1
|
Müller JU, Schwabe M, Swiatek LS, Heiden SE, Schlüter R, Sittner M, Bohnert JA, Becker K, Idelevich EA, Guenther S, Eger E, Schaufler K. Temperatures above 37°C increase virulence of a convergent Klebsiella pneumoniae sequence type 307 strain. Front Cell Infect Microbiol 2024; 14:1411286. [PMID: 38947124 PMCID: PMC11211929 DOI: 10.3389/fcimb.2024.1411286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/23/2024] [Indexed: 07/02/2024] Open
Abstract
Background Convergence of Klebsiella pneumoniae (KP) pathotypes has been increasingly reported in recent years. These pathogens combine features of both multidrug-resistant and hypervirulent KP. However, clinically used indicators for hypervirulent KP identification, such as hypermucoviscosity, appear to be differentially expressed in convergent KP, potential outbreak clones are difficult to identify. We aimed to fill such knowledge gaps by investigating the temperature dependence of hypermucoviscosity and virulence in a convergent KP strain isolated during a clonal outbreak and belonging to the high-risk sequence type (ST)307. Methods Hypermucoviscosity, biofilm formation, and mortality rates in Galleria mellonella larvae were examined at different temperatures (room temperature, 28°C, 37°C, 40°C and 42°C) and with various phenotypic experiments including electron microscopy. The underlying mechanisms of the phenotypic changes were explored via qPCR analysis to evaluate plasmid copy numbers, and transcriptomics. Results Our results show a temperature-dependent switch above 37°C towards a hypermucoviscous phenotype, consistent with increased biofilm formation and in vivo mortality, possibly reflecting a bacterial response to fever-like conditions. Furthermore, we observed an increase in plasmid copy number for a hybrid plasmid harboring carbapenemase and rmpA genes. However, transcriptomic analysis revealed no changes in rmpA expression at higher temperatures, suggesting alternative regulatory pathways. Conclusion This study not only elucidates the impact of elevated temperatures on hypermucoviscosity and virulence in convergent KP but also sheds light on previously unrecognized aspects of its adaptive behavior, underscoring its resilience to changing environments.
Collapse
Affiliation(s)
- Justus U. Müller
- Department of Epidemiology and Ecology of Antimicrobial Resistance, Helmholtz Institute for One Health, Helmholtz Centre for Infection Research (HZI), Greifswald, Germany
| | - Michael Schwabe
- Department of Epidemiology and Ecology of Antimicrobial Resistance, Helmholtz Institute for One Health, Helmholtz Centre for Infection Research (HZI), Greifswald, Germany
| | - Lena-Sophie Swiatek
- Department of Epidemiology and Ecology of Antimicrobial Resistance, Helmholtz Institute for One Health, Helmholtz Centre for Infection Research (HZI), Greifswald, Germany
| | - Stefan E. Heiden
- Department of Epidemiology and Ecology of Antimicrobial Resistance, Helmholtz Institute for One Health, Helmholtz Centre for Infection Research (HZI), Greifswald, Germany
| | - Rabea Schlüter
- Imaging Center of the Department of Biology, University of Greifswald, Greifswald, Germany
| | - Max Sittner
- Department of Epidemiology and Ecology of Antimicrobial Resistance, Helmholtz Institute for One Health, Helmholtz Centre for Infection Research (HZI), Greifswald, Germany
| | - Jürgen A. Bohnert
- Friedrich Loeffler-Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Karsten Becker
- Friedrich Loeffler-Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Evgeny A. Idelevich
- Friedrich Loeffler-Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Sebastian Guenther
- Pharmaceutical Biology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Elias Eger
- Department of Epidemiology and Ecology of Antimicrobial Resistance, Helmholtz Institute for One Health, Helmholtz Centre for Infection Research (HZI), Greifswald, Germany
| | - Katharina Schaufler
- Department of Epidemiology and Ecology of Antimicrobial Resistance, Helmholtz Institute for One Health, Helmholtz Centre for Infection Research (HZI), Greifswald, Germany
- University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
2
|
Dahlberg T, Baker JL, Bullitt E, Andersson M. Unveiling molecular interactions that stabilize bacterial adhesion pili. Biophys J 2022; 121:2096-2106. [PMID: 35491503 PMCID: PMC9247471 DOI: 10.1016/j.bpj.2022.04.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/09/2022] [Accepted: 04/27/2022] [Indexed: 11/29/2022] Open
Abstract
Adhesion pili assembled by the chaperone-usher pathway are superelastic helical filaments on the surface of bacteria, optimized for attachment to target cells. Here, we investigate the biophysical function and structural interactions that stabilize P pili from uropathogenic bacteria. Using optical tweezers, we measure P pilus subunit-subunit interaction dynamics and show that pilus compliance is contour-length dependent. Atomic details of subunit-subunit interactions of pili under tension are shown using steered molecular dynamics (sMD) simulations. sMD results also indicate that the N-terminal "staple" region of P pili, which provides interactions with pilins that are four and five subunits away, significantly stabilizes the helical filament structure. These data are consistent with previous structural data, and suggest that more layer-to-layer interactions could compensate for the lack of a staple in type 1 pili. This study informs our understanding of essential structural and dynamic features of adhesion pili, supporting the hypothesis that the function of pili is critically dependent on their structure and biophysical properties.
