1
|
Men Y, Liu Y, Yin D, Wang G, Qin R, Xiong H, Wang Y. Characterization and structural analysis of a leucine aminopeptidase using site-directed mutagenesis. AMB Express 2024; 14:135. [PMID: 39695007 DOI: 10.1186/s13568-024-01793-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024] Open
Abstract
Amp0279 (EC 3.4.11.24, GenBank: CP000817.1) is a Co2+-dependent leucine aminopeptidase from the Lysinibacillus sphaericus C3-41 genome. After analyses using molecular docking and spatial structure analysis, site-directed mutagenesis mutants were performed as Amp0279-R131E, Amp0279-R131H, Amp0279-R131A and Amp0279-E349D. The optimum pH of Amp0279-R131E was shifted from the original 8.5 to 7.5, and the overall electrostatic potential was shifted towards acidic. Compared with the original enzyme, the mutant proteins all gained better structural stability, especially the apparent melting temperature (Tm) of Amp0279-R131H increased from 41.8 to 45.5 °C. Morever, when protein was bound to the substrate, the Tm of Amp0279-R131E was increased by 7.3 °C and Amp0279-R131H increased by 5.4 °C, compared to the original enzyme. This is consistent with the results that the mutants acquired higher binding energies to the substrates, and an increase the hydrogen bonding force. In addition, the molecular docking of mutant and substrate revealed that the truncation of R131 contributes to the increase in the binding capacity of the substrate molecules to the active centre. In contrast, the presence of π-Cation interactions generated by R131 with the substrate has an important effect on the ability of Amp0279 to hydrolyse the substrate. This study demostrated that R131 is a key site for activity and stability, which is important in the future exploration of the functional structure of Amp0279.
Collapse
Affiliation(s)
- Yuqi Men
- College of Life Science, South-Central Minzu University, Wuhan, 430074, China
| | - Yang Liu
- College of Life Science, Wuchang University of Technology, Wuhan, 430223, China
| | - Dongjie Yin
- College of Life Science, South-Central Minzu University, Wuhan, 430074, China
| | - Guan Wang
- College of Life Science, South-Central Minzu University, Wuhan, 430074, China
- Wuhan Sunhy Biology Co. Ltd, Wuhan, 430205, China
| | - Rui Qin
- College of Life Science, South-Central Minzu University, Wuhan, 430074, China
| | - Hairong Xiong
- College of Life Science, South-Central Minzu University, Wuhan, 430074, China.
| | - Yawei Wang
- College of Life Science, South-Central Minzu University, Wuhan, 430074, China.
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430048, China.
| |
Collapse
|
2
|
Tomar P, Thakur N, Jhamta S, Chowdhury S, Kapoor M, Singh S, Shreaz S, Rustagi S, Rai PK, Rai AK, Yadav AN. Bacterial biopesticides: Biodiversity, role in pest management and beneficial impact on agricultural and environmental sustainability. Heliyon 2024; 10:e31550. [PMID: 38828310 PMCID: PMC11140719 DOI: 10.1016/j.heliyon.2024.e31550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/05/2024] Open
Abstract
Agro-environmental sustainability is based upon the adoption of efficient resources in agro-practices that have a nominal impact on the ecosystem. Insect pests are responsible for causing severe impacts on crop productivity. Wide ranges of agro-chemicals have been employed over the last 50 years to overcome crop yield losses due to insect pests. But better knowledge about the hazards due to chemical pesticides and other pest resistance and resurgence issues necessitates an alternative for pest control. The applications of biological pesticides offer a best alternate that is safe, cost-effective, easy to adoption and successful against various insect pests and pathogens. Like other organisms, insects can get a wide range of diseases from various microbes, such as bacteria, fungi, viruses, protozoa, and nematodes. In order to create agricultural pest management practices that are environmentally beneficial, bacterial entomopathogens are being thoroughly studied. Utilization of bacterial biopesticides has been adopted for the protection of agricultural products. The different types of toxin complexes released by various microorganisms and their mechanisms of action are recapitulated. The present review described the diversity and biocontrol prospective of certain bacteria and summarised the potential of bacterial biopesticides for the management of agricultural pests, insects, and other phytopathogenic microorganisms in agricultural practices.
Collapse
Affiliation(s)
- Preety Tomar
- Department of Zoology, Akal College of Basic Sciences, Eternal University, Sirmour, Himachal Pradesh, India
| | - Neelam Thakur
- Department of Zoology, Akal College of Basic Sciences, Eternal University, Sirmour, Himachal Pradesh, India
| | - Samiksha Jhamta
- Department of Zoology, Akal College of Basic Sciences, Eternal University, Sirmour, Himachal Pradesh, India
| | - Sohini Chowdhury
- Chitkara Center for Research and Development, Chitkara University, Himachal Pradesh, India
| | - Monit Kapoor
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, 140401, Punjab, India
| | - Sangram Singh
- Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University Faizabad, Uttar Pradesh, India
| | - Sheikh Shreaz
- Desert Agriculture and Ecosystems Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, PO Box 24885, 13109, Safat, Kuwait
| | - Sarvesh Rustagi
- Department of Food Technology, School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Pankaj Kumar Rai
- Department of Biotechnology, Invertis University, Bareilly, Uttar Pradesh, India
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Ajar Nath Yadav
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India
| |
Collapse
|
3
|
Chen H, Wang X, Li C, Xu X, Wang G. Characterization of individual spores of two biological insecticides, Bacillus thuringiensis and Lysinibacillus sphaericus, in response to glutaraldehyde using single-cell optical approaches. Arch Microbiol 2024; 206:227. [PMID: 38642141 DOI: 10.1007/s00203-024-03941-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/22/2024]
Abstract
Bacillus thuringiensis (Bt) and Lysinibacillus sphaericus (Ls) are the most widely used microbial insecticides. Both encounter unfavorable environmental factors and pesticides in the field. Here, the responses of Bt and Ls spores to glutaraldehyde were characterized using Raman spectroscopy and differential interference contrast imaging at the single-cell level. Bt spores were more sensitive to glutaraldehyde than Ls spores under prolonged exposure: <1.0% of Bt spores were viable after 10 min of 0.5% (v/v) glutaraldehyde treatment, compared to ~ 20% of Ls spores. The Raman spectra of glutaraldehyde-treated Bt and Ls spores were almost identical to those of untreated spores; however, the germination process of individual spores was significantly altered. The time to onset of germination, the period of rapid Ca2+-2,6-pyridinedicarboxylic acid (CaDPA) release, and the period of cortex hydrolysis of treated Bt spores were significantly longer than those of untreated spores, with dodecylamine germination being particularly affected. Similarly, the germination of treated Ls spores was significantly prolonged, although the prolongation was less than that of Bt spores. Although the interiors of Bt and Ls spores were undamaged and CaDPA did not leak, proteins and structures involved in spore germination could be severely damaged, resulting in slower and significantly prolonged germination. This study provides insights into the impact of glutaraldehyde on bacterial spores at the single cell level and the variability in spore response to glutaraldehyde across species and populations.
Collapse
Affiliation(s)
- Huanjun Chen
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, 98 Daling Road, Nanning, Guangxi, 530007, China
| | - Xiaochun Wang
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, 98 Daling Road, Nanning, Guangxi, 530007, China
| | - Cuimei Li
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, 98 Daling Road, Nanning, Guangxi, 530007, China
| | - Xiaoling Xu
- Agriculture and Food Engineering College, Baise University, Baise, Guangxi, 533000, China
| | - Guiwen Wang
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, 98 Daling Road, Nanning, Guangxi, 530007, China.
| |
Collapse
|
4
|
Pantoja-Guerra M, Burkett-Cadena M, Cadena J, Dunlap CA, Ramírez CA. Lysinibacillus spp.: an IAA-producing endospore forming-bacteria that promotes plant growth. Antonie Van Leeuwenhoek 2023:10.1007/s10482-023-01828-x. [PMID: 37138159 DOI: 10.1007/s10482-023-01828-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 03/29/2023] [Indexed: 05/05/2023]
Abstract
Lysinibacillus is a bacterial genus that has generated recent interest for its biotechnological potential in agriculture. Strains belonging to this group are recognized for their mosquitocidal and bioremediation activity. However, in recent years some reports indicate its importance as plant growth promoting rhizobacteria (PGPR). This research sought to provide evidence of the PGP activity of Lysinibacillus spp. and the role of the indole-3-acetic acid (IAA) production associated with this activity. Twelve Lysinibacillus spp. strains were evaluated under greenhouse conditions, six of which increased the biomass and root architecture of corn plants. In most cases, growth stimulation was evident at 108 CFU/mL inoculum concentration. All strains produced IAA with high variation between them (20-70 µg/mL). The bioinformatic identification of predicted genes associated with IAA production allowed the detection of the indole pyruvic acid pathway to synthesize IAA in all strains; additionally, genes for a tryptamine pathway were detected in two strains. Extracellular filtrates from all strain's cultures increased the corn coleoptile length in an IAA-similar concentration pattern, which demonstrates the filtrates had an auxin-like effect on plant tissue. Five of the six strains that previously showed PGPR activity in corn also promoted the growth of Arabidopsis thaliana (col 0). These strains induced changes in root architecture of Arabidopsis mutant plants (aux1-7/axr4-2), the partial reversion of mutant phenotype indicated the role of IAA on plant growth. This work provided solid evidence of the association of Lysinibacillus spp. IAA production with their PGP activity, which constitutes a new approach for this genus. These elements contribute to the biotechnological exploration of this bacterial genus for agricultural biotechnology.
Collapse
Affiliation(s)
- Manuel Pantoja-Guerra
- Universidad de Antioquia, Instituto de Biología, Medellín, Colombia.
