer via soil bacterial plasmids. RESULTS In the present study, the strain was sequenced using the Illumina NovaSeq 6000 and Oxford Nanopore Technology (ONT) MinION platforms. Following hybrid assembly with Unicycler, the complete genome sequence of the strain was obtained and used as reference for whole-genome-based phylogeny analyses. A total of 64 related genomes were analysed; five Arthrobacter strains showed both digital DNA-DNA hybridization and average nucleotide identity values over the species threshold when compared to P. nicotinovorans ATCC 49919. Five plasmids and two contigs belonging to Arthrobacter and Paenarthrobacter strains were shown to be virtually identical with the pAO1 plasmid of Paenarthrobacter nicotinovorans ATCC 49919. Moreover, a highly syntenic nic-genes cluster was identified on five plasmids, one contig and three chromosomes. The nic-genes cluster contains two major locally collinear blocks that appear to form a putative catabolic transposon. Although the origins of the nic-genes cluster and the putative transposon still elude us, we hypothesise here that the ATCC 49919 strain most probably evolved from Paenarthrobacter sp. YJN-D or a very closely related strain by acquiring the pAO1 megaplasmid and the nicotine degradation pathway. CONCLUSIONS The data presented here offers another snapshot into the evolution of plasmids harboured by Arthrobacter and Paenarthrobacter species and their role in the spread of metabolic traits by horizontal gene transfer among related soil bacteria.
Collapse
Affiliation(s)
- Amada El-Sabeh
- Faculty of Biology, Alexandru Ioan Cuza University of Iași, Iași, Romania
| | | | | | - Iasmina Honceriu
- Faculty of Biology, Alexandru Ioan Cuza University of Iași, Iași, Romania
| | - Fakhri Kallabi
- Faculty of Biology, Alexandru Ioan Cuza University of Iași, Iași, Romania
- Laboratory of Human Molecular Genetics, Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia
| | | | - Marius Mihasan
- Faculty of Biology, Alexandru Ioan Cuza University of Iași, Iași, Romania.
| |
Collapse
|
3
|
Zhang Z, Mei X, He Z, Xie X, Yang Y, Mei C, Xue D, Hu T, Shu M, Zhong W. Nicotine metabolism pathway in bacteria: mechanism, modification, and application. Appl Microbiol Biotechnol 2022; 106:889-904. [PMID: 35072735 DOI: 10.1007/s00253-022-11763-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 11/02/2022]
Abstract
Nicotine is a harmful pollutant mainly from the waste of tobacco factories. It is necessary to remove nicotine via high efficient strategies such as bioremediation. So far, an increasing number of nicotine degrading strains have been isolated. However, their degrading efficiency and tolerance to high content nicotine is still not high enough for application in real environment. Thus, the modification of nicotine metabolism pathway is obligated and requires comprehensive molecular insights into whole cell metabolism of nicotine degrading strains. Obviously, the development of multi-omics technology has accelerated the mechanism study on microbial degradation of nicotine and supplied more novel strategy of strains modification. So far, three pathways of nicotine degradation, pyridine pathway, pyrrolidine pathway, and the variant of pyridine and pyrrolidine pathway (VPP pathway), have been clearly identified in bacteria. Muti-omics analysis further revealed specific genome architecture, regulation mechanism, and specific genes or enzymes of three pathways, in different strains. Especially, muti-omics analysis revealed that functional modules coexisted in different genome loci and played additional roles on enhanced degradation efficiency in bacteria. Based on the above discovery, genomic editing strategy becomes more feasible to greatly improve bacterial degrading efficiency of nicotine.