Collapse
Affiliation(s)
| | - Joseph L Baker
- Department of Chemistry, The College of New Jersey, Ewing, New Jersey
| | - Esther Bullitt
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, Massachusetts.
| | - Magnus Andersson
- Department of Physics, Umeå University, Umeå, Sweden; Umeå Centre for Microbial Research (UCMR), Umeå, Sweden.
| |
Collapse
|
3
|
Muhsin EA, Sajid Al-Jubori S, Abdulhemid Said L. Prevalence of Efflux Pump and Porin-Related Antimicrobial Resistance in Clinical Klebsiella pneumoniae in Baghdad, Iraq. ARCHIVES OF RAZI INSTITUTE 2022; 77:785-798. [PMID: 36284955 PMCID: PMC9548288 DOI: 10.22092/ari.2022.356976.1952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/16/2022] [Indexed: 05/24/2023]
Abstract
Klebsiella pneumoniae is an opportunistic bacterium that causes many infections, including septicemia, pneumonia, urinary tract infection, and liver abscesses. There are many mechanisms for antibiotic resistance and K. pneumonia is considered a multidrug-resistant pathogen. This study aimed to find the correlation between the susceptibility of K. pneumonia to certain antibiotics with the porin-related resistance and pumps mechanisms. In total, two genes that are responsible for porin formation were considered in the current study OmpK-35gene and OmpK-36 gene, in addition to other four genes (CfiaS, CfiaL, MFS, and MdtK genes) related to an efflux pump mechanism of antibiotic resistance. The bacterial resistance was investigated towards five cephalosporins (Cefazolin, Cefoxitin, Ceftazidime, Ceftriaxone, and Cefepime) and two carbapenems (imipenem and ertapenem). Clinical samples, including blood, swabs, and urine, consisting of 20 specimens for each group, were collected from patients who attended three hospitals in Baghdad. The VITEK-2 system and genetic tests (polymerase chain reaction and sequencing) of bacterial isolates were applied to confirm the diagnosis of K. pneumoniae and detect the antibiotic sensitivity profile. The results showed that 51 (85%) and 15 (25%) of the total 60 isolates had positive results for OmpK-35 and Omp-K36 genes, respectively. The MFS and MdtK genes were observed (70-88.3%) in cephalosporin-resistant isolates of K. pneumoniae. There were no significant variations of bacterial resistance genes of antibiotics within the specimen groups. It was concluded that the bacterial resistance of the selected antibiotics was elevated markedly with the loss of the OmpK-36 gene with a high expression of MFS and MdtK genes and a slight minimal occurrence in the new generation of carbapenems. The best antimicrobial agent was ertapenem with a percentage of 0% of resistance in all bacterial isolates.
Collapse
Affiliation(s)
| | - S Sajid Al-Jubori
- Biology Department, College of Science, Mustansiriyah University, Baghdad, Iraq
| | - L Abdulhemid Said
- Biology Department, College of Science, Mustansiriyah University, Baghdad, Iraq
| |
Collapse
|
4
|
Parsa SM. Reliability of thermal desalination (solar stills) for water/wastewater treatment in light of COVID-19 (novel coronavirus "SARS-CoV-2") pandemic: What should consider? DESALINATION 2021; 512:115106. [PMID: 33967299 PMCID: PMC8096177 DOI: 10.1016/j.desal.2021.115106] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 05/04/2023]
Abstract
The COVID-19 pandemic disturbed the world from the beginning of 2020. The high excessive number of patients and the presence of the SARS-CoV-2 in human excreta and urine even after the infected person's respiratory tests were negative, results in a heavy load of viral in various water bodies and mostly untreated wastewaters. In the present study, the reliability of using small-scale solar thermal desalination systems (solar stills) during a situation like the COVID-19 pandemic is discussed. Pollution of water bodies through the SARS-CoV-2 via numerous routes increases the risk of contaminating the feed water and subsequently the whole structure of solar stills. Since the transmission of pathogens (particle size: 0.5-3 μm) via droplets of water in solar still is reported before, transmitting of SARS-CoV-2 via droplets of water which multiple times smaller (particle size: 60-140 nm) than those pathogens is a concern. The most important issue which must be highlighted is that solar stills worked at low-temperature while the viability and survival of the SARS-CoV-2 in various water matrices in the temperature range (4-37 °C) for several days is reported. In this regard, using solar stills during the COVID-19 pandemic need further consideration by all researchers and people around the world.
Collapse
Affiliation(s)
- Seyed Masoud Parsa
- Department of Energy Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
5
|
Francius G, Petit F, Clément E, Chekli Y, Ghigo JM, Beloin C, Duval JFL. On the strong connection between nanoscale adhesion of Yad fimbriae and macroscale attachment of Yad-decorated bacteria to glycosylated, hydrophobic and hydrophilic surfaces. NANOSCALE 2021; 13:1257-1272. [PMID: 33404575 DOI: 10.1039/d0nr06840c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Yad fimbriae are currently viewed as versatile bacterial adhesins able to significantly mediate host or plant-pathogen recognition and contribute to the persistence of Escherichia coli in both the environment and within hosts. To date, however, the underlying adhesion process of Yad fimbriae on surfaces defined by controlled coating chemistries has not been evaluated on the relevant molecular scale. In this work, the interaction forces operational between Yad fimbriae expressed by genetically modified E. coli and self-assembled monolayers (SAM) differing in terms of charge, hydrophobicity or the nature of decorating sugar units are quantified by Single Molecule Force Spectroscopy (SMFS) on the nanoscale. It is found that the adhesion of Yad fimbriae onto probes functionalized with xylose is as strong as that measured with probes decorated with anti-Yad antibodies (ca. 80 to 300 pN). In contrast, the interactions of Yad with galactose, lactose, mannose, -OH, -NH2, -COOH and -CH3 terminated SAMs are clearly non-specific. Interpretation of SMFS measurements on the basis of worm-like-chain modeling for polypeptide nanomechanics further leads to the estimates of the maximal extension of Yad fimbriae upon stretching, of their persistence length and of their polydispersity. Finally, we show for the first time a strong correlation between the adhesion properties of Yad-decorated bacteria determined from conventional macroscopic counting methods and the molecular adhesion capacity of Yad fimbriae. This demonstration advocates the effort that should be made to understand on the nanoscale level the interactions between fimbriae and their cognate ligands. The results could further help the design of potential anti-adhesive molecules or surfaces to better fight against the virulence of bacterial pathogens.
Collapse
Affiliation(s)
- Grégory Francius
- Université de Lorraine, LCPME, UMR 7564, Villers-lès-Nancy, F-54600, France.
| | | | | | | | | | | | | |
Collapse
|
6
|
Jin X, Marshall JS. Mechanics of biofilms formed of bacteria with fimbriae appendages. PLoS One 2020; 15:e0243280. [PMID: 33290393 PMCID: PMC7723297 DOI: 10.1371/journal.pone.0243280] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/18/2020] [Indexed: 11/23/2022] Open
Abstract
Gram-negative bacteria, as well as some Gram-positive bacteria, possess hair-like appendages known as fimbriae, which play an important role in adhesion of the bacteria to surfaces or to other bacteria. Unlike the sex pili or flagellum, the fimbriae are quite numerous, with of order 1000 fimbriae appendages per bacterial cell. In this paper, a recently developed hybrid model for bacterial biofilms is used to examine the role of fimbriae tension force on the mechanics of bacterial biofilms. Each bacterial cell is represented in this model by a spherocylindrical particle, which interact with each other through collision, adhesion, lubrication force, and fimbrial force. The bacterial cells absorb water and nutrients and produce extracellular polymeric substance (EPS). The flow of water and EPS, and nutrient diffusion within these substances, is computed using a continuum model that accounts for important effects such as osmotic pressure gradient, drag force on the bacterial cells, and viscous shear. The fimbrial force is modeled using an outer spherocylinder capsule around each cell, which can transmit tensile forces to neighboring cells with which the fimbriae capsule collides. We find that the biofilm structure during the growth process is dominated by a balance between outward drag force on the cells due to the EPS flow away from the bacterial colony and the inward tensile fimbrial force acting on chains of cells connected by adhesive fimbriae appendages. The fimbrial force also introduces a large rotational motion of the cells and disrupts cell alignment caused by viscous torque imposed by the EPS flow. The current paper characterizes the competing effects of EPS drag and fimbrial force using a series of computations with different values of the ratio of EPS to bacterial cell production rate and different numbers of fimbriae per cell.