- Facultad de Ciencias Agropecuarias, Unilasallista Corporación Universitaria, Caldas - Antioquia, Colombia.
| | | | | | - Christopher A Dunlap
- United States Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Crop Bioprotection Research Unit, 1815 N University, Peoria, IL, USA
| | - Camilo A Ramírez
- Universidad de Antioquia, Instituto de Biología, Medellín, Colombia
| |
Collapse
|
5
|
Interspecies Horizontal Transfer and Specific Integration of the Mosquitocidal Toxin-Encoding Plasmid pTAND672-2 from Bacillus thuringiensis subsp. israelensis to Lysinibacillus sphaericus. Appl Environ Microbiol 2023; 89:e0165222. [PMID: 36749061 PMCID: PMC9973010 DOI: 10.1128/aem.01652-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
pTAND672-2, a 144-kb resident plasmid of Bacillus thuringiensis serovar israelensis strain TAND672, was sequenced and characterized. This extrachromosomal element carries mosquitocidal toxin-, conjugation-, and recombinase-encoding genes, together with a putative arbitrium system, a genetic module recently discovered in temperate phages controlling lysogeny-lysis transition and in mobile genetic elements (MGEs) where its function remains clarified. Using conjugation experiments, pTAND672-2 is shown to be a novel integrative and conjugative element (ICE), which can horizontally transfer from B. thuringiensis serovar israelensis to Lysinibacillus sphaericus, another mosquitocidal bacterium, where it integrates into the chromosome. Its integration and circularization are reversible and involve a single-cross recombination between 33-bp specific sites, attB in the chromosome of L. sphaericus and attP in pTAND672-2. CDS143, coding for the putative tyrosine integrase Int143 distantly related to site-specific tyrosine Xer recombinases and phage integrases, can mediate the integration of pTAND672-2 to attB. The B. thuringiensis mosquito-killing genes carried by pTAND672-2 are efficiently transcribed and expressed in L. sphaericus, displaying a slight increased toxicity in this bacterium against Aedes albopictus larvae. The occurrence of pTAND672-2-like plasmids within the Bacillus cereus group was also explored and indicated that they all share a similar genetic backbone with diverse plasmid sizes, ranging from 58 to 225 kb. Interestingly, among them, the pEFR-4-4 plasmid of Bacillus paranthracis EFR-4 and p5 of B. thuringiensis BT-59 also display conjugative capability; moreover, like pTAND672-2 displays a chimeric structure between the pCH_133-e- and pBtoxis-like plasmids, pBTHD789-3 also appears to be mosaic of two plasmids. IMPORTANCE Horizontal transfer of mobile genetic elements carrying mosquitocidal toxin genes may play a driving role in the diversity of mosquitocidal bacteria. Here, the 144-kb mosquitocidal toxin-encoding plasmid pTAND672-2 is the first verified integrative and conjugative element (ICE) identified in Bacillus thuringiensis serovar israelensis. The key tyrosine integrase Int143, involved in the specific integration, is distantly related to other tyrosine recombinases. The study also reports the occurrence and potential interspecies transmission of pTAND672-2-like plasmids with varied sizes in B. thuringiensis, Bacillus paranthracis, and Bacillus wiedmannii isolates belonging to the Bacillus cereus group. This study is important for further understanding the evolution and ecology of mosquitocidal bacteria, as well as for providing new direction for the genetic engineering of biopesticides in the control of disease-transmitting mosquitoes.
Collapse
|
6
|
Conservation and Evolution of the Sporulation Gene Set in Diverse Members of the Firmicutes. J Bacteriol 2022; 204:e0007922. [PMID: 35638784 DOI: 10.1128/jb.00079-22] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The current classification of the phylum Firmicutes (new name, Bacillota) features eight distinct classes, six of which include known spore-forming bacteria. In Bacillus subtilis, sporulation involves up to 500 genes, many of which do not have orthologs in other bacilli and/or clostridia. Previous studies identified about 60 sporulation genes of B. subtilis that were shared by all spore-forming members of the Firmicutes. These genes are referred to as the sporulation core or signature, although many of these are also found in genomes of nonsporeformers. Using an expanded set of 180 firmicute genomes from 160 genera, including 76 spore-forming species, we investigated the conservation of the sporulation genes, in particular seeking to identify lineages that lack some of the genes from the conserved sporulation core. The results of this analysis confirmed that many small acid-soluble spore proteins (SASPs), spore coat proteins, and germination proteins, which were previously characterized in bacilli, are missing in spore-forming members of Clostridia and other classes of Firmicutes. A particularly dramatic loss of sporulation genes was observed in the spore-forming members of the families Planococcaceae and Erysipelotrichaceae. Fifteen species from diverse lineages were found to carry skin (sigK-interrupting) elements of different sizes that all encoded SpoIVCA-like recombinases but did not share any other genes. Phylogenetic trees built from concatenated alignments of sporulation proteins and ribosomal proteins showed similar topology, indicating an early origin and subsequent vertical inheritance of the sporulation genes. IMPORTANCE Many members of the phylum Firmicutes (Bacillota) are capable of producing endospores, which enhance the survival of important Gram-positive pathogens that cause such diseases as anthrax, botulism, colitis, gas gangrene, and tetanus. We show that the core set of sporulation genes, defined previously through genome comparisons of several bacilli and clostridia, is conserved in a wide variety of sporeformers from several distinct lineages of Firmicutes. We also detected widespread loss of sporulation genes in many organisms, particularly within the families Planococcaceae and Erysipelotrichaceae. Members of these families, such as Lysinibacillus sphaericus and Clostridium innocuum, could be excellent model organisms for studying sporulation mechanisms, such as engulfment, formation of the spore coat, and spore germination.
Collapse
|
7
|
Zhao P, Zhang M, Wan X, Geng P, Xiong H, Hu X. Characterization and heterologous expression of a novel Co2+-dependent leucyl aminopeptidase Amp0279 originating from Lysinibacillus sphaericus. Appl Microbiol Biotechnol 2022; 106:1139-1149. [DOI: 10.1007/s00253-022-11767-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/15/2021] [Accepted: 01/06/2022] [Indexed: 11/24/2022]
|
8
|
Bacterial Toxins Active against Mosquitoes: Mode of Action and Resistance. Toxins (Basel) 2021; 13:toxins13080523. [PMID: 34437394 PMCID: PMC8402332 DOI: 10.3390/toxins13080523] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 12/25/2022] Open
Abstract
Larvicides based on the bacteria Bacillus thuringiensis svar. israelensis (Bti) and Lysinibacillus sphaericus are effective and environmentally safe compounds for the control of dipteran insects of medical importance. They produce crystals that display specific and potent insecticidal activity against larvae. Bti crystals are composed of multiple protoxins: three from the three-domain Cry type family, which bind to different cell receptors in the midgut, and one cytolytic (Cyt1Aa) protoxin that can insert itself into the cell membrane and act as surrogate receptor of the Cry toxins. Together, those toxins display a complex mode of action that shows a low risk of resistance selection. L. sphaericus crystals contain one major binary toxin that display an outstanding persistence in field conditions, which is superior to Bti. However, the action of the Bin toxin based on its interaction with a single receptor is vulnerable for resistance selection in insects. In this review we present the most recent data on the mode of action and synergism of these toxins, resistance issues, and examples of their use worldwide. Data reported in recent years improved our understanding of the mechanism of action of these toxins, showed that their combined use can enhance their activity and counteract resistance, and reinforced their relevance for mosquito control programs in the future years.
Collapse
|
9
|
Lysinibacillus sphaericus III(3)7 and Plasmid Vector pMK4: New Challenges in Cloning Platforms. MICROBIOLOGY RESEARCH 2021. [DOI: 10.3390/microbiolres12020031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The acquisition and especially the maintenance of a plasmid usually brings a fitness cost that reduces the reproductive rate of the bacterial host; for strains like Lysinibacillus sphaericus III(3)7, which possesses important environmental properties, this alteration along with morphological changes and reduced sporulation rates may exert a negative effect on metabolic studies using plasmids as cloning platforms. The aim of this study is to approach the metabolic behavior of pMK4-bearing cells of L. sphaericus III(3)7 through the use of bioinformatic and in vitro analyses. An incompatibility model between the pMK4 vector and a predicted megaplasmid, pBsph, inside III(3)7 cells was constructed based on an incA region. Additionally, in vitro long-term plasmid stability was not found in plasmid-bearing cells. Alignments between replicons, mobile genetic elements and RNA-RNA interactions were assessed, pairwise alignment visualization, graphic models and morphological changes were evaluated by SEM. Metabolite analysis was done through HPLC coupled to a Q-TOF 6545, and electrospray ionization was used, finally, Aedes aegypti and Culex quinquefasciatus larvae were used for larvicidal activity assessment. Results found, a decreased growth rate, spore formation reduction and morphological changes, which supported the idea of metabolic cost exerted by pMK4. An incompatibility between pMK4 and pBsph appears to take place inside L. sphaericus III(3)7 cells, however, further in vitro studies are needed to confirm it.
Collapse
|
10
|
Geng P, Cheng J, Yuan Z, Xiong H, Wang H, Hu X. Horizontal transfer of large plasmid with type IV secretion system and mosquitocidal genomic island with excision and integration capabilities in Lysinibacillus sphaericus. Environ Microbiol 2021; 23:5131-5146. [PMID: 33728723 DOI: 10.1111/1462-2920.15467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/05/2021] [Accepted: 03/14/2021] [Indexed: 01/09/2023]
Abstract
We identified a ~30-kb genomic island (named GI8) carrying the binary toxin gene operon binA/binB on both the chromosome and large pBsph plasmid in the mosquitocidal Lysinibacillus sphaericus C3-41 strain. We found that GI8 is related to the occurrence of binA/binB within L. sphaericus and displays excision and integration capability by recognizing the attB region, which consists of a 2-nt target site (AT) flanked by an 11-nt imperfect inverted repeat. pBsph and two pBsph-like plasmids (p2362 and p1593) were found to carry a type IV secretion system (T4SS) and displayed transmissibility within a narrow host range specific to L. sphaericus. GI8 can be co-transferred with pBsph as a composite element by integration into its attB site, then excised from pBsph and re-integrated into the chromosomal attB site in the new host. The potential hosts of GI8, regardless of whether they are toxic or non-toxic to mosquito larvae, share good collinearity at the chromosomal level. Data indicated that the appearance of the mosquitocidal L. sphaericus lineage was driven by horizontal transfer of the T4SS-type conjugative plasmid and GI8 with excision and specific integration capability.
Collapse
Affiliation(s)
- Peiling Geng
- College of Life Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Jiao Cheng
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zhiming Yuan
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Hairong Xiong
- College of Life Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Haiying Wang
- College of Life Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Xiaomin Hu
- College of Life Science, South-Central University for Nationalities, Wuhan, 430074, China
| |
Collapse
|
11
|
Hoa Bach TM, Pham TH, Dinh TS, Takagi H. Characterization of collagenase found in the nonpathogenic bacterium Lysinibacillus sphaericus VN3. Biosci Biotechnol Biochem 2020; 84:2293-2302. [PMID: 32741269 DOI: 10.1080/09168451.2020.1799748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
High collagenolytic activity has been detected in pathogenic bacteria. Collagenase plays an essential role in the invasion step in animals and humans. In this study, we characterized collagenase found in the nonpathogenic bacterium Lysinibacillus sphaericus VN3, which was isolated from soil in Vietnam. The collagenase activity of the purified enzyme was strongly inhibited by Cu2+, but it was significantly increased by Zn2+. The purified enzyme with a molecular mass of approximately 110 kDa exhibited collagenolytic, gelatinolytic, and caseinolytic activity. The kinetic studies showed that this enzyme had greater hydrolyzing activity toward collagen and gelatin compared with casein. Based on the ratio V max/K m, collagen is likely to be the best substrate among three proteins. We found that this collagenase could digest small pieces of bovine skin and tendon into a collagen solution. Interestingly, at pH 6.0-8.0, the soluble collagen could form a collagen membrane, which is useful as a wound-healing biomaterial.