Collapse
Affiliation(s)
- Zeling Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Xiaotong Mei
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Ziliang He
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Xiya Xie
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Yang Yang
- Technology Center, China Tobacco Zhejiang Industrial Co., Ltd, Hangzhou, 310009, People's Republic of China.
| | - Chengyu Mei
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Dong Xue
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Tong Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Ming Shu
- Technology Center, China Tobacco Zhejiang Industrial Co., Ltd, Hangzhou, 310009, People's Republic of China
| | - Weihong Zhong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China.
| |
Collapse
|
4
|
Jiang Y, Gong J, Chen Y, Hu B, Sun J, Zhu Y, Xia Z, Zou C. Biodegradation of Nicotine and TSNAs by Bacterium sp. Strain J54. IRANIAN JOURNAL OF BIOTECHNOLOGY 2021; 19:e2812. [PMID: 34825016 PMCID: PMC8590725 DOI: 10.30498/ijb.2021.240460.2812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Microorganisms play an important role in reducing harmful substances in flue-cured tobacco. Numerous studies have been conducted to degrade nicotine by microorganisms. OBJECTIVES The present research deals with the isolation of a potent bacterial strain able to efficiently degrade nicotine and tobacco-specific nitrosamines (TSNAs) in flue-cured tobacco. MATERIAL AND METHODS Bacterial strain J54, capable of efficiently degrading nicotine and tobacco-specific nitrosamines (TSNAs), was isolated from tobacco leaves and identified. The strain J54 can use nicotine as the sole carbon and nitrogen source and could effectively degrade nicotine while growing in a nicotine isolation medium (NIM) medium. RESULTS Compared with the control (CK), the total TSNAs content in the tobacco flue-cured eaves after being sprayed with a solution of the J54 strain was found to decrease by 26.22%. Therein, the degradation rates of 4-(N-methyl-N-nitrosamino)-1-(3-pyridyl)-1-butanone (NNK), N'-nitrosonornicotine (NNN), N'-nitrosoanatabine (NAT), and N'-nitrosoanabasine (NAB) were 24.01%, 26.27%, 28.6%, and 1.83%, respectively. CONCLUSIONS Bacterial strain J54, was isolated from tobacco leaves and identified as a bacterium, which is similar to Bacillus altitudinis based on its morphological and biochemical characteristics and by phylogenetic analysis based on 16S rRNA gene sequences. To our knowledge, this is the first report of the isolation and characterization of a Bacillus sp. strain that can efficiently degrade nicotine and TSNAs. The findings pave the way for the application of new biotechnologies for the degradation of nicotine and TSNAs by microorganisms.
Collapse
Affiliation(s)
- Yonglei Jiang
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China 650021
| | - Jiangshiqi Gong
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China 650021,
Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China
| | - Yi Chen
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China 650021
| | - Binbin Hu
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China 650021
| | - Jianfeng Sun
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China 650021
| | - Yanmei Zhu
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China 650021
| | - Zhenyuan Xia
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China 650021
| | - Congming Zou
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China 650021
| |
Collapse
|
5
|
Zhao S, Hu C, Guo L, Li K, Yu H. Isolation of a 3-hydroxypyridine degrading bacterium, Agrobacterium sp. DW-1, and its proposed degradation pathway. AMB Express 2019; 9:65. [PMID: 31102032 PMCID: PMC6525221 DOI: 10.1186/s13568-019-0782-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/23/2019] [Indexed: 01/02/2023] Open
Abstract
A 3-hydroxypyridine degrading bacterium, designated strain DW-1, was isolated from petroleum contaminated soil in Liao River China. 16S rRNA-based phylogenetic analysis indicates that strain DW-1 belongs to genus Agrobacterium. The optimal cultivation temperature and pH for strain DW-1 with 3-hydroxypyridine were 30 °C and 8.0, respectively. Under optimal conditions, strain DW-1 could completely degrade up to 1500 mg/L of 3-hydroxypyridine in 66 h. The 3-hydroxypyridine degradation pathway of strain DW-1 was suggested by HPLC and LC-MS analysis. The first reaction of 3-hydroxypyridine degradation in strain DW-1 was α-hydroxylation so that the major metabolite 2,5-dihydroxypyridine was produced, and then 2,5-dihydroxypyridine was transformed by a Fe2+-dependent dioxygenase to form N-formylmaleamic acid. N-Formylmaleamic acid will be transformed to maleic acid and fumaric acid through maleamic acid. This is the first report of the 3-hydroxypyridine degradation pathway and the utilization of 3-hydroxypyridine by a Agrobacterium sp. It may be potentially used for the bioremediation of environments polluted with 3-hydroxypyridine.
Collapse
Affiliation(s)
- Shuxue Zhao
- Shandong Provincial Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Chengyang District, Qingdao, 266109 Shandong Province People’s Republic of China
| | - Chunhui Hu
- Shandong Provincial Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Chengyang District, Qingdao, 266109 Shandong Province People’s Republic of China
- Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, 238 Songling Road, Laoshan District, Qingdao, 266100 Shandong Province People’s Republic of China
| | - Lizhong Guo
- Shandong Provincial Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Chengyang District, Qingdao, 266109 Shandong Province People’s Republic of China
| | - Kuiran Li
- Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, 238 Songling Road, Laoshan District, Qingdao, 266100 Shandong Province People’s Republic of China
| | - Hao Yu
- Shandong Provincial Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Chengyang District, Qingdao, 266109 Shandong Province People’s Republic of China
| |
Collapse
|
6
|
Wang H, Zhi XY, Qiu J, Shi L, Lu Z. Characterization of a Novel Nicotine Degradation Gene Cluster ndp in Sphingomonas melonis TY and Its Evolutionary Analysis. Front Microbiol 2017; 8:337. [PMID: 28337179 PMCID: PMC5343071 DOI: 10.3389/fmicb.2017.00337] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 02/17/2017] [Indexed: 11/13/2022] Open
Abstract
Sphingomonas melonis TY utilizes nicotine as a sole source of carbon, nitrogen, and energy through a variant of the pyridine and pyrrolidine pathways (VPP). A 31-kb novel nicotine-degrading gene cluster, ndp, in strain TY exhibited a different genetic organization with the vpp cluster in strains Ochrobactrum rhizosphaerae SJY1 and Agrobacterium tumefaciens S33. Genes in vpp were separated by a 20-kb interval sequence, while genes in ndp were localized together. Half of the homolog genes were in different locus in ndp and vpp. Moreover, there was a gene encoding putative transporter of nicotine or other critical metabolite in ndp. Among the putative nicotine-degrading related genes, the nicotine hydroxylase, 6-hydroxy-L-nicotine oxidase, 6-hydroxypseudooxynicotine oxidase, and 6-hydroxy-3-succinyl-pyridine monooxygenase responsible for catalyzing the transformation of nicotine to 2, 5-dihydropyridine in the initial four steps of the VPP were characterized. Hydroxylation at C6 of the pyridine ring and dehydrogenation at the C2–C3 bond of the pyrrolidine ring were the key common reactions in the VPP, pyrrolidine and pyridine pathways. Besides, VPP and pyrrolidine pathway shared the same latter part of metabolic pathway. After analysis of metabolic genes in the pyridine, pyrrolidine, and VPP pathways, we found that both the evolutionary features and metabolic mechanisms of the VPP were more similar to the pyrrolidine pathway. The linked ndpHFEG genes shared by the VPP and pyrrolidine pathways indicated that these two pathways might share the same origin, but variants were observed in some bacteria. And we speculated that the pyridine pathway was distributed in Gram-positive bacteria and the VPP and pyrrolidine pathways were distributed in Gram-negative bacteria by using comprehensive homologs searching and phylogenetic tree construction.
Collapse
Affiliation(s)
- Haixia Wang
- Institute of Microbiology, College of Life Sciences, Zhejiang University Hangzhou, China
| | - Xiao-Yang Zhi
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University Kunming, China
| | - Jiguo Qiu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University Nanjing, China
| | - Longxiang Shi
- Institution of System Engineering, College of Computer Science and Technology, Zhejiang University Hangzhou, China
| | - Zhenmei Lu
- Institute of Microbiology, College of Life Sciences, Zhejiang University Hangzhou, China
| |
Collapse
|
7
|
Liu J, Ma G, Chen T, Hou Y, Yang S, Zhang KQ, Yang J. Nicotine-degrading microorganisms and their potential applications. Appl Microbiol Biotechnol 2015; 99:3775-85. [PMID: 25805341 DOI: 10.1007/s00253-015-6525-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/05/2015] [Accepted: 03/07/2015] [Indexed: 11/29/2022]
Abstract
Nicotine-degrading microorganisms (NDMs) are a special microbial group which can use nicotine as the sole carbon and nitrogen source for growth. Since the 1950s, the bioconversion of nicotine by microbes has received increasing attention, and several NDMs have been identified, such as Arthrobacter nicotinovorans, Microsporum gypseum, Pellicularia filamentosa JTS-208, and Pseudomonas sp. 41. In recent years, increasing numbers of NDMs have been isolated and identified from tobacco plantation soil, leaf, and tobacco waste. Meanwhile, the metabolic pathway and degradation mechanism of nicotine have been elucidated in several NDMs, such as A. nicotinovorans, Agrobacterium tumefaciens S33, Aspergillus oryzae, and Pseudomonas putida S16. Moreover, several NDMs have been used in improving the quality of cigarettes, treating tobacco waste, and producing valuable intermediates of nicotine. Here, we summarize the diversity, phylogenetic analysis, and potential applications of NDMs.
Collapse
Affiliation(s)
- Jianli Liu
- Tobacco Company of Chongqing, Chongqing, 400023, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
8
|
Comparative genome analysis reveals the molecular basis of nicotine degradation and survival capacities of Arthrobacter. Sci Rep 2015; 5:8642. [PMID: 25721465 PMCID: PMC4342571 DOI: 10.1038/srep08642] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/23/2015] [Indexed: 01/06/2023] Open
Abstract
Arthrobacter is one of the most prevalent genera of nicotine-degrading bacteria; however, studies of nicotine degradation in Arthrobacter species remain at the plasmid level (plasmid pAO1). Here, we report the bioinformatic analysis of a nicotine-degrading Arthrobacter aurescens M2012083, and show that the moeB and mogA genes that are essential for nicotine degradation in Arthrobacter are absent from plasmid pAO1. Homologues of all the nicotine degradation-related genes of plasmid pAO1 were found to be located on a 68,622-bp DNA segment (nic segment-1) in the M2012083 genome, showing 98.1% nucleotide acid sequence identity to the 69,252-bp nic segment of plasmid pAO1. However, the rest sequence of plasmid pAO1 other than the nic segment shows no significant similarity to the genome sequence of strain M2012083. Taken together, our data suggest that the nicotine degradation-related genes of strain M2012083 are located on the chromosome or a plasmid other than pAO1. Based on the genomic sequence comparison of strain M2012083 and six other Arthrobacter strains, we have identified 17 σ(70) transcription factors reported to be involved in stress responses and 109 genes involved in environmental adaptability of strain M2012083. These results reveal the molecular basis of nicotine degradation and survival capacities of Arthrobacter species.
Collapse
|
9
|
Genome Sequence of a Newly Isolated Nicotine-Degrading Bacterium, Ochrobactrum sp. SJY1. GENOME ANNOUNCEMENTS 2014; 2:2/4/e00720-14. [PMID: 25059869 PMCID: PMC4110227 DOI: 10.1128/genomea.00720-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ochrobactrum sp. SJY1 uses nicotine as the sources of carbon, nitrogen, and energy. The genome of SJY1 was sequenced in order to provide insights into its mechanism of nicotine degradation. Physiological characteristics and genome analysis indicate that strain SJY1 might have a different nicotine degradation pathway from the pyridine or pyrrolidine pathway.
Collapse
|
10
|
Gurusamy R, Natarajan S. Current status on biochemistry and molecular biology of microbial degradation of nicotine. ScientificWorldJournal 2013; 2013:125385. [PMID: 24470788 PMCID: PMC3891541 DOI: 10.1155/2013/125385] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Accepted: 10/14/2013] [Indexed: 11/30/2022] Open
Abstract
Bioremediation is one of the most promising methods to clean up polluted environments using highly efficient potent microbes. Microbes with specific enzymes and biochemical pathways are capable of degrading the tobacco alkaloids including highly toxic heterocyclic compound, nicotine. After the metabolic conversion, these nicotinophilic microbes use nicotine as the sole carbon, nitrogen, and energy source for their growth. Various nicotine degradation pathways such as demethylation pathway in fungi, pyridine pathway in Gram-positive bacteria, pyrrolidine pathway, and variant of pyridine and pyrrolidine pathways in Gram-negative bacteria have been reported. In this review, we discussed the nicotine-degrading pathways of microbes and their enzymes and biotechnological applications of nicotine intermediate metabolites.
Collapse
Affiliation(s)
- Raman Gurusamy
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Sakthivel Natarajan
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| |
Collapse
|