Collapse
Affiliation(s)
- Xing Jin
- Department of Mechanical Engineering, University of Vermont, Burlington, VT, United States of America
| | - Jeffrey S. Marshall
- Department of Mechanical Engineering, University of Vermont, Burlington, VT, United States of America
- * E-mail:
| |
Collapse
|
7
|
Idso MN, Akhade AS, Arrieta-Ortiz ML, Lai BT, Srinivas V, Hopkins JP, Gomes AO, Subramanian N, Baliga N, Heath JR. Antibody-recruiting protein-catalyzed capture agents to combat antibiotic-resistant bacteria. Chem Sci 2020; 11:3054-3067. [PMID: 34122810 PMCID: PMC8157486 DOI: 10.1039/c9sc04842a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Antibiotic resistant infections are projected to cause over 10 million deaths by 2050, yet the development of new antibiotics has slowed. This points to an urgent need for methodologies for the rapid development of antibiotics against emerging drug resistant pathogens. We report on a generalizable combined computational and synthetic approach, called antibody-recruiting protein-catalyzed capture agents (AR-PCCs), to address this challenge. We applied the combinatorial protein catalyzed capture agent (PCC) technology to identify macrocyclic peptide ligands against highly conserved surface protein epitopes of carbapenem-resistant Klebsiella pneumoniae, an opportunistic Gram-negative pathogen with drug resistant strains. Multi-omic data combined with bioinformatic analyses identified epitopes of the highly expressed MrkA surface protein of K. pneumoniae for targeting in PCC screens. The top-performing ligand exhibited high-affinity (EC50 ∼50 nM) to full-length MrkA, and selectively bound to MrkA-expressing K. pneumoniae, but not to other pathogenic bacterial species. AR-PCCs that bear a hapten moiety promoted antibody recruitment to K. pneumoniae, leading to enhanced phagocytosis and phagocytic killing by macrophages. The rapid development of this highly targeted antibiotic implies that the integrated computational and synthetic toolkit described here can be used for the accelerated production of antibiotics against drug resistant bacteria.
Collapse
Affiliation(s)
- Matthew N Idso
- Institute for Systems Biology 401 Terry Ave North Seattle 98109 USA
| | | | | | - Bert T Lai
- Indi Molecular, Inc. 6162 Bristol Parkway Culver City CA 90230 USA
| | - Vivek Srinivas
- Institute for Systems Biology 401 Terry Ave North Seattle 98109 USA
| | - James P Hopkins
- Institute for Systems Biology 401 Terry Ave North Seattle 98109 USA
| | | | | | - Nitin Baliga
- Institute for Systems Biology 401 Terry Ave North Seattle 98109 USA
| | - James R Heath
- Institute for Systems Biology 401 Terry Ave North Seattle 98109 USA
| |
Collapse
|
8
|
Abstract
Escherichia coli bacterial cells produce multiple types of adhesion pili that mediate cell-cell and cell-host attachments. These pili (also called 'fimbriae') are large biopolymers that are comprised of subunits assembled via a sophisticated micro-machinery into helix-like structures that are anchored in the bacterial outer membrane. They are commonly essential for initiation of disease and thus provide a potential target for antibacterial prevention and treatment. To develop new therapeutics for disease prevention and treatment we need to understand the molecular mechanisms and the direct role of adhesion pili during pathogenesis. These helix-like pilus structures possess fascinating and unique biomechanical properties that have been thoroughly investigated using high-resolution imaging techniques, force spectroscopy and fluid flow chambers. In this chapter, we first discuss the structure of pili and the micro-machinery responsible for the assembly process. Thereafter, we present methods for measurement of the biomechanics of adhesion pili, including optical tweezers. Data demonstrate unique biomechanical properties of pili that allow bacteria to sustain binding during in vivo fluid shear forces. We thereafter summarize the current biomechanical findings related to adhesion pili and show that pili biomechanical properties are niche-specific. That is, the data suggest that there is an organ-specific adaptation of pili that facilitates infection of the bacteria's target tissue. Thus, pilus biophysical properties are an important part of Escherichia coli pathogenesis, allowing bacteria to overcome hydrodynamic challenges in diverse environments.
Collapse
Affiliation(s)
| | - Esther Bullitt
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA, USA.
| | | |
Collapse
|
9
|
Hansmeier N, Miskiewicz K, Elpers L, Liss V, Hensel M, Sterzenbach T. Functional expression of the entire adhesiome of Salmonella enterica serotype Typhimurium. Sci Rep 2017; 7:10326. [PMID: 28871183 PMCID: PMC5583245 DOI: 10.1038/s41598-017-10598-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 08/10/2017] [Indexed: 12/21/2022] Open
Abstract
Adhesins are crucial virulence factors of pathogenic bacteria involved in colonization, transmission and pathogenesis. Many bacterial genomes contain the information for a surprisingly large number of diverse adhesive structures. One prominent example is the invasive and facultative intracellular pathogen Salmonella enterica with an adhesiome of up to 20 adhesins. Such large repertoire of adhesins contributes to colonization of a broad range of host species and may allow adaptation to various environments within the host, as well as in non-host environments. For S. enterica, only few members of the adhesiome are functionally expressed under laboratory conditions, and accordingly the structural and functional understanding of the majority of adhesins is sparse. We have devised a simple and versatile approach to functionally express all adhesins of S. enterica serotype Typhimurium, either within Salmonella or within heterologous hosts such as Escherichia coli. We demonstrate the surface expression of various so far cryptic adhesins and show ultrastructural features using atomic force microscopy and transmission electron microscopy. In summary, we report for the first time the expression of the entire adhesiome of S. enterica serotype Typhimurium.
Collapse
Affiliation(s)
- Nicole Hansmeier
- Abteilung Mikrobiologie, Fachbereich Biologie/Chemie, Universität Osnabrück, Barbarastr. 11, 49076, Osnabrück, Germany
| | - Katarzyna Miskiewicz
- Abteilung Mikrobiologie, Fachbereich Biologie/Chemie, Universität Osnabrück, Barbarastr. 11, 49076, Osnabrück, Germany
| | - Laura Elpers
- Abteilung Mikrobiologie, Fachbereich Biologie/Chemie, Universität Osnabrück, Barbarastr. 11, 49076, Osnabrück, Germany
| | - Viktoria Liss
- Abteilung Mikrobiologie, Fachbereich Biologie/Chemie, Universität Osnabrück, Barbarastr. 11, 49076, Osnabrück, Germany
| | - Michael Hensel
- Abteilung Mikrobiologie, Fachbereich Biologie/Chemie, Universität Osnabrück, Barbarastr. 11, 49076, Osnabrück, Germany.
| | - Torsten Sterzenbach
- Abteilung Mikrobiologie, Fachbereich Biologie/Chemie, Universität Osnabrück, Barbarastr. 11, 49076, Osnabrück, Germany.
| |
Collapse
|
10
|
Theory for nonlinear dynamic force spectroscopy. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 46:225-233. [PMID: 27461369 PMCID: PMC5346443 DOI: 10.1007/s00249-016-1158-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/01/2016] [Accepted: 07/11/2016] [Indexed: 11/25/2022]
Abstract
Dynamic force spectroscopy (DFS) is an experimental technique that is commonly used to assess information on the strength, energy landscape, and lifetime of noncovalent bio-molecular interactions. DFS traditionally requires an applied force that increases linearly with time so that the bio-complex under investigation is exposed to a constant loading rate. However, tethers or polymers can modulate the applied force in a nonlinear manner. For example, bacterial adhesion pili and polymers with worm-like chain properties are structures that show nonlinear force responses. In these situations, the theory for traditional DFS cannot be readily applied. In this work, we expand the theory for DFS to also include nonlinear external forces while still maintaining compatibility with the linear DFS theory. To validate the theory, we modeled a bio-complex expressed on a stiff, an elastic, and a worm-like chain polymer, using Monte Carlo methods, and assessed the corresponding rupture force spectra. It was found that the nonlinear DFS (NLDFS) theory correctly predicted the numerical results. We also present a protocol suggesting an experimental approach and analysis method of the data to estimate the bond length and the thermal off-rate.
Collapse
|
11
|
Mortezaei N, Singh B, Zakrisson J, Bullitt E, Andersson M. Biomechanical and structural features of CS2 fimbriae of enterotoxigenic Escherichia coli. Biophys J 2016; 109:49-56. [PMID: 26153701 DOI: 10.1016/j.bpj.2015.05.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/13/2015] [Accepted: 05/18/2015] [Indexed: 12/18/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) are a major cause of diarrhea worldwide, and infection of children in under-developed countries often leads to high mortality rates. Isolated ETEC expresses a plethora of colonization factors (fimbriae/pili), of which CFA/I and CFA/II, which are assembled via the alternate chaperone pathway (ACP), are among the most common. Fimbriae are filamentous structures whose shafts are primarily composed of helically arranged single pilin-protein subunits, with a unique biomechanical ability to unwind and rewind. A sustained ETEC infection, under adverse conditions of dynamic shear forces, is primarily attributed to this biomechanical feature of ETEC fimbriae. Recent understanding about the role of fimbriae as virulence factors points to an evolutionary adaptation of their structural and biomechanical features. In this work, we investigated the biophysical properties of CS2 fimbriae from the CFA/II group. Homology modeling of its major structural subunit, CotA, reveals structural clues related to the niche in which they are expressed. Using optical-tweezers force spectroscopy, we found that CS2 fimbriae unwind at a constant force of 10 pN and have a corner velocity (i.e., the velocity at which the force required for unwinding rises exponentially with increased speed) of 1300 nm/s. The biophysical properties of CS2 fimbriae assessed in this work classify them into a low-force unwinding group of fimbriae together with the CFA/I and CS20 fimbriae expressed by ETEC strains. The three fimbriae are expressed by ETEC, colonize in similar gut environments, and exhibit similar biophysical features, but differ in their biogenesis. Our observation suggests that the environment has a strong impact on the biophysical characteristics of fimbriae expressed by ETEC.
Collapse
Affiliation(s)
| | - Bhupender Singh
- Department of Physics, Umeå University, Umeå, Sweden; Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | | | - Esther Bullitt
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts
| | - Magnus Andersson
- Department of Physics, Umeå University, Umeå, Sweden; Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.
| |
Collapse
|
12
|
Mortezaei N, Epler CR, Shao PP, Shirdel M, Singh B, McVeigh A, Uhlin BE, Savarino SJ, Andersson M, Bullitt E. Structure and function of enterotoxigenic Escherichia coli fimbriae from differing assembly pathways. Mol Microbiol 2014; 95:116-26. [PMID: 25355550 DOI: 10.1111/mmi.12847] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2014] [Indexed: 12/19/2022]
Abstract
Pathogenic enterotoxigenic Escherichia coli (ETEC) are the major bacterial cause of diarrhea in young children in developing countries and in travelers, causing significant mortality in children. Adhesive fimbriae are a prime virulence factor for ETEC, initiating colonization of the small intestinal epithelium. Similar to other Gram-negative bacteria, ETEC express one or more diverse fimbriae, some assembled by the chaperone-usher pathway and others by the alternate chaperone pathway. Here, we elucidate structural and biophysical aspects and adaptations of each fimbrial type to its respective host niche. CS20 fimbriae are compared with colonization factor antigen I (CFA/I) fimbriae, which are two ETEC fimbriae assembled via different pathways, and with P-fimbriae from uropathogenic E. coli. Many fimbriae unwind from their native helical filament to an extended linear conformation under force, thereby sustaining adhesion by reducing load at the point of contact between the bacterium and the target cell. CFA/I fimbriae require the least force to unwind, followed by CS20 fimbriae and then P-fimbriae, which require the highest unwinding force. We conclude from our electron microscopy reconstructions, modeling and force spectroscopy data that the target niche plays a central role in the biophysical properties of fimbriae that are critical for bacterial pathophysiology.
Collapse
|
13
|
Zakrisson J, Wiklund K, Axner O, Andersson M. The shaft of the type 1 fimbriae regulates an external force to match the FimH catch bond. Biophys J 2013; 104:2137-48. [PMID: 23708354 DOI: 10.1016/j.bpj.2013.03.059] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 03/05/2013] [Accepted: 03/29/2013] [Indexed: 12/11/2022] Open
Abstract
Type 1 fimbriae mediate adhesion of uropathogenic Escherichia coli to host cells. It has been hypothesized that due to their ability to uncoil under exposure to force, fimbriae can reduce fluid shear stress on the adhesin-receptor interaction by which the bacterium adheres to the surface. In this work, we develop a model that describes how the force on the adhesin-receptor interaction of a type 1 fimbria varies as a bacterium is affected by a time-dependent fluid flow mimicking in vivo conditions. The model combines in vivo hydrodynamic conditions with previously assessed biomechanical properties of the fimbriae. Numerical methods are used to solve for the motion and adhesion force under the presence of time-dependent fluid profiles. It is found that a bacterium tethered with a type 1 pilus will experience significantly reduced shear stress for moderate to high flow velocities and that the maximum stress the adhesin will experience is limited to ∼120 pN, which is sufficient to activate the conformational change of the FimH adhesin into its stronger state but also lower than the force required for breaking it under rapid loading. Our model thus supports the assumption that the type 1 fimbria shaft and the FimH adhesin-receptor interaction are optimized to each other, and that they give piliated bacteria significant advantages in rapidly changing fluidic environments.
Collapse
|
14
|
Murphy CN, Clegg S. Klebsiella pneumoniae and type 3 fimbriae: nosocomial infection, regulation and biofilm formation. Future Microbiol 2013; 7:991-1002. [PMID: 22913357 DOI: 10.2217/fmb.12.74] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The Gram-negative opportunistic pathogen Klebsiella pneumoniae is responsible for causing a spectrum of nosocomial and community-acquired infections. Globally, K. pneumoniae is a frequently encountered hospital-acquired opportunistic pathogen that typically infects patients with indwelling medical devices. Biofilm formation on these devices is important in the pathogenesis of these bacteria, and in K. pneumoniae, type 3 fimbriae have been identified as appendages mediating the formation of biofilms on biotic and abiotic surfaces. The factors influencing the regulation of type 3 fimbrial gene expression are largely unknown but recent investigations have indicated that gene expression is regulated, at least in part, by the intracellular levels of cyclic di-GMP. In this review, we have highlighted the recent studies that have worked to elucidate the mechanism by which type 3 fimbrial expression is controlled and the studies that have established the importance of type 3 fimbriae for biofilm formation and nosocomial infection by K. pneumoniae.
Collapse
Affiliation(s)
- Caitlin N Murphy
- Department of Microbiology, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | | |
Collapse
|
15
|
Chan CH, Chen FJ, Huang YJ, Chen SY, Liu KL, Wang ZC, Peng HL, Yew TR, Liu CH, Liou GG, Hsu KY, Chang HY, Hsu L. Identification of protein domains on major pilin MrkA that affects the mechanical properties of Klebsiella pneumoniae type 3 fimbriae. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:7428-7435. [PMID: 22524463 DOI: 10.1021/la300224w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The Klebsiella pneumoniae type 3 fimbriae are mainly composed of MrkA pilins that assemble into a helixlike filament. This study determined the biomechanical properties of the fimbriae and analyzed 11 site-directed MrkA mutants to identify domains that are critical for the properties. Escherichia coli strains expressing type 3 fimbriae with an Ala substitution at either F34, V45, C87, G189, T196, or Y197 resulted in a significant reduction in biofilm formation. The E. coli strain expressing MrkAG189A remained capable of producing a normal number of fimbriae. Although F34A, V45A, T196A, and Y197A substitutions expressed on E. coli strains produced sparse quantities of fimbriae, no fimbriae were observed on the cells expressing MrkAC87A. Further investigations of the mechanical properties of the MrkAG189A fimbriae with optical tweezers revealed that, unlike the wild-type fimbriae, the uncoiling force for MrkAG189A fimbriae was not constant. The MrkAG189A fimbriae also exhibited a lower enthalpy in the differential scanning calorimetry analysis. Together, these findings indicate that the mutant fimbriae are less stable than the wild-type. This study has demonstrated that the C-terminal β strands of MrkA are required for the assembly and structural stability of fimbriae.
Collapse
Affiliation(s)
- Chia-Han Chan
- Institute and Department of Electrophysics, National Chiao Tung University, 1001 University Road, Hsinchu 300, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Zakrisson J, Wiklund K, Axner O, Andersson M. Helix-like biopolymers can act as dampers of force for bacteria in flows. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2012; 41:551-60. [PMID: 22562139 DOI: 10.1007/s00249-012-0814-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 04/04/2012] [Accepted: 04/15/2012] [Indexed: 12/15/2022]
Abstract
Biopolymers are vital structures for many living organisms; for a variety of bacteria, adhesion polymers play a crucial role for the initiation of colonization. Some bacteria express, on their surface, attachment organelles (pili) that comprise subunits formed into stiff helix-like structures that possess unique biomechanical properties. These helix-like structures possess a high degree of flexibility that gives the biopolymers a unique extendibility. This has been considered beneficial for piliated bacteria adhering to host surfaces in the presence of a fluid flow. We show in this work that helix-like pili have the ability to act as efficient dampers of force that can, for a limited time, lower the load on the force-mediating adhesin-receptor bond on the tip of an individual pilus. The model presented is applied to bacteria adhering with a single pilus of either of the two most common types expressed by uropathogenic Escherichia coli, P or type 1 pili, subjected to realistic flows. The results indicate that for moderate flows (~25 mm/s) the force experienced by the adhesin-receptor interaction at the tip of the pilus can be reduced by a factor of ~6 and ~4, respectively. The uncoiling ability provides a bacterium with a "go with the flow" possibility that acts as a damping. It is surmised that this can be an important factor for the initial part of the adhesion process, in particular in turbulent flows, and thereby be of use for bacteria in their striving to survive a natural defense such as fluid rinsing actions.
Collapse
|
17
|
Chen FJ, Wong JS, Hsu KY, Hsu L. Thermally activated state transition technique for femto-Newton-level force measurement. OPTICS LETTERS 2012; 37:1469-1471. [PMID: 22555707 DOI: 10.1364/ol.37.001469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We develop and test a thermally activated state transition technique for ultraweak force measurement. As a force sensor, the technique was demonstrated on a classical Brownian bead immersed in water and restrained by a bistable optical trap. A femto-Newton-level flow force imposed on this sensor was measured by monitoring changes in the transition rates of the bead hopping between two energy states. The treatment of thermal disturbances as a requirement instead of a limiting factor is the major feature of the technique, and provides a new strategy by which to measure other ultraweak forces beyond the thermal noise limit.
Collapse
Affiliation(s)
- Feng-Jung Chen
- Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu 300, Taiwan
| | | | | | | |
Collapse
|
18
|
Klinth JE, Pinkner JS, Hultgren SJ, Almqvist F, Uhlin BE, Axner O. Impairment of the biomechanical compliance of P pili: a novel means of inhibiting uropathogenic bacterial infections? EUROPEAN BIOPHYSICS JOURNAL: EBJ 2012; 41:285-95. [PMID: 22237603 PMCID: PMC3281203 DOI: 10.1007/s00249-011-0784-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 11/25/2011] [Accepted: 12/06/2011] [Indexed: 12/28/2022]
Abstract
Gram-negative bacteria often initiate their colonization by use of extended attachment organelles, so called pili. When exposed to force, the rod of helix-like pili has been found to be highly extendable, mainly attributed to uncoiling and recoiling of its quaternary structure. This provides the bacteria with the ability to redistribute an external force among a multitude of pili, which enables them to withstand strong rinsing flows, which, in turn, facilitates adherence and colonization processes critical to virulence. Thus, pili fibers are possible targets for novel antibacterial agents. By use of a substance that compromises compliance of the pili, the ability of bacteria to redistribute external forces can be impaired, so they will no longer be able to resist strong urine flow and thus be removed from the host. It is possible such a substance can serve as an alternative to existing antibiotics in the future or be a part of a multi-drug. In this work we investigated whether it is possible to achieve this by targeting the recoiling process. The test substance was purified PapD. The effect of PapD on the compliance of P pili was assessed at the single organelle level by use of force-measuring optical tweezers. We showed that the recoiling process, and thus the biomechanical compliance, in particular the recoiling process, can be impaired by the presence of PapD. This leads to a new concept in the search for novel drug candidates combating uropathogenic bacterial infections--"coilicides", targeting the subunits of which the pilus rod is composed.
Collapse
Affiliation(s)
- Jeanna E Klinth
- Department of Physics, Umeå University, 901 87 Umeå, Sweden.
| | | | | | | | | | | |
Collapse
|
19
|
A structural basis for sustained bacterial adhesion: biomechanical properties of CFA/I pili. J Mol Biol 2011; 415:918-28. [PMID: 22178477 DOI: 10.1016/j.jmb.2011.12.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 12/02/2011] [Accepted: 12/05/2011] [Indexed: 12/14/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) are a major cause of diarrheal disease worldwide. Adhesion pili (or fimbriae), such as the CFA/I (colonization factor antigen I) organelles that enable ETEC to attach efficiently to the host intestinal tract epithelium, are critical virulence factors for initiation of infection. We characterized the intrinsic biomechanical properties and kinetics of individual CFA/I pili at the single-organelle level, demonstrating that weak external forces (7.5 pN) are sufficient to unwind the intact helical filament of this prototypical ETEC pilus and that it quickly regains its original structure when the force is removed. While the general relationship between exertion of force and an increase in the filament length for CFA/I pili associated with diarrheal disease is analogous to that of P pili and type 1 pili, associated with urinary tract and other infections, the biomechanical properties of these different pili differ in key quantitative details. Unique features of CFA/I pili, including the significantly lower force required for unwinding, the higher extension speed at which the pili enter a dynamic range of unwinding, and the appearance of sudden force drops during unwinding, can be attributed to morphological features of CFA/I pili including weak layer-to-layer interactions between subunits on adjacent turns of the helix and the approximately horizontal orientation of pilin subunits with respect to the filament axis. Our results indicate that ETEC CFA/I pili are flexible organelles optimized to withstand harsh motion without breaking, resulting in continued attachment to the intestinal epithelium by the pathogenic bacteria that express these pili.
Collapse
|