Collapse
Affiliation(s)
- Thi Mai Hoa Bach
- Institute of Biotechnology, Vietnam Academy of Science and Technology , Hanoi, Vietnam
| | - Thanh Huyen Pham
- Institute of Biotechnology, Vietnam Academy of Science and Technology , Hanoi, Vietnam
| | - Truong Son Dinh
- Department of Plant Biotechnology, Faculty of Biotechnology, Vietnam National University of Agriculture , Hanoi, Vietnam
| | - Hiroshi Takagi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology , Nara, Japan
| |
Collapse
|
12
|
Bonneaud C, Weinert LA, Kuijper B. Understanding the emergence of bacterial pathogens in novel hosts. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180328. [PMID: 31401968 PMCID: PMC6711297 DOI: 10.1098/rstb.2018.0328] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2019] [Indexed: 01/03/2023] Open
Abstract
Our understanding of the ecological and evolutionary context of novel infections is largely based on viral diseases, even though bacterial pathogens may display key differences in the processes underlying their emergence. For instance, host-shift speciation, in which the jump of a pathogen into a novel host species is followed by the specialization on that host and the loss of infectivity of previous host(s), is commonly observed in viruses, but less often in bacteria. Here, we suggest that the extent to which pathogens evolve host generalism or specialism following a jump into a novel host will depend on their level of adaptation to dealing with different environments, their rates of molecular evolution and their ability to recombine. We then explore these hypotheses using a formal model and show that the high levels of phenotypic plasticity, low rates of evolution and the ability to recombine typical of bacterial pathogens should reduce their propensity to specialize on novel hosts. Novel bacterial infections may therefore be more likely to result in transient spillovers or increased host ranges than in host shifts. Finally, consistent with our predictions, we show that, in two unusual cases of contemporary bacterial host shifts, the bacterial pathogens both have small genomes and rapid rates of substitution. Further tests are required across a greater number of emerging pathogens to assess the validity of our hypotheses. This article is part of the theme issue 'Dynamic and integrative approaches to understanding pathogen spillover'.
Collapse
Affiliation(s)
- Camille Bonneaud
- Centre for Ecology and Conservation, University of Exeter, Penryn TR10 9FE, UK
| | - Lucy A. Weinert
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Bram Kuijper
- Centre for Ecology and Conservation, University of Exeter, Penryn TR10 9FE, UK
| |
Collapse
|
13
|
vB_LspM-01: a novel myovirus displaying pseudolysogeny in Lysinibacillus sphaericus C3-41. Appl Microbiol Biotechnol 2018; 102:10691-10702. [PMID: 30362075 DOI: 10.1007/s00253-018-9424-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/22/2018] [Accepted: 09/28/2018] [Indexed: 10/28/2022]
Abstract
Lysinibacillus sphaericus has great application potential not only in the biocontrol of mosquitoes but also in the bioremediation of toxic metals. Phages contribute to the genetic diversity and niche adaptation of bacteria, playing essential roles in their life cycle, but may also cause economic damage for industrially important bacteria through phage contamination during fermentation. In this study, the L. sphaericus phage vB_LspM-01, which belongs to the Myoviridae family, was isolated and characterized. Results showed that vB_LspM-01 could specifically infect most tested L. sphaericus isolates but was not active against isolates belonging to other species. Furthermore, phage-born endolysin exhibited a broader antimicrobial spectrum than the host range of the phage. The vB_LspM-01 genome had no obvious similarity with that of its host, and ca. 22.6% of putative ORFs could not get a match with the public databases. Phylogenic analysis based on the putative terminase large subunit showed high similarity with the phages identified with pac-type headful packaging. The vB_LspM-01 encoding genes were only detected in a tiny percentage of L. sphaericus C3-41 individual cells in the wild population, whereas they showed much higher frequency in the resistant population grown within the plaques; however, the phage genes could not be stably inherited during host cell division. Additionally, the vB_LspM-01 encoding genes were only detected in the host population during the logarithmic growth phase. The mitomycin C induction helped the propagation and lysogeny-lysis switch of vB_LspM-01. The study demonstrated that vB_LspM-01 can be present in a pseudolysogenic state in L. sphaericus C3-41 populations.
Collapse
|
14
|
A toxin-antitoxin system is essential for the stability of mosquitocidal plasmid pBsph of Lysinibacillus sphaericus. Microbiol Res 2018; 214:114-122. [PMID: 30031473 DOI: 10.1016/j.micres.2018.06.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 06/13/2018] [Accepted: 06/23/2018] [Indexed: 11/22/2022]
Abstract
Lysinibacillus sphaericus C3-41 carries a large low-copy-number plasmid pBsph, which encodes binary toxin proteins. Our previous study found that the transcriptional activator TubX plays an important role in the newly identified type Ⅲ TubRZC replication/partition system in pBsph, and that a vector consisting of tubRZC and tubX is not as stable as pBsph, indicating the presence of other maintenance module(s). In this study, we identified that orf9 and orf10 are necessary for the stability of pBsph by a series of deletion and complementation experiments. Bioinformatics analysis showed that ORF9 contains a PIN domain of VapBC toxin-antitoxin (TA) system, whereas ORF10 share no significant sequence similarity to any of the characterized antitoxins in the database. Further studies revealed that orf9 and orf10 are transcribed as an operon. The overexpression of ORF9 repressed the growth of both Escherichia coli and L. sphaericus, which can be alleviated by overexpression of ORF10. The deletion of orf10 individually or orf9-10 together resulted a decrease on plasmid stability which was restored by the complementation of corresponding gene(s), suggesting that ORF10 plays an important role in plasmid stability. In addition, it was found the plasmid stability is related with the transcription level of tubRZ, and overexpression of TubRZ could neutralize the negative effect on plasmid stability caused by the deletion of orf9-orf10. Moreover, the recombinant vector containing tubRZC, tubX and orf9-10 was more stable than the ones containing only tubRZC and either tubX or orf9-10. The data indicate that the plasmid maintenance system on pBsph includes orf9-orf10 TA system.
Collapse
|
15
|
Garcia‐Ramon DC, Berry C, Tse C, Fernández‐Fernández A, Osuna A, Vílchez S. The parasporal crystals of Bacillus pumilus strain 15.1: a potential virulence factor? Microb Biotechnol 2018; 11:302-316. [PMID: 29027367 PMCID: PMC5812249 DOI: 10.1111/1751-7915.12771] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 06/14/2017] [Indexed: 12/02/2022] Open
Abstract
Bacillus pumilus strain 15.1 was previously found to cause larval mortality in the Med-fly Ceratitis capitata and was shown to produce crystals in association with the spore. As parasporal crystals are well-known as invertebrate-active toxins in entomopathogenic bacteria such as Bacillus thuringiensis (Cry and Cyt toxins) and Lysinibacillus sphaericus (Bin and Cry toxins), the B. pumilus crystals were characterized. The crystals were composed of a 45 kDa protein that was identified as an oxalate decarboxylase by peptide mass fingerprinting, N-terminal sequencing and by comparison with the genome sequence of strain 15.1. Synthesis of crystals by a plasmid-cured derivative of strain 15.1 (produced using a novel curing strategy), demonstrated that the oxalate decarboxylase was encoded chromosomally. Crystals spontaneously solubilized when kept at low temperatures, and the protein produced was resistant to trypsin treatment. The insoluble crystals produced by B. pumilus 15.1 did not show significant toxicity when bioassayed against C. capitata larvae, but once the OxdD protein was solubilized, an increase of toxicity was observed. We also demonstrate that the OxdD present in the crystals has oxalate decarboxylate activity as the formation of formate was detected, which suggests a possible mechanism for B. pumilus 15.1 activity. To our knowledge, the characterization of the B. pumilus crystals as oxalate decarboxylase is the first report of the natural production of parasporal inclusions of an enzyme.
Collapse
Affiliation(s)
- Diana C. Garcia‐Ramon
- Institute of BiotechnologyCampus FuentenuevaUniversity of GranadaGranadaSpain
- Present address:
Medical SchoolFaculty of Life, Health and Medical SciencesUniversidad Internacional del EcuadorQuitoEcuador
| | - Colin Berry
- Cardiff School of BiosciencesCardiff UniversityCardiffUK
| | - Carmen Tse
- Cardiff School of BiosciencesCardiff UniversityCardiffUK
| | | | - Antonio Osuna
- Institute of BiotechnologyCampus FuentenuevaUniversity of GranadaGranadaSpain
| | - Susana Vílchez
- Institute of BiotechnologyCampus FuentenuevaUniversity of GranadaGranadaSpain
- Department of Biochemistry and Molecular Biology ICampus FuentenuevaUniversity of GranadaGranadaSpain
| |
Collapse
|
16
|
Molecular Characterization and Evaluation of Two Potential Mosquitocidal Lysinibacillus Strains from Himalayan Valley Kashmir. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2017. [DOI: 10.22207/jpam.11.4.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
17
|
Gómez-Garzón C, Hernández-Santana A, Dussán J. A genome-scale metabolic reconstruction of Lysinibacillus sphaericus unveils unexploited biotechnological potentials. PLoS One 2017; 12:e0179666. [PMID: 28604819 PMCID: PMC5467902 DOI: 10.1371/journal.pone.0179666] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/01/2017] [Indexed: 01/25/2023] Open
Abstract
The toxic lineage (TL) of Lysinibacillus sphaericus has been extensively studied because of its potential biotechnological applications in biocontrol of mosquitoes and bioremediation of toxic metals. We previously proposed that L. sphaericus TL should be considered as a novel species based on a comparative genomic analysis. In the current work, we constructed the first manually curated metabolic reconstruction for this species on the basis of the available genomes. We elucidated the central metabolism of the proposed species and, beyond confirming the reported experimental evidence with genomic a support, we found insights to propose novel applications and traits to be considered in further studies. The strains belonging to this lineage exhibit a broad repertory of genes encoding insecticidal factors, some of them remain uncharacterized. These strains exhibit other unexploited biotechnological important traits, such as lactonases (quorum quenching), toxic metal resistance, and potential for aromatic compound degradation. In summary, this study provides a guideline for further research aimed to implement this organism in biocontrol and bioremediation. Similarly, we highlighted the unanswered questions to be responded in order to gain a deeper understanding of the L. sphaericus TL biology.
Collapse
Affiliation(s)
- Camilo Gómez-Garzón
- Centro de investigaciones microbiológicas (CIMIC), Universidad de los Andes, Bogotá, Colombia
| | | | - Jenny Dussán
- Centro de investigaciones microbiológicas (CIMIC), Universidad de los Andes, Bogotá, Colombia
- * E-mail:
| |
Collapse
|
18
|
Fu P, Xiang X, Ge Y, Yuan Z, Hu X. Differential expression of duplicated binary toxin genesbinA/binBinLysinibacillus sphaericusC3-41. Lett Appl Microbiol 2017; 65:90-97. [DOI: 10.1111/lam.12752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 11/28/2022]
Affiliation(s)
- P. Fu
- Wuhan Institute of Virology; Chinese Academy of Sciences; Wuhan China
- University of Chinese Academy of Sciences; Beijing China
| | - X. Xiang
- Wuhan Institute of Virology; Chinese Academy of Sciences; Wuhan China
| | - Y. Ge
- Wuhan Institute of Virology; Chinese Academy of Sciences; Wuhan China
| | - Z. Yuan
- Wuhan Institute of Virology; Chinese Academy of Sciences; Wuhan China
| | - X. Hu
- Wuhan Institute of Virology; Chinese Academy of Sciences; Wuhan China
| |
Collapse
|
19
|
Fu P, Ge Y, Wu Y, Zhao N, Yuan Z, Hu X. The LspC3-41I restriction-modification system is the major determinant for genetic manipulations of Lysinibacillus sphaericus C3-41. BMC Microbiol 2017; 17:116. [PMID: 28525986 PMCID: PMC5437673 DOI: 10.1186/s12866-017-1014-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/26/2017] [Indexed: 12/26/2022] Open
Abstract
Background Lysinibacillus sphaericus has been widely used in integrated mosquito control program and it is one of the minority bacterial species unable to metabolize carbohydrates. In consideration of the high genetic conservation at genomic level and difficulty of genetic horizontal transfer, it is hypothesized that effective restriction-modification (R-M) systems existed in mosquitocidal L. sphaericus. Results In this study, six type II R-M systems including LspC3–41I were predicted in L. sphaericus C3–41 genome. It was found that the cell free extracts (CFE) from this strain shown similar restriction and methylation activity on exogenous Bacillus/Escherichia coli shuttle vector pBU4 as the HaeIII, which is an isoschizomer of BspRI. The Bsph_0498 (encoding the predicted LspC3–41IR) knockout mutant Δ0498 and the complement strain RC0498 were constructed. It was found that the unmethylated pBU4 can be digested by the CFE of C3–41 and RC0498, but not by that of Δ0498. Furthermore, the exogenous plasmid pBU4 can be transformed at very high efficacy into Δ0498, low efficacy into RC0498, but no transformation into C3–41, indicating that LspC3–41I might be a major determinant for the genetic restriction barrier of strain C3–41. Besides, lspC3–41IR and lspC3–41IM genes are detected in other two strains besides C3–41 of the tested 16 L. sphaericus strains, which all belonging to serotype H5 and MLST sequence type (ST) 1. Furthermore, the three strains are not horizontal transferred, and this restriction could be overcome by in vitro methylation either by the host CFE or by commercial methytransferase M. HaeIII. The results provide an insight to further study the genetic restriction, modification and evolution of mosquitocidal L. sphaericus, also a theoretical basis and a method for the genetic manipulations of L. sphaericus. Conclusions LspC3–41I is identified as the major determinant for the restriction barrier of L. sphaericus C3–41. Only three strains of the tested 16 L. sphaericus strains, which all belonging to serotype H5 and ST1 by MLST scheme, contain LspC3–41I system. Two different methods can be used to overcome the restriction barrier of the three isolates to get transformants efficiently: 1) to methylate plasmid DNA prior to the electroporation; and 2) to delete the major restriction endonuclease encoding gene lspC3–41IR.
Collapse
Affiliation(s)
- Pan Fu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Yong Ge
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yiming Wu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Ni Zhao
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zhiming Yuan
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Xiaomin Hu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
20
|
Shanks JL, Haigh AM, Riegler M, Spooner-Hart RN. First confirmed report of a bacterial brood disease in stingless bees. J Invertebr Pathol 2017; 144:7-10. [DOI: 10.1016/j.jip.2017.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 01/08/2017] [Indexed: 10/20/2022]
|
21
|
Lozano LC, Dussán J. Synergistic Activity Between S-Layer Protein and Spore-Crystal Preparations from Lysinibacillus sphaericus Against Culex quinquefasciatus Larvae. Curr Microbiol 2017; 74:371-376. [PMID: 28168605 DOI: 10.1007/s00284-016-1185-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 12/21/2016] [Indexed: 01/25/2023]
Abstract
Lysinibacillus sphaericus is used for the biological control of mosquitoes. The main toxicity mechanism of pathogenic strains is a binary toxin produced during sporulation. S-layer is a proteinaceous structure on the surface of bacteria; its functions have been involved in the interaction between bacterial cells and the environment, for example, as protective coats, surface recognition, and biological control. In L. sphaericus, S-layer protein (SlpC) is expressed in vegetative cells, and is also found in spore-crystal preparations; it has larvicidal activity in Culex spp. In this study, partial and completed sporulated culture toxicities were compared; also, S-layer protein and spore-crystal proteins were tested against Culex quinquefasciatus larvae for possible interactions. Larvicidal activity obtained with a combination of SlpC and spore-crystal proteins from strain III(3)7 showed no significant interaction, whereas, combinations of both preparations from strain 2362 showed synergistic effect. The highest synergistic activity observed was between spore protein complex from strain 2362 and SlpC from III(3)7. S-layer protein could be considered a good alternative in formulation improvement, for biological control of mosquitoes.
Collapse
Affiliation(s)
- Lucía C Lozano
- Departamento de Ciencias Biológicas, Centro de Investigaciones Microbiológicas-CIMIC, Universidad de los Andes, Cra 1E No. 18A-10 J207, Bogotá, Colombia.,Departamento de Ciencias Básicas, Universidad de la Salle, Cra 2 No. 10-70, Bogotá, Colombia
| | - Jenny Dussán
- Departamento de Ciencias Biológicas, Centro de Investigaciones Microbiológicas-CIMIC, Universidad de los Andes, Cra 1E No. 18A-10 J207, Bogotá, Colombia.
| |
Collapse
|
22
|
Moar WJ, Evans AJ, Kessenich CR, Baum JA, Bowen DJ, Edrington TC, Haas JA, Kouadio JLK, Roberts JK, Silvanovich A, Yin Y, Weiner BE, Glenn KC, Odegaard ML. The sequence, structural, and functional diversity within a protein family and implications for specificity and safety: The case for ETX_MTX2 insecticidal proteins. J Invertebr Pathol 2017; 142:50-59. [DOI: 10.1016/j.jip.2016.05.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 05/20/2016] [Accepted: 05/24/2016] [Indexed: 11/26/2022]
|
23
|
Geng P, Hu Y, Zhou G, Yuan Z, Hu X. Characterization of three autolysins with activity against cereulide-producing Bacillus isolates in food matrices. Int J Food Microbiol 2016; 241:291-297. [PMID: 27835772 DOI: 10.1016/j.ijfoodmicro.2016.10.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 09/06/2016] [Accepted: 10/23/2016] [Indexed: 10/20/2022]
Abstract
Bacillus cereus is a pathogen related with diarrhoeal or emetic food poisoning cases, of which the latter caused by the cereulide-producing isolates are more severe with several reported lethal cases. It is therefore necessary to develop an effective strategy to prevent the propagation of B. cereus in the food supply. In this study, three autolysins from the cereulide-producing B. cereus group isolates, LysIS075, LysF8819.1 and LysCER057, were identified and characterized. The results showed that the three autolysins were highly lytic and bactericidal to the tested cereulide-producing B. cereus group strains and cross-lytic against other tested B. cereus group strains, and they could inhibit the spore germination and propagation of their tested derived emetic strains. Physical and chemical characterization showed that all the three autolysins were alkalophilic with the optimal activity at pH9.0 or 9.5 with one exception of LysF8819.1 also having significant lytic activity at pH5.0, and they all had relative strong lytic activity at 37-50°C during the 30minute assay. However, LysCER057 showed relative susceptibility to thermo-condition. Remarkably, the separate or cock-tail addition of the three autolysins in food matrices (milk and rice porridge) showed effective bactericidal activity within the tested 2h. All the results revealed that the three autolysins might be potential candidates to control emetic B. cereus strains in different applications.
Collapse
Affiliation(s)
- Peiling Geng
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430070, China; University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Yimin Hu
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430070, China
| | - Guoping Zhou
- Department of Bioengineering and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Zhiming Yuan
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430070, China.
| | - Xiaomin Hu
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430070, China.
| |
Collapse
|
24
|
Gómez-Garzón C, Hernández-Santana A, Dussán J. Comparative genomics reveals Lysinibacillus sphaericus group comprises a novel species. BMC Genomics 2016; 17:709. [PMID: 27595771 PMCID: PMC5011910 DOI: 10.1186/s12864-016-3056-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 08/27/2016] [Indexed: 12/12/2022] Open
Abstract
Background Early in the 1990s, it was recognized that Lysinibacillus sphaericus, one of the most popular and effective entomopathogenic bacteria, was a highly heterogeneous group. Many authors have even proposed it comprises more than one species, but the lack of phenotypic traits that guarantee an accurate differentiation has not allowed this issue to be clarified. Now that genomic technologies are rapidly advancing, it is possible to address the problem from a whole genome perspective, getting insights into the phylogeny, evolutive history and biology itself. Results The genome of the Colombian strain L. sphaericus OT4b.49 was sequenced, assembled and annotated, obtaining 3 chromosomal contigs and no evidence of plasmids. Using these sequences and the 13 other L. sphaericus genomes available on the NCBI database, we carried out comparative genomic analyses that included whole genome alignments, searching for mobile elements, phylogenomic metrics (TETRA, ANI and in-silico DDH) and pan-genome assessments. The results support the hypothesis about this species as a very heterogeneous group. The entomopathogenic lineage is actually a single and independent species with 3728 core genes and 2153 accessory genes, whereas each non-toxic strain seems to be a separate species, though without a clear circumscription. Toxin-encoding genes, binA, B and mtx1, 2, 3 could be acquired via horizontal gene transfer in a single evolutionary event. The non-toxic strain OT4b.31 is the most related with the type strain KCTC 3346. Conclusions The current L. sphaericus is actually a sensu lato due to a sub-estimation of diversity accrued using traditional non-genomics based classification strategies. The toxic lineage is the most studied with regards to its larvicidal activity, which is a greatly conserved trait among these strains and thus, their differentiating feature. Further studies are needed in order to establish a univocal classification of the non-toxic strains that, according to our results, seem to be a paraphyletic group. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3056-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Camilo Gómez-Garzón
- Centro de Investigaciones Microbiológicas (CIMIC), Universidad de los Andes, Cra 1 N. 18 A-12, Bogotá, Colombia
| | - Alejandra Hernández-Santana
- Centro de Investigaciones Microbiológicas (CIMIC), Universidad de los Andes, Cra 1 N. 18 A-12, Bogotá, Colombia
| | - Jenny Dussán
- Centro de Investigaciones Microbiológicas (CIMIC), Universidad de los Andes, Cra 1 N. 18 A-12, Bogotá, Colombia.
| |
Collapse
|
25
|
Rey A, Silva-Quintero L, Dussán J. Complete genome sequencing and comparative genomic analysis of functionally diverse Lysinibacillus sphaericus III(3)7. GENOMICS DATA 2016; 9:78-86. [PMID: 27419068 PMCID: PMC4932437 DOI: 10.1016/j.gdata.2016.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 06/16/2016] [Indexed: 01/25/2023]
Abstract
Lysinibacillus sphaericus III(3)7 is a native Colombian strain, the first one isolated from soil samples. This strain has shown high levels of pathogenic activity against Culex quinquefaciatus larvae in laboratory assays compared to other members of the same species. Using Pacific Biosciences sequencing technology we sequenced, annotated (de novo) and described the genome of strain III(3)7, achieving a complete genome sequence status. We then performed a comparative analysis between the newly sequenced genome and the ones previously reported for Colombian isolates L. sphaericus OT4b.31, CBAM5 and OT4b.25, with the inclusion of L. sphaericus C3-41 that has been used as a reference genome for most of previous genome sequencing projects. We concluded that L. sphaericus III(3)7 is highly similar with strain OT4b.25 and shares high levels of synteny with isolates CBAM5 and C3-41.
Collapse
Affiliation(s)
- Andrés Rey
- Centro de Investigaciones Microbiologicas (CIMIC), Universidad de los Andes, Bogotá D.C., Cundinamarca, Colombia
| | - Laura Silva-Quintero
- Centro de Investigaciones Microbiologicas (CIMIC), Universidad de los Andes, Bogotá D.C., Cundinamarca, Colombia
| | - Jenny Dussán
- Centro de Investigaciones Microbiologicas (CIMIC), Universidad de los Andes, Bogotá D.C., Cundinamarca, Colombia
| |
Collapse
|
26
|
Guo QY, Hu XM, Cai QX, Yan JP, Yuan ZM. Interaction of Lysinibacillus sphaericus Cry48Aa/Cry49Aa toxin with midgut brush-border membrane fractions from Culex quinquefasciatus larvae. INSECT MOLECULAR BIOLOGY 2016; 25:163-170. [PMID: 26748768 DOI: 10.1111/imb.12209] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The Cry48Aa/Cry49Aa mosquitocidal toxin from Lysinibacillus sphaericus was uniquely composed of a three-domain (Cry) toxin and binary (Bin) toxin-like protein, with high toxicity against Culex spp. However, its mode of action against the target mosquitoes is still unknown. In this study, Cry48Aa, Cry49Aa and its N- and C-terminal truncated proteins were expressed and purified, and the binding affinities of the purified proteins with midgut brush-border membrane fractions (BBMFs) from Culex quin-quefasciatus larvae were performed. The results showed that both Cry48Aa and Cry49Aa have specific and high binding affinity to BBMFs, with dissociation constants of 9.5 ± 1.8 and 25.4 ± 3.8 nM, respectively. Competition assays demonstrated that Cry49Aa C-terminal derivatives were able to bind to the BBMFs, whereas Far-Western dot blot analysis revealed that its N-terminal constructs interacted with Cry48Aa. Nevertheless, larvicidal activity was almost lost when Cry49Aa truncated proteins, either individually or in pairs, combined with Cry48Aa. It is concluded that Cry49Aa is responsible for receptor binding and interaction with Cry48Aa and plays an important role in the mechanism of action of these two-component toxins.
Collapse
Affiliation(s)
- Q-Y Guo
- College of Life and Environmental Sciences, Gannan Normal University, Ganzhou, China
| | - X-M Hu
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Q-X Cai
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - J-P Yan
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Z-M Yuan
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
27
|
Garcia-Ramon DC, Luque-Navas MJ, Molina CA, Del Val C, Osuna A, Vilchez S. Identification, sequencing and comparative analysis of pBp15.S plasmid from the newly described entomopathogen Bacillus pumilus 15.1. Plasmid 2015; 82:17-27. [PMID: 26416357 DOI: 10.1016/j.plasmid.2015.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/21/2015] [Accepted: 09/23/2015] [Indexed: 01/18/2023]
Abstract
The Bacillus pumilus 15.1 strain, a recently described entomopathogenic strain active against Ceratitis capitata, contains at least two extrachromosomal elements, pBp15.1S and pBp15.1B. Given that B. pumilus is not a typical entomopathogenic bacterium, the acquisition of this extrachromosomal DNA may explain why B. pumilus 15.1 is toxic to an insect. One of the plasmids present in the strain, the pBp15.1S plasmid, was sub-cloned, sequenced and analyzed using bioinformatics to identify any potential virulence factor. The pBp15.1S plasmid was found to be 7785 bp in size with a GC content of 35.7% and 11 putative ORFs. A replication module typical of a small rolling circle plasmid and a sensing and regulatory system specific for plasmids was found in pBp15.1S. Additionally, we demonstrated the existence of ssDNA in plasmid preparations suggesting that pBp15.1S replicates by the small rolling circle mechanism. A gene cluster present in plasmid pPZZ84 from a distantly isolated B. pumilus strain was also present in pBp15.1S. The plasmid copy number of pBp15.1S in exponentially growing B. pumilus cells was determined to be 33 copies per chromosome. After an extensive plasmid characterization, no known virulence factor was found so a search in the other extrachromosomal elements of the bacteria is needed.
Collapse
Affiliation(s)
- Diana C Garcia-Ramon
- Institute of Biotechnology, Campus Fuentenueva s/n, University of Granada, 18071 Granada, Spain.
| | - Maria Jose Luque-Navas
- Institute of Biotechnology, Campus Fuentenueva s/n, University of Granada, 18071 Granada, Spain.
| | - C Alfonso Molina
- International Center for Zoonoses (CIZ), Faculty of Veterinary Medicine and Zootechnic, Central University of Ecuador, PO Box.17-03-100, Quito, Ecuador.
| | - Coral Del Val
- Department of Computer Science and Artificial Intelligence, Campus Fuentenueva s/n, University of Granada, 18071 Granada, Spain.
| | - Antonio Osuna
- Institute of Biotechnology, Campus Fuentenueva s/n, University of Granada, 18071 Granada, Spain.
| | - Susana Vilchez
- Institute of Biotechnology, Campus Fuentenueva s/n, University of Granada, 18071 Granada, Spain; Department of Biochemistry and Molecular Biology I, Campus Fuentenueva s/n, University of Granada, 18071 Granada, Spain.
| |
Collapse
|
28
|
Zhu C, Sun G, Zhao G, Zheng H, Xu M. Complete genome sequence of Lysinibacillus varians GY32, a bacterium with filament-to-rod cell cycle. FEMS Microbiol Lett 2015; 362:1-3. [PMID: 25790491 DOI: 10.1093/femsle/fnu010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The complete genome sequence of Lysinibacillus varians GY32 was determined to be 4,662,822 base pairs in a single circular chromosome. Genes in cell division, cell cycle, surface layer and cell wall synthesis are foundation of its unique cell morphology. The genome contains multiple clusters of transcriptional regulator, two-component system and sigma factors, providing the organism with the ability to regulate a filament-to-rod cell cycle progression. L. varians GY32 was, to our knowledge, the first bacterium with a filament-to-rod cell cycle to be sequenced and its annotated genome might provide new insights into our understanding of bacterial cell cycle regulation.
Collapse
Affiliation(s)
- Chunjie Zhu
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Panyu District, Guangzhou 510006, Guangdong, China Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, 100 Xianlie Road, Yuexiu District, Guangzhou 510070, Guangdong, China State Key Laboratory of Applied Microbiology Southern China, 100 Xianlie Road, Yuexiu District, Guangzhou 510070, Guangdong, China
| | - Guoping Sun
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, 100 Xianlie Road, Yuexiu District, Guangzhou 510070, Guangdong, China State Key Laboratory of Applied Microbiology Southern China, 100 Xianlie Road, Yuexiu District, Guangzhou 510070, Guangdong, China
| | - Guoping Zhao
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, 250 Bi-Bo Road, Zhang Jiang Hi-Tech Park, Shanghai 201203, China
| | - Huajun Zheng
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, 250 Bi-Bo Road, Zhang Jiang Hi-Tech Park, Shanghai 201203, China
| | - Meiying Xu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, 100 Xianlie Road, Yuexiu District, Guangzhou 510070, Guangdong, China State Key Laboratory of Applied Microbiology Southern China, 100 Xianlie Road, Yuexiu District, Guangzhou 510070, Guangdong, China
| |
Collapse
|
29
|
Xu K, Yuan Z, Rayner S, Hu X. Genome comparison provides molecular insights into the phylogeny of the reassigned new genus Lysinibacillus. BMC Genomics 2015; 16:140. [PMID: 25888315 PMCID: PMC4363355 DOI: 10.1186/s12864-015-1359-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 02/19/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Lysinibacillus sphaericus (formerly named Bacillus sphaericus) is incapable of polysaccharide utilization and some isolates produce active insecticidal proteins against mosquito larvae. Its taxonomic status was changed to the genus Lysinibacillus in 2007 with some other organisms previously regarded as members of Bacillus. However, this classification is mainly based on physiology and phenotype and there is limited genomic information to support it. RESULTS In this study, four genomes of L. sphaericus were sequenced and compared with those of 24 representative strains belonging to Lysinibacillus and Bacillus. The results show that Lysinibacillus strains are phylogenetically related based on the genome sequences and composition of core genes. Comparison of gene function indicates the major difference between Lysinibacillus and the two Bacillus species is related to metabolism and cell wall/membrane biogenesis. Although L. sphaericus mosquitocidal isolates are highly conserved, other Lysinibacillus strains display a large heterogeneity. It was observed that mosquitocidal toxin genes in L. sphaericus were in close proximity to genome islands (GIs) and mobile genetic elements (MGEs). Furthermore, different copies and varying genomic location of the GIs containing binA/binB was observed amongst the different isolates. In addition, a plasmid highly similar to pBsph, but lacking the GI containing binA/binB, was found in L. sphaericus SSII-1. CONCLUSIONS Our results confirm the taxonomy of the new genus Lysinibacillus at the genome level and suggest a new species for mosquito-toxic L. sphaericus. Based on our findings, we hypothesize that (1) Lysinibacillus strains evolved from a common ancestor and the mosquitocidal L. sphaericus toxin genes were acquired by horizontal gene transfer (HGT), and (2) capture and loss of plasmids occurs in the population, which plays an important role in the transmission of binA/binB.
Collapse
Affiliation(s)
- Kai Xu
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China. .,University of the Chinese Academy of Sciences, Beijing, 100039, China.
| | - Zhiming Yuan
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Simon Rayner
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Xiaomin Hu
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
30
|
Peña-Montenegro TD, Lozano L, Dussán J. Genome sequence and description of the mosquitocidal and heavy metal tolerant strain Lysinibacillus sphaericus CBAM5. Stand Genomic Sci 2015; 10:2. [PMID: 25685257 PMCID: PMC4317669 DOI: 10.1186/1944-3277-10-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 11/21/2014] [Indexed: 12/18/2022] Open
Abstract
Lysinibacillus sphaericus CBAM5, was isolated from subsurface soil of oil well explorations in the Easter Planes of Colombia. This strain has potential in bioremediation of heavy-metal polluted environments and biological control of Culex quinquefasciatus. According to the phylogenetic analysis of 16S rRNA gene sequences, the strain CBAM5 was assigned to the Lysinibacillus sphaericus taxonomic group 1 that comprises mosquito pathogenic strains. After a combination assembly-integration, alignment and gap-filling steps, we propose a 4,610,292 bp chromosomal scaffold. The whole genome (consisting of 5,146,656 bp long, 60 contigs and 5,209 predicted-coding sequences) revealed strong functional and syntenial similarities to the L. sphaericus C3-41 genome. Mosquitocidal (Mtx), binary (Bin) toxins, cereolysin O, and heavy metal resistance clusters from nik, ars, czc, mnt, ter, cop, cad, and znu operons were identified.
Collapse
Affiliation(s)
| | - Lucía Lozano
- Centro de Investigaciones Microbiológicas - CIMIC, Universidad de los Andes, Bogotá, Colombia
| | - Jenny Dussán
- Centro de Investigaciones Microbiológicas - CIMIC, Universidad de los Andes, Bogotá, Colombia
| |
Collapse
|
31
|
Palma L, Muñoz D, Berry C, Murillo J, Caballero P. Bacillus thuringiensis toxins: an overview of their biocidal activity. Toxins (Basel) 2014; 6:3296-325. [PMID: 25514092 PMCID: PMC4280536 DOI: 10.3390/toxins6123296] [Citation(s) in RCA: 384] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/07/2014] [Accepted: 12/03/2014] [Indexed: 11/16/2022] Open
Abstract
Bacillus thuringiensis (Bt) is a Gram positive, spore-forming bacterium that synthesizes parasporal crystalline inclusions containing Cry and Cyt proteins, some of which are toxic against a wide range of insect orders, nematodes and human-cancer cells. These toxins have been successfully used as bioinsecticides against caterpillars, beetles, and flies, including mosquitoes and blackflies. Bt also synthesizes insecticidal proteins during the vegetative growth phase, which are subsequently secreted into the growth medium. These proteins are commonly known as vegetative insecticidal proteins (Vips) and hold insecticidal activity against lepidopteran, coleopteran and some homopteran pests. A less well characterized secretory protein with no amino acid similarity to Vip proteins has shown insecticidal activity against coleopteran pests and is termed Sip (secreted insecticidal protein). Bin-like and ETX_MTX2-family proteins (Pfam PF03318), which share amino acid similarities with mosquitocidal binary (Bin) and Mtx2 toxins, respectively, from Lysinibacillus sphaericus, are also produced by some Bt strains. In addition, vast numbers of Bt isolates naturally present in the soil and the phylloplane also synthesize crystal proteins whose biological activity is still unknown. In this review, we provide an updated overview of the known active Bt toxins to date and discuss their activities.
Collapse
Affiliation(s)
- Leopoldo Palma
- Instituto de Agrobiotecnología, CSIC-UPNA-Gobierno de Navarra, Campus Arrosadía, Mutilva Baja, 31192 Navarra, Spain.
| | - Delia Muñoz
- Grupo de Protección Cultivos, Departamento de Producción Agraria, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Pública de Navarra, Pamplona, 31006 Navarra, Spain.
| | - Colin Berry
- Cardiff School of Biosciences, Cardiff University, Park Place, Cardiff CF10 3AT, UK.
| | - Jesús Murillo
- Grupo de Protección Cultivos, Departamento de Producción Agraria, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Pública de Navarra, Pamplona, 31006 Navarra, Spain.
| | - Primitivo Caballero
- Instituto de Agrobiotecnología, CSIC-UPNA-Gobierno de Navarra, Campus Arrosadía, Mutilva Baja, 31192 Navarra, Spain.
| |
Collapse
|
32
|
El-Kawokgy TMA, Hussein HA, Aly NAH, Mohamed SAH. Highly toxic and broad-spectrum insecticidal local Bacillus strains engineered using protoplast fusion. Can J Microbiol 2014; 61:38-47. [PMID: 25485592 DOI: 10.1139/cjm-2014-0532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protoplast fusion was performed between a local Bacillus thuringiensis UV-resistant mutant 66/1a (Bt) and Bacillus sphaericus GHAI (Bs) to produce new Bacillus strains with a wider spectrum of action against different insects. Bt is characterized as sensitive to polymyxin and streptomycin and resistant to rifampicin and has shown 87% mortality against Spodoptera littoralis larvae at concentration of 1.5 × 10(7) cells/mL after 7 days of feeding; Bs is characterized as resistant to polymyxin and streptomycin and sensitive to rifampicin and has been shown to have 100% mortality against Culex pipiens after 1 day of feeding at the same concentration as that of Bt. Among a total of 64 Bt::Bs fusants produced on the selective medium containing polymyxin, streptomycin, and rifampicin, 17 fusants were selected because of their high mortality percentages against S. littoralis (Lepidoptera) and C. pipiens (Diptera). While Bt harboured 3 plasmids (600, 350, and 173 bp) and Bs had 2 plasmids (544 and 291 bp), all the selected fusants acquired plasmids from both parental strains. SDS-PAGE protein analysis of the 17 selected fusants and their parental strains confirmed that all fusant strains acquired and expressed many specific protein bands from the 2 parental strains, especially the larvicidal proteins to both lepidopteran and dipteran species with molecular masses of 65, 70, 80, 88, 100, and 135 kDa. Four protein bands with high molecular masses of 281, 263, 220, and 190 kDa, which existed in the Bt parental strain and did not exist in the Bs parental strain, and 2 other protein bands with high molecular masses of 185 and 180 kDa, which existed in the Bs parental strain and did not exist in the Bt parental strain, were expressed in most fusants. The results indicated the expression of some cry genes encoded for insecticidal crystal proteins from Bt and the binary toxin genes from Bs in all fusant strains. The recombinant fusants have more efficient and potential values for agricultural application compared with both the insecticidal Bt and the mosquitocidal Bs strains alone against S. littoralis and C. pipiens larvae, respectively.
Collapse
|
33
|
Allievi MC, Palomino MM, Prado Acosta M, Lanati L, Ruzal SM, Sánchez-Rivas C. Contribution of S-layer proteins to the mosquitocidal activity of Lysinibacillus sphaericus. PLoS One 2014; 9:e111114. [PMID: 25354162 PMCID: PMC4213006 DOI: 10.1371/journal.pone.0111114] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 09/26/2014] [Indexed: 11/25/2022] Open
Abstract
Lysinibacillus sphaericus strains belonging the antigenic group H5a5b produce spores with larvicidal activity against larvae of Culex mosquitoes. C7, a new isolated strain, which presents similar biochemical characteristics and Bin toxins in their spores as the reference strain 2362, was, however, more active against larvae of Culex mosquitoes. The contribution of the surface layer protein (S-layer) to this behaviour was envisaged since this envelope protein has been implicated in the pathogenicity of several bacilli, and we had previously reported its association to spores. Microscopic observation by immunofluorescence detection with anti S-layer antibody in the spores confirms their attachment. S-layers and BinA and BinB toxins formed high molecular weight multimers in spores as shown by SDS-PAGE and western blot detection. Purified S-layer from both L. sphaericus C7 and 2362 strain cultures was by itself toxic against Culex sp larvae, however, that from C7 strain was also toxic against Aedes aegypti. Synergistic effect between purified S-layer and spore-crystal preparations was observed against Culex sp. and Aedes aegypti larvae. This effect was more evident with the C7 strain. In silico analyses of the S-layer sequence suggest the presence of chitin-binding and hemolytic domains. Both biochemical characteristics were detected for both S-layers strains that must justify their contribution to pathogenicity.
Collapse
Affiliation(s)
- Mariana Claudia Allievi
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN-CONICET, Buenos Aires, Argentina
| | - María Mercedes Palomino
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN-CONICET, Buenos Aires, Argentina
| | - Mariano Prado Acosta
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN-CONICET, Buenos Aires, Argentina
| | - Leonardo Lanati
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN-CONICET, Buenos Aires, Argentina
| | - Sandra Mónica Ruzal
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN-CONICET, Buenos Aires, Argentina
| | - Carmen Sánchez-Rivas
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN-CONICET, Buenos Aires, Argentina
| |
Collapse
|
34
|
Draft Genome Sequence of Strain BF-4, a Lysinibacillus-Like Bacillus Isolated during an Anthrax Outbreak in Bavaria. GENOME ANNOUNCEMENTS 2014; 2:2/5/e00918-14. [PMID: 25301643 PMCID: PMC4192375 DOI: 10.1128/genomea.00918-14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the draft genome sequence of Lysinibacillus sp. strain BF-4. Strain BF-4 has a notably small genome for a free-living bacillus, with a size of 2.63 Mbp. In agreement with phenotypic observations, the genome lacks genes essential for endospore formation.
Collapse
|
35
|
A novel transcriptional activator, tubX, is required for the stability of Bacillus sphaericus mosquitocidal plasmid pBsph. J Bacteriol 2014; 196:4304-14. [PMID: 25266379 DOI: 10.1128/jb.01855-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stable maintenance of the low-copy-number plasmid pBsph in Bacillus sphaericus requires a partitioning (par) system that consists of a filament-forming protein, B. sphaericus TubZ (TubZ-Bs); a centromere-binding protein, TubR-Bs; and a centromere-like DNA site, tubC, composed of three blocks (I, II, and III) of 12-bp degenerate repeats. Previous studies have shown that mini-pBsph replicons encoding the TubZ system are segregationally highly unstable, whereas the native pBsph is stably maintained. However, the mechanism underlying the stability discrepancy between pBsph and its minireplicon is poorly understood. Here orf187 (encoding TubX), a gene downstream of tubZ-Bs, was found to play a role in plasmid stabilization. Null mutation or overexpression of tubX resulted in a defect in pBsph stability and a significant decrease in the level of tubRZ-Bs expression, and the TubX-null phenotype was suppressed by ectopic expression of a wild-type copy of tubX and additional tubRZ-Bs. An electrophoresis mobility shift assay (EMSA) and a DNase I footprinting assay revealed that the TubX protein bound directly to five 8-bp degenerate repeats located in the par promoter region and that TubX competed with TubR-Bs for binding to the par promoter. Further studies demonstrated that TubX significantly stimulated the transcription of the par operon in the absence of tubR-Bs, and a higher level of gene activation was observed when tubR-Bs was present. These results suggested that TubX positively regulates tubRZ-Bs transcription by interfering with TubR-Bs-mediated repression and binding directly to the tubRZ-Bs promoter region.
Collapse
|
36
|
Collagen-like glycoprotein BclS is involved in the formation of filamentous structures of the Lysinibacillus sphaericus exosporium. Appl Environ Microbiol 2014; 80:6656-63. [PMID: 25149519 DOI: 10.1128/aem.02238-14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Lysinibacillus sphaericus produces mosquitocidal binary toxins (Bin toxins) deposited within a balloon-like exosporium during sporulation. Unlike Bacillus cereus group strains, the exosporium of L. sphaericus is usually devoid of the hair-like nap, an external filamentous structure formed by a collagen-like protein, BclA. In this study, a new collagen-like exosporium protein encoded by Bsph_0411 (BclS) from L. sphaericus C3-41 was characterized. Thin-section electron microscopy revealed that deletion of bclS resulted in the loss of the filamentous structures that attach to the exosporium basal layer and spread through the interspace of spores. In vivo visualization of BclS-green fluorescent protein (GFP)/mCherry fusion proteins revealed a dynamic pattern of fluorescence that encased the spore from the mother cell-distal (MCD) pole of the forespore, and the BclS-GFP fusions were found to be located in the interspace of the spore, as confirmed by three-dimensional (3D) superresolution fluorescence microscopy. Further studies demonstrated that the bclS mutant spores were more sensitive to wet-heat treatment and germinated at a lower rate than wild-type spores and that these phenotypes were significantly restored in the bclS-complemented strain. These results suggested novel roles of collagen-like protein in exosporium assembly and spore germination, providing a hint for a further understanding of the genetic basis of the high level of persistence of Bin toxins in nature.
Collapse
|
37
|
Ge Y, Hu X, Zhao N, Shi T, Cai Q, Yuan Z. A new tubRZ operon involved in the maintenance of the Bacillus sphaericus mosquitocidal plasmid pBsph. Microbiology (Reading) 2014; 160:1112-1124. [DOI: 10.1099/mic.0.075465-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
pBsph is a mosquitocidal plasmid first identified from Bacillus sphaericus, encoding binary toxins (Bin toxins) that are highly toxic to mosquito larvae. This plasmid plays an important role in the maintenance and evolution of the bin genes in B. sphaericus. However, little is known about its replication and partitioning. Here, we identified a 2.4 kb minimal replicon of pBsph plasmid that contained an operon encoding TubR-Bs and TubZ-Bs, each of which was shown to be required for plasmid replication. TubR-Bs was shown to be a transcriptional repressor of tubRZ-Bs genes and could bind cooperatively to the replication origin of eleven 12 bp degenerate repeats in three blocks, and this binding was essential for plasmid replication. TubZ-Bs exhibited GTPase activities and interacted with TubR-Bs : DNA complex to form a ternary nucleoprotein apparatus. Electron and fluorescence microscopy revealed that TubZ-Bs assembled filaments both in vitro and in vivo, and two point mutations in TubZ-Bs (T114A and Y260A) that severely impaired the GTPase and polymerization activities were found to be defective for plasmid maintenance. Further investigation demonstrated that overproduction of TubZ-Bs-GFP or its mutant forms significantly reduced the stability of pBsph. Taken together, these results suggested that TubR-Bs and TubZ-Bs are involved in the replication and probably in the partitioning of pBsph plasmid, increasing our understanding of the genetic particularity of TubZ systems.
Collapse
Affiliation(s)
- Yong Ge
- University of the Chinese Academy of Sciences, Beijing 100039, PR China
- Key Laboratory of Applied and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Xiaomin Hu
- Key Laboratory of Applied and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Ni Zhao
- Key Laboratory of Applied and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Tingyu Shi
- Key Laboratory of Applied and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Quanxin Cai
- Key Laboratory of Applied and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Zhiming Yuan
- Key Laboratory of Applied and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| |
Collapse
|
38
|
Luo W, Liu C, Zhang R, He J, Han B. Anticancer Activity of Binary Toxins from Lysinibacillus sphaericus IAB872 against Human Lung Cancer Cell Line A549. Nat Prod Commun 2014. [DOI: 10.1177/1934578x1400900131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The inhibitory effect of binary toxic (Bin) protein produced by Lysinibacillus sphaericus IAB872 on cell proliferation of human lung, liver, stomach and cervical tumor cell lines was assessed using MTT assay. The effect of Bin protein on A549 cell proliferation, apoptosis, cell cycle, migration and invasion were examined by MTT assay, Western blotting, Immunocytochemical staining, flow cytometry assay and wound-healing assay. Results showed that Bin protein inhibits proliferation of a range of human cancer cells in vitro. The anti-proliferative effect of Bin is associated with cell apoptosis as a result of an increased ratio of cellular Bax/bcl-2, up-regulated CyclinB1and down-regulated Cdc25c expression, and its anti-proliferative action was associated with cell cycle arrest in the G2/M-phase. Bin protein could promote apoptosis and inhibit motility and invasion of A549 cancer cells. The anti-proliferative effect of Bin protein was associated with the induction of apoptotic cell death and cell cycle disruption. These results show that Bin protein has the potential to be developed as a chemotherapeutic agent by induction of human tumor cell apoptosis.
Collapse
Affiliation(s)
- Wenjuan Luo
- School of Medicine, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Cuicui Liu
- School of Medicine, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ruijuan Zhang
- School of Medicine, Xi'an Jiaotong University, Xi'an, 710061, China
- Nutrition and Food Safety Engineering Research Center of Shaanxi Province, Xi'an, 710061, China
| | - Jianwei He
- Central affiliated hospital of medical college of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Bei Han
- School of Medicine, Xi'an Jiaotong University, Xi'an, 710061, China
- Nutrition and Food Safety Engineering Research Center of Shaanxi Province, Xi'an, 710061, China
| |
Collapse
|
39
|
Peña-Montenegro TD, Dussán J. Genome sequence and description of the heavy metal tolerant bacterium Lysinibacillus sphaericus strain OT4b.31. Stand Genomic Sci 2013; 9:42-56. [PMID: 24501644 PMCID: PMC3910547 DOI: 10.4056/sigs.4227894] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Lysinibacillus sphaericus strain OT4b.31 is a native Colombian strain having no larvicidal activity against Culex quinquefasciatus and is widely applied in the bioremediation of heavy-metal polluted environments. Strain OT4b.31 was placed between DNA homology groups III and IV. By gap-filling and alignment steps, we propose a 4,096,672 bp chromosomal scaffold. The whole genome (consisting of 4,856,302 bp long, 94 contigs and 4,846 predicted protein-coding sequences) revealed differences in comparison to the L. sphaericus C3-41 genome, such as syntenial relationships, prophages and putative mosquitocidal toxins. Sphaericolysin B354, the coleopteran toxin Sip1A and heavy metal resistance clusters from nik, ars, czc, cop, chr, czr and cad operons were identified. Lysinibacillus sphaericus OT4b.31 has applications not only in bioremediation efforts, but also in the biological control of agricultural pests.
Collapse
Affiliation(s)
| | - Jenny Dussán
- Centro de Investigaciones Microbiológicas - CIMIC, Universidad de los Andes, Bogotá, Colombia
| |
Collapse
|
40
|
Utilization of proteinaceous materials for power generation in a mediatorless microbial fuel cell by a new electrogenic bacteria Lysinibacillus sphaericus VA5. Enzyme Microb Technol 2013; 53:339-44. [DOI: 10.1016/j.enzmictec.2013.07.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 07/16/2013] [Accepted: 07/17/2013] [Indexed: 11/24/2022]
|
41
|
Jeong H, Jeong DE, Sim YM, Park SH, Choi SK. Genome Sequence of Lysinibacillus sphaericus Strain KCTC 3346T. GENOME ANNOUNCEMENTS 2013; 1:e00625-13. [PMID: 23950128 PMCID: PMC3744684 DOI: 10.1128/genomea.00625-13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 07/22/2013] [Indexed: 11/20/2022]
Abstract
Lysinibacillus sphaericus is a heterogeneous species that includes strains that produce mosquitocidal toxin proteins. Herein, we report the 4.56-Mb draft genome sequence of the nonpathogenic L. sphaericus strain KCTC 3346(T), which provides clues for the phylogenetic reassessment of L. sphaericus species and an understanding of its physiological properties.
Collapse
Affiliation(s)
- Haeyoung Jeong
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon, Republic of Korea
| | - Da-Eun Jeong
- Super-Bacteria Research Center, KRIBB, Yuseong-gu, Daejeon, Republic of Korea
| | - Young Mi Sim
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon, Republic of Korea
| | - Seung-Hwan Park
- Super-Bacteria Research Center, KRIBB, Yuseong-gu, Daejeon, Republic of Korea
| | - Soo-Keun Choi
- Super-Bacteria Research Center, KRIBB, Yuseong-gu, Daejeon, Republic of Korea
| |
Collapse
|
42
|
Carvalhais LC, Dennis PG, Badri DV, Tyson GW, Vivanco JM, Schenk PM. Activation of the jasmonic acid plant defence pathway alters the composition of rhizosphere bacterial communities. PLoS One 2013; 8:e56457. [PMID: 23424661 PMCID: PMC3570460 DOI: 10.1371/journal.pone.0056457] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 01/08/2013] [Indexed: 01/14/2023] Open
Abstract
Jasmonic acid (JA) signalling plays a central role in plant defences against necrotrophic pathogens and herbivorous insects, which afflict both roots and shoots. This pathway is also activated following the interaction with beneficial microbes that may lead to induced systemic resistance. Activation of the JA signalling pathway via application of methyl jasmonate (MeJA) alters the composition of carbon containing compounds released by roots, which are implicated as key determinants of rhizosphere microbial community structure. In this study, we investigated the influence of the JA defence signalling pathway activation in Arabidopsis thaliana on the structure of associated rhizosphere bacterial communities using 16S rRNA gene amplicon pyrosequencing. Application of MeJA did not directly influence bulk soil microbial communities but significant changes in rhizosphere community composition were observed upon activation of the jasmonate signalling pathway. Our results suggest that JA signalling may mediate plant-bacteria interactions in the soil upon necrotrophic pathogen and herbivorous insect attacks.
Collapse
Affiliation(s)
- Lilia C Carvalhais
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Queensland, Australia.
| | | | | | | | | | | |
Collapse
|
43
|
Hong H, Bae KS, Lee Y. New bacteria Bacillus nitroreducens PLC9 with hydrogen peroxide-degrading activity with high survival rate in hydrogen peroxide. Appl Biochem Biotechnol 2012; 169:701-11. [PMID: 23271626 DOI: 10.1007/s12010-012-0034-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 12/10/2012] [Indexed: 11/24/2022]
Abstract
Bacteria were isolated from wastewater containing highly concentrated hydrogen peroxide that had been used to clean the pure water delivery system in a semiconductor plant. One bacterium was selected for its high hydrogen peroxide degradation activity. In the presence of 1% hydrogen peroxide, it degraded 72.5% in 5 min. It showed 100% viability after 6 h at 1% hydrogen peroxide. Even at 3% hydrogen peroxide, it survived for more than 6 h. This bacterium was named as Bacillus nitroreducens PLC9 since its 16S rRNA showed 100% similarity with the recently reported new species B. nitroreducens. Purified catalase from B. nitroreducens PLC9 was characterized as a thermo-alkali-stable hydroperoxidase type II catalase, and it is suggested as a new type of catalase based on following: (1) it is stable over a broad pH range (pH 4-11); (2) it is consisted of homodimers with a molecular weight of 66 kDa (total molecular weight, 134 kDa); (3) its activity was not inhibited by 3-amino-1,2,4-triazole; and (4) its N-terminal sequence has never been reported before. Both B. nitroreducens PLC9 and the isolated catalase can be used for efficient degradation of hydrogen peroxide at high concentrations.
Collapse
Affiliation(s)
- Hyunjin Hong
- Culture Collection of Antimicrobial Resistant Microbes, Department of Biology, Seoul Women's University, Wharangro 623, Nowon-gu, Seoul 139-774, South Korea
| | | | | |
Collapse
|
44
|
Nam YD, Seo MJ, Lim SI, Lee SY. Genome sequence of Lysinibacillus boronitolerans F1182, isolated from a traditional Korean fermented soybean product. J Bacteriol 2012; 194:5988. [PMID: 23045499 PMCID: PMC3486081 DOI: 10.1128/jb.01485-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 08/17/2012] [Indexed: 11/20/2022] Open
Abstract
Lysinibacillus is a Gram-positive, rod-shaped, and round-spore-forming bacterial genus of the family Bacillaceae. We analyzed the genome sequence of Lysinibacillus boronitolerans F1182, isolated from a traditional Korean fermented soybean product. The genome sequence contained 4.46 Mbp with a G+C content of 37.5%. This is the first report of an L. boronitolerans genome.
Collapse
Affiliation(s)
- Young-Do Nam
- Fermentation and Functionality Research Group, Korea Food Research Institute, Sungnam, Republic of Korea
| | | | | | | |
Collapse
|
45
|
Li J, Huang C, Zheng D, Wang Y, Yuan Z. CcpA-Mediated Enhancement of Sugar and Amino Acid Metabolism in Lysinibacillus sphaericus by NMR-Based Metabolomics. J Proteome Res 2012; 11:4654-61. [DOI: 10.1021/pr300469v] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jing Li
- Center for Applied and Environmental
Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, People’s Republic
of China
- Graduate School of the Chinese Academy of Sciences, Beijing 100039,
People’s Republic of China
| | - Chongyang Huang
- Wuhan Center of
Magnetic Resonance,
State Key Laboratory of Magnetic Resonance and Atomic and Molecular
Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, People’s
Republic of China
- Graduate School of the Chinese Academy of Sciences, Beijing 100039,
People’s Republic of China
| | - Dasheng Zheng
- Center for Applied and Environmental
Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, People’s Republic
of China
| | - Yulan Wang
- Wuhan Center of
Magnetic Resonance,
State Key Laboratory of Magnetic Resonance and Atomic and Molecular
Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, People’s
Republic of China
| | - Zhiming Yuan
- Center for Applied and Environmental
Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, People’s Republic
of China
| |
Collapse
|
46
|
Galperin MY, Mekhedov SL, Puigbo P, Smirnov S, Wolf YI, Rigden DJ. Genomic determinants of sporulation in Bacilli and Clostridia: towards the minimal set of sporulation-specific genes. Environ Microbiol 2012; 14:2870-90. [PMID: 22882546 PMCID: PMC3533761 DOI: 10.1111/j.1462-2920.2012.02841.x] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Three classes of low-G+C Gram-positive bacteria (Firmicutes), Bacilli, Clostridia and Negativicutes, include numerous members that are capable of producing heat-resistant endospores. Spore-forming firmicutes include many environmentally important organisms, such as insect pathogens and cellulose-degrading industrial strains, as well as human pathogens responsible for such diseases as anthrax, botulism, gas gangrene and tetanus. In the best-studied model organism Bacillus subtilis, sporulation involves over 500 genes, many of which are conserved among other bacilli and clostridia. This work aimed to define the genomic requirements for sporulation through an analysis of the presence of sporulation genes in various firmicutes, including those with smaller genomes than B. subtilis. Cultivable spore-formers were found to have genomes larger than 2300 kb and encompass over 2150 protein-coding genes of which 60 are orthologues of genes that are apparently essential for sporulation in B. subtilis. Clostridial spore-formers lack, among others, spoIIB, sda, spoVID and safA genes and have non-orthologous displacements of spoIIQ and spoIVFA, suggesting substantial differences between bacilli and clostridia in the engulfment and spore coat formation steps. Many B. subtilis sporulation genes, particularly those encoding small acid-soluble spore proteins and spore coat proteins, were found only in the family Bacillaceae, or even in a subset of Bacillus spp. Phylogenetic profiles of sporulation genes, compiled in this work, confirm the presence of a common sporulation gene core, but also illuminate the diversity of the sporulation processes within various lineages. These profiles should help further experimental studies of uncharacterized widespread sporulation genes, which would ultimately allow delineation of the minimal set(s) of sporulation-specific genes in Bacilli and Clostridia.
Collapse
Affiliation(s)
- Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Rashad FM, Saleh WD, Nasr M, Fathy HM. Identification of mosquito larvicidal bacterial strains isolated from north Sinai in Egypt. AMB Express 2012; 2:9. [PMID: 22280528 PMCID: PMC3293722 DOI: 10.1186/2191-0855-2-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Accepted: 01/26/2012] [Indexed: 11/17/2022] Open
Abstract
In the present study, two of the most toxic bacterial strains of Bacillus sphaericus against mosquito were identified with the most recent genetic techniques. The PCR product profiles indicated the presence of genes encoding Bin A, Bin B and Mtx1 in all analyzed strains; they are consistent with protein profiles. The preliminary bioinformatics analysis of the binary toxin genes sequence revealed that the open reading frames had high similarities when matched with nucleotides sequence in the database of other B. sphaericus strains. The biological activity of B. sphaericus strains varied according to growing medium, and cultivation time. The highest yield of viable counts, spores and larvicidal protein were attained after 5 days. Poly (P) medium achieved the highest yield of growth, sporulation, protein and larvicidal activity for all tested strains compared to the other tested media. The larvicidal protein produced by local strains (B. sphaericus EMCC 1931 and EMCC 1932) in P medium was more lethal against the 3rd instar larvae of Culex pipiens than that of reference strains (B. sphaericus 1593 and B. sphaericus 2297). The obtained results revealed that P medium was the most effective medium and will be used in future work in order to optimize large scale production of biocide by the locally isolated Bacillus sphaericus strains.
Collapse
Affiliation(s)
- Ferial M Rashad
- Department of Microbiology, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Waleed D Saleh
- Department of Microbiology, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - M Nasr
- Department of Microbiology, National Center for Radiation Research and Technology, Nasr city 11371, Egypt
| | - Hayam M Fathy
- Department of Microbiology, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| |
Collapse
|
48
|
Berry C. The bacterium, Lysinibacillus sphaericus, as an insect pathogen. J Invertebr Pathol 2011; 109:1-10. [PMID: 22137877 DOI: 10.1016/j.jip.2011.11.008] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 10/12/2011] [Indexed: 10/15/2022]
Abstract
Since the first bacteria with insecticidal activity against mosquito larvae were reported in the 1960s, many have been described, with the most potent being isolates of Bacillus thuringiensis or Lysinibacillus sphaericus (formerly and best known as Bacillus sphaericus). Given environmental concerns over the use of broad spectrum synthetic chemical insecticides and the evolution of resistance to these, industry placed emphasis on the development of bacteria as alternative control agents. To date, numerous commercial formulations of B. thuringiensis subsp. israelensis (Bti) are available in many countries for control of nuisance and vector mosquitoes. Within the past few years, commercial formulations of L. sphaericus (Ls) have become available. Because Bti has been in use for more than 30 years, its properties are well know, more so than those of Ls. Thus, the purpose of this review is to summarise the most critical aspects of Ls and the various proteins that account for its insecticidal properties, especially the mosquitocidal activity of the most common isolates studied. Data are reviewed for the binary toxin, which accounts for the activity of sporulated cells, as well as for other toxins produced during vegetative growth, including sphaericolysin (active against cockroaches and caterpillars) and the different mosquitocidal Mtx and Cry toxins. Future studