1
|
Segundo-Arizmendi N, Arellano-Maciel D, Rivera-Ramírez A, Piña-González AM, López-Leal G, Hernández-Baltazar E. Bacteriophages: A Challenge for Antimicrobial Therapy. Microorganisms 2025; 13:100. [PMID: 39858868 PMCID: PMC11767365 DOI: 10.3390/microorganisms13010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/22/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Phage therapy, which involves the use of bacteriophages (phages) to combat bacterial infections, is emerging as a promising approach to address the escalating threat posed by multidrug-resistant (MDR) bacteria. This brief review examines the historical background and recent advancements in phage research, focusing on their genomics, interactions with host bacteria, and progress in medical and biotechnological applications. Additionally, we expose key aspects of the mechanisms of action, and therapeutic uses of phage considerations in treating MDR bacterial infections are discussed, particularly in the context of infections related to virus-bacteria interactions.
Collapse
Affiliation(s)
- Nallelyt Segundo-Arizmendi
- Laboratorio de Microbiología y Parasitología, Facultad de Farmacia de la, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico;
| | - Dafne Arellano-Maciel
- Laboratorio de Biología Computacional y Virómica Integrativa, Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico; (D.A.-M.); (A.M.P.-G.)
| | - Abraham Rivera-Ramírez
- Laboratorio de Estudios Ecogenómicos, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico;
| | - Adán Manuel Piña-González
- Laboratorio de Biología Computacional y Virómica Integrativa, Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico; (D.A.-M.); (A.M.P.-G.)
| | - Gamaliel López-Leal
- Laboratorio de Biología Computacional y Virómica Integrativa, Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico; (D.A.-M.); (A.M.P.-G.)
| | - Efren Hernández-Baltazar
- Laboratorio 1 de Tecnología Farmacéutica, Facultad de Farmacia de la, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico
| |
Collapse
|
2
|
Stuart DI, Oksanen HM, Abrescia NGA. Integrative Approaches to Study Virus Structures. Subcell Biochem 2024; 105:247-297. [PMID: 39738949 DOI: 10.1007/978-3-031-65187-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
A virus particle must work as a strongroom to protect its genome, but at the same time it must undergo dramatic conformational changes to infect the cell in order to replicate and assemble progeny. Thus, viruses are miniaturized wonders whose structural complexity requires investigation by a combination of different techniques that can tackle both static and dynamic processes. In this chapter, we will illustrate how major structural techniques such as X-ray crystallography and electron microscopy can be combined with other techniques to determine the structure of complex viruses. The power of these hybrid approaches is discussed through a number of examples.
Collapse
Affiliation(s)
- David I Stuart
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, UK
| | - Hanna M Oksanen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Nicola G A Abrescia
- Structure and Cell Biology of Viruses Lab, CIC bioGUNE - Basque Research and Technology Alliance, Derio, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
3
|
Wani AK, Akhtar N, Naqash N, Rahayu F, Djajadi D, Chopra C, Singh R, Mulla SI, Sher F, Américo-Pinheiro JHP. Discovering untapped microbial communities through metagenomics for microplastic remediation: recent advances, challenges, and way forward. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:81450-81473. [PMID: 36637649 PMCID: PMC9838310 DOI: 10.1007/s11356-023-25192-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 01/04/2023] [Indexed: 06/01/2023]
Abstract
Microplastics (MPs) are ubiquitous pollutants persisting almost everywhere in the environment. With the increase in anthropogenic activities, MP accumulation is increasing enormously in aquatic, marine, and terrestrial ecosystems. Owing to the slow degradation of plastics, MPs show an increased biomagnification probability of persistent, bioaccumulative, and toxic substances thereby creating a threat to environmental biota. Thus, remediation of MP-pollutants requires efficient strategies to circumvent the mobilization of contaminants leaching into the water, soil, and ultimately to human beings. Over the years, several microorganisms have been characterized by the potential to degrade different plastic polymers through enzymatic actions. Metagenomics (MGs) is an effective way to discover novel microbial communities and access their functional genetics for the exploration and characterization of plastic-degrading microbial consortia and enzymes. MGs in combination with metatranscriptomics and metabolomics approaches are a powerful tool to identify and select remediation-efficient microbes in situ. Advancement in bioinformatics and sequencing tools allows rapid screening, mining, and prediction of genes that are capable of polymer degradation. This review comprehensively summarizes the growing threat of microplastics around the world and highlights the role of MGs and computational biology in building effective response strategies for MP remediation.
Collapse
Affiliation(s)
- Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144411, India
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144411, India
| | - Nafiaah Naqash
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144411, India
| | - Farida Rahayu
- Research Center for Applied Microbiology, National Research and Innovation Agency, Bogor, 16911, Indonesia
| | - Djajadi Djajadi
- Research Center for Horticulture and Plantation, National Research Innovation Agency, Bogor, 16111, Indonesia
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144411, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144411, India
| | - Sikandar I Mulla
- Department of Biochemistry, School of Allied Health Sciences, REVA University, Bengaluru, 560064, Karnataka, India
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Juliana Heloisa Pinê Américo-Pinheiro
- Department of Forest Science, Soils and Environment, School of Agronomic Sciences, São Paulo State University (UNESP), Ave. Universitária, 3780, Botucatu, SP, 18610-034, Brazil.
- Graduate Program in Environmental Sciences, Brazil University, Street Carolina Fonseca, 584, São Paulo, SP, 08230-030, Brazil.
| |
Collapse
|
4
|
Kalatzis PG, Mauritzen JJ, Winther-Have CS, Michniewski S, Millard A, Tsertou MI, Katharios P, Middelboe M. Staying below the Radar: Unraveling a New Family of Ubiquitous "Cryptic" Non-Tailed Temperate Vibriophages and Implications for Their Bacterial Hosts. Int J Mol Sci 2023; 24:3937. [PMID: 36835353 PMCID: PMC9966536 DOI: 10.3390/ijms24043937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/18/2023] Open
Abstract
Bacteriophages are the most abundant biological entities in the oceans and play key roles in bacterial activity, diversity and evolution. While extensive research has been conducted on the role of tailed viruses (Class: Caudoviricetes), very little is known about the distribution and functions of the non-tailed viruses (Class: Tectiliviricetes). The recent discovery of the lytic Autolykiviridae family demonstrated the potential importance of this structural lineage, emphasizing the need for further exploration of the role of this group of marine viruses. Here, we report the novel family of temperate phages under the class of Tectiliviricetes, which we propose to name "Asemoviridae" with phage NO16 as a main representative. These phages are widely distributed across geographical regions and isolation sources and found inside the genomes of at least 30 species of Vibrio, in addition to the original V. anguillarum isolation host. Genomic analysis identified dif-like sites, suggesting that NO16 prophages recombine with the bacterial genome based on the XerCD site-specific recombination mechanism. The interactions between the NO16 phage and its V. anguillarum host were linked to cell density and phage-host ratio. High cell density and low phage predation levels were shown to favor the temperate over the lytic lifestyle for NO16 viruses, and their spontaneous induction rate was highly variable between different V. anguillarum lysogenic strains. NO16 prophages coexist with the V. anguillarum host in a mutualistic interaction by rendering fitness properties to the host, such as increased virulence and biofilm formation through lysogenic conversion, likely contributing to their global distribution.
Collapse
Affiliation(s)
- Panos G. Kalatzis
- Marine Biological Section, Department of Biology, University of Copenhagen, 3000 Elsinore, Denmark
| | - Jesper Juel Mauritzen
- Marine Biological Section, Department of Biology, University of Copenhagen, 3000 Elsinore, Denmark
| | | | - Slawomir Michniewski
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Andrew Millard
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Maria Ioanna Tsertou
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Former American Base of Gournes, 71500 Heraklion, Greece
| | - Pantelis Katharios
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Former American Base of Gournes, 71500 Heraklion, Greece
| | - Mathias Middelboe
- Marine Biological Section, Department of Biology, University of Copenhagen, 3000 Elsinore, Denmark
- Department of Biology, University of Southern Denmark, 5230 Odense, Denmark
| |
Collapse
|
5
|
Sharma RS, Karmakar S, Kumar P, Mishra V. Application of filamentous phages in environment: A tectonic shift in the science and practice of ecorestoration. Ecol Evol 2019; 9:2263-2304. [PMID: 30847110 PMCID: PMC6392359 DOI: 10.1002/ece3.4743] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/25/2018] [Accepted: 10/30/2018] [Indexed: 02/06/2023] Open
Abstract
Theories in soil biology, such as plant-microbe interactions and microbial cooperation and antagonism, have guided the practice of ecological restoration (ecorestoration). Below-ground biodiversity (bacteria, fungi, invertebrates, etc.) influences the development of above-ground biodiversity (vegetation structure). The role of rhizosphere bacteria in plant growth has been largely investigated but the role of phages (bacterial viruses) has received a little attention. Below the ground, phages govern the ecology and evolution of microbial communities by affecting genetic diversity, host fitness, population dynamics, community composition, and nutrient cycling. However, few restoration efforts take into account the interactions between bacteria and phages. Unlike other phages, filamentous phages are highly specific, nonlethal, and influence host fitness in several ways, which make them useful as target bacterial inocula. Also, the ease with which filamentous phages can be genetically manipulated to express a desired peptide to track and control pathogens and contaminants makes them useful in biosensing. Based on ecology and biology of filamentous phages, we developed a hypothesis on the application of phages in environment to derive benefits at different levels of biological organization ranging from individual bacteria to ecosystem for ecorestoration. We examined the potential applications of filamentous phages in improving bacterial inocula to restore vegetation and to monitor changes in habitat during ecorestoration and, based on our results, recommend a reorientation of the existing framework of using microbial inocula for such restoration and monitoring. Because bacterial inocula and biomonitoring tools based on filamentous phages are likely to prove useful in developing cost-effective methods of restoring vegetation, we propose that filamentous phages be incorporated into nature-based restoration efforts and that the tripartite relationship between phages, bacteria, and plants be explored further. Possible impacts of filamentous phages on native microflora are discussed and future areas of research are suggested to preclude any potential risks associated with such an approach.
Collapse
Affiliation(s)
- Radhey Shyam Sharma
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental StudiesUniversity of DelhiDelhiIndia
| | - Swagata Karmakar
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental StudiesUniversity of DelhiDelhiIndia
| | - Pankaj Kumar
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental StudiesUniversity of DelhiDelhiIndia
| | - Vandana Mishra
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental StudiesUniversity of DelhiDelhiIndia
| |
Collapse
|
6
|
Mäntynen S, Sundberg LR, Oksanen HM, Poranen MM. Half a Century of Research on Membrane-Containing Bacteriophages: Bringing New Concepts to Modern Virology. Viruses 2019; 11:E76. [PMID: 30669250 PMCID: PMC6356626 DOI: 10.3390/v11010076] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 12/14/2022] Open
Abstract
Half a century of research on membrane-containing phages has had a major impact on virology, providing new insights into virus diversity, evolution and ecological importance. The recent revolutionary technical advances in imaging, sequencing and lipid analysis have significantly boosted the depth and volume of knowledge on these viruses. This has resulted in new concepts of virus assembly, understanding of virion stability and dynamics, and the description of novel processes for viral genome packaging and membrane-driven genome delivery to the host. The detailed analyses of such processes have given novel insights into DNA transport across the protein-rich lipid bilayer and the transformation of spherical membrane structures into tubular nanotubes, resulting in the description of unexpectedly dynamic functions of the membrane structures. Membrane-containing phages have provided a framework for understanding virus evolution. The original observation on membrane-containing bacteriophage PRD1 and human pathogenic adenovirus has been fundamental in delineating the concept of "viral lineages", postulating that the fold of the major capsid protein can be used as an evolutionary fingerprint to trace long-distance evolutionary relationships that are unrecognizable from the primary sequences. This has brought the early evolutionary paths of certain eukaryotic, bacterial, and archaeal viruses together, and potentially enables the reorganization of the nearly immeasurable virus population (~1 × 1031) on Earth into a reasonably low number of groups representing different architectural principles. In addition, the research on membrane-containing phages can support the development of novel tools and strategies for human therapy and crop protection.
Collapse
Affiliation(s)
- Sari Mäntynen
- Center of Excellence in Biological Interactions, Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland.
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA.
| | - Lotta-Riina Sundberg
- Center of Excellence in Biological Interactions, Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland.
| | - Hanna M Oksanen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, FI-00014 Helsinki, Finland.
| | - Minna M Poranen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, FI-00014 Helsinki, Finland.
| |
Collapse
|
7
|
Bertozzi Silva J, Storms Z, Sauvageau D. Host receptors for bacteriophage adsorption. FEMS Microbiol Lett 2016; 363:fnw002. [PMID: 26755501 DOI: 10.1093/femsle/fnw002] [Citation(s) in RCA: 390] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2016] [Indexed: 01/21/2023] Open
Abstract
The adsorption of bacteriophages (phages) onto host cells is, in all but a few rare cases, a sine qua non condition for the onset of the infection process. Understanding the mechanisms involved and the factors affecting it is, thus, crucial for the investigation of host-phage interactions. This review provides a survey of the phage host receptors involved in recognition and adsorption and their interactions during attachment. Comprehension of the whole infection process, starting with the adsorption step, can enable and accelerate our understanding of phage ecology and the development of phage-based technologies. To assist in this effort, we have established an open-access resource--the Phage Receptor Database (PhReD)--to serve as a repository for information on known and newly identified phage receptors.
Collapse
Affiliation(s)
- Juliano Bertozzi Silva
- Department of Chemical and Materials Engineering, University of Alberta, 12th Floor, Donadeo Innovation Centre for Engineering, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada
| | - Zachary Storms
- Department of Chemical and Materials Engineering, University of Alberta, 12th Floor, Donadeo Innovation Centre for Engineering, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada
| | - Dominic Sauvageau
- Department of Chemical and Materials Engineering, University of Alberta, 12th Floor, Donadeo Innovation Centre for Engineering, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada
| |
Collapse
|
8
|
Atanasova NS, Senčilo A, Pietilä MK, Roine E, Oksanen HM, Bamford DH. Comparison of lipid-containing bacterial and archaeal viruses. Adv Virus Res 2015; 92:1-61. [PMID: 25701885 DOI: 10.1016/bs.aivir.2014.11.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Lipid-containing bacteriophages were discovered late and considered to be rare. After further phage isolations and the establishment of the domain Archaea, several new prokaryotic viruses with lipids were observed. Consequently, the presence of lipids in prokaryotic viruses is reasonably common. The wealth of information about how prokaryotic viruses use their lipids comes from a few well-studied model viruses (PM2, PRD1, and ϕ6). These bacteriophages derive their lipid membranes selectively from the host during the virion assembly process which, in the case of PM2 and PRD1, culminates in the formation of protein capsid with an inner membrane, and for ϕ6 an outer envelope. Several inner membrane-containing viruses have been described for archaea, and their lipid acquisition models are reminiscent to those of PM2 and PRD1. Unselective acquisition of lipids has been observed for bacterial mycoplasmaviruses and archaeal pleolipoviruses, which resemble each other by size, morphology, and life style. In addition to these shared morphotypes of bacterial and archaeal viruses, archaea are infected by viruses with unique morphotypes, such as lemon-shaped, helical, and globular ones. It appears that structurally related viruses may or may not have a lipid component in the virion, suggesting that the significance of viral lipids might be to provide viruses extended means to interact with the host cell.
Collapse
Affiliation(s)
- Nina S Atanasova
- Department of Biosciences and Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Ana Senčilo
- Department of Biosciences and Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Maija K Pietilä
- Department of Biosciences and Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Elina Roine
- Department of Biosciences and Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Hanna M Oksanen
- Department of Biosciences and Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Dennis H Bamford
- Department of Biosciences and Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
9
|
Buivydas A, Pasanen T, Senčilo A, Daugelavičius R, Vaara M, Bamford DH. Clinical isolates of Pseudomonas aeruginosa from superficial skin infections have different physiological patterns. FEMS Microbiol Lett 2013; 343:183-9. [PMID: 23590530 DOI: 10.1111/1574-6968.12148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 03/22/2013] [Accepted: 03/28/2013] [Indexed: 12/01/2022] Open
Abstract
Pseudomonas aeruginosa are known to have a wide physiological potential allowing them to constantly populate diverse environments leading to severe infections of humans such as septicemia, leg ulcers, and burn wounds. We set out to probe physiological characteristics of P. aeruginosa isolates from diabetic leg ulcers collected from Helsinki metropolitan area. A total of 61 clinical isolates were obtained. Detailed phenotypic (physiological) characteristics [outer membrane (OM) permeability, membrane voltage, and activity of multidrug resistance pumps] were determined in several growth phases leading to the division of the analyzed set of P. aeruginosa strains into five distinct clusters including cells with similar physiological properties. In addition, their antibiotic resistance patterns and genetic heterogeneity were determined. Multiple isolates from the same patient were genetically very closely related and belonged to the same phenotypic cluster. However, genetically close isolates from different patients expressed very different phenotypic properties. The characteristics of infected patients seem to determine the growth environments for microorganisms that adapt by changing their physiological and/or genetic properties.
Collapse
Affiliation(s)
- Andrius Buivydas
- Department of Biosciences, University of Helsinki, Helsinki, Finland; Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
10
|
Badia-Martinez D, Oksanen HM, Stuart DI, Abrescia NGA. Combined approaches to study virus structures. Subcell Biochem 2013; 68:203-246. [PMID: 23737053 DOI: 10.1007/978-94-007-6552-8_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A virus particle must work as a safe box for protecting its genome, but at the same time it has to undergo dramatic conformational changes in order to preserve itself by propagating in a cell infection. Thus, viruses are miniaturized wonders whose structural complexity requires them to be investigated by a combination of different techniques that can tackle both static and dynamic processes. In this chapter we will illustrate how major structural techniques such as X-ray crystallography and electron microscopy have been and can be combined with other techniques to determine the structure of complex viruses. The power of these hybrid method approaches are revealed through the various examples provided.
Collapse
Affiliation(s)
- Daniel Badia-Martinez
- Structural Biology Unit, CICbioGUNE, CIBERehd, Bizkaia Technology Park, 48160, Derio, Spain
| | | | | | | |
Collapse
|
11
|
Marine bacteria: potential candidates for enhanced bioremediation. Appl Microbiol Biotechnol 2012; 97:561-71. [DOI: 10.1007/s00253-012-4584-0] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Revised: 11/08/2012] [Accepted: 11/09/2012] [Indexed: 11/26/2022]
|
12
|
Krupovic M, Prangishvili D, Hendrix RW, Bamford DH. Genomics of bacterial and archaeal viruses: dynamics within the prokaryotic virosphere. Microbiol Mol Biol Rev 2011; 75:610-35. [PMID: 22126996 PMCID: PMC3232739 DOI: 10.1128/mmbr.00011-11] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Prokaryotes, bacteria and archaea, are the most abundant cellular organisms among those sharing the planet Earth with human beings (among others). However, numerous ecological studies have revealed that it is actually prokaryotic viruses that predominate on our planet and outnumber their hosts by at least an order of magnitude. An understanding of how this viral domain is organized and what are the mechanisms governing its evolution is therefore of great interest and importance. The vast majority of characterized prokaryotic viruses belong to the order Caudovirales, double-stranded DNA (dsDNA) bacteriophages with tails. Consequently, these viruses have been studied (and reviewed) extensively from both genomic and functional perspectives. However, albeit numerous, tailed phages represent only a minor fraction of the prokaryotic virus diversity. Therefore, the knowledge which has been generated for this viral system does not offer a comprehensive view of the prokaryotic virosphere. In this review, we discuss all families of bacterial and archaeal viruses that contain more than one characterized member and for which evolutionary conclusions can be attempted by use of comparative genomic analysis. We focus on the molecular mechanisms of their genome evolution as well as on the relationships between different viral groups and plasmids. It becomes clear that evolutionary mechanisms shaping the genomes of prokaryotic viruses vary between different families and depend on the type of the nucleic acid, characteristics of the virion structure, as well as the mode of the life cycle. We also point out that horizontal gene transfer is not equally prevalent in different virus families and is not uniformly unrestricted for diverse viral functions.
Collapse
Affiliation(s)
- Mart Krupovic
- Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Département de Microbiologie, 25 rue du Dr. Roux, 75015 Paris, France.
| | | | | | | |
Collapse
|
13
|
Calcium ion-dependent entry of the membrane-containing bacteriophage PM2 into its Pseudoalteromonas host. Virology 2010; 405:120-8. [PMID: 20646729 DOI: 10.1016/j.virol.2010.05.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 05/09/2010] [Accepted: 05/19/2010] [Indexed: 11/22/2022]
Abstract
Marine bacteriophage PM2 infects gram-negative Pseudoalteromonas species and is currently the only assigned member of the Corticoviridae family. The icosahedral protein shell covers an internal protein-rich phage membrane that encloses the highly supercoiled dsDNA genome. In this study we investigated PM2 entry into the host. Our results indicate that PM2 adsorption to the host is dependent on the intracellular ATP concentration, while genome penetration through the cytoplasmic membrane depends on the presence of millimolar concentrations of calcium ions in the medium. In the absence of Ca(2+) the infection is arrested at the entry stage but can be rescued by the addition of Ca(2+). Interestingly, PM2 entry induces abrupt cell lysis if the host outer membrane is not stabilized by divalent cations. Experimental data described in this study in combination with results obtained previously allowed us to propose a sequential model describing the entry of bacteriophage PM2 into the host cells.
Collapse
|
14
|
Ziedaite G, Kivelä HM, Bamford JKH, Bamford DH. Purified membrane-containing procapsids of bacteriophage PRD1 package the viral genome. J Mol Biol 2009; 386:637-47. [PMID: 19150363 DOI: 10.1016/j.jmb.2008.12.068] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 12/17/2008] [Accepted: 12/22/2008] [Indexed: 11/29/2022]
Abstract
Icosahedral-tailed double-stranded DNA (dsDNA) bacteriophages and herpesviruses translocate viral DNA into a preformed procapsid in an ATP-driven reaction by a packaging complex that operates at a portal vertex. A similar packaging system operates in the tailless dsDNA phage PRD1 (Tectiviridae family), except that there is an internal membrane vesicle in the procapsid. The unit-length linear dsDNA genome with covalently linked 5'-terminal proteins enters the procapsid through a unique vertex. Two small integral membrane proteins, P20 and P22, provide a conduit for DNA translocation. The packaging machinery also contains the packaging ATPase P9 and the packaging efficiency factor P6. Here we describe a method used to obtain purified packaging-competent PRD1 procapsids. The optimized in vitro packaging system allowed efficient packaging of defined DNA substrates. We determined that the genome terminal protein P8 is necessary for packaging and provided an estimation of the packaging rate.
Collapse
Affiliation(s)
- Gabija Ziedaite
- Department of Biological and Environmental Sciences and Institute of Biotechnology, University of Helsinki, PO Box 56, FIN-00014 Helsinki, Finland
| | | | | | | |
Collapse
|
15
|
Guaragna A, Amoresano A, Pinto V, Monti G, Mastrobuoni G, Marino G. Synthesis and Proteomic Activity Evaluation of a new Isotope-Coded Affinity Tagging (ICAT) Reagent. Bioconjug Chem 2008; 19:1095-104. [DOI: 10.1021/bc800010b] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Annalisa Guaragna
- Dipartimento di Chimica Organica e Biochimica Università di Napoli Federico II Via Cinthia, 4 I-80126 Napoli, Italy
| | - Angela Amoresano
- Dipartimento di Chimica Organica e Biochimica Università di Napoli Federico II Via Cinthia, 4 I-80126 Napoli, Italy
| | - Vittoria Pinto
- Dipartimento di Chimica Organica e Biochimica Università di Napoli Federico II Via Cinthia, 4 I-80126 Napoli, Italy
| | - Gianluca Monti
- Dipartimento di Chimica Organica e Biochimica Università di Napoli Federico II Via Cinthia, 4 I-80126 Napoli, Italy
| | - Guido Mastrobuoni
- Dipartimento di Chimica Organica e Biochimica Università di Napoli Federico II Via Cinthia, 4 I-80126 Napoli, Italy
| | - Gennaro Marino
- Dipartimento di Chimica Organica e Biochimica Università di Napoli Federico II Via Cinthia, 4 I-80126 Napoli, Italy
| |
Collapse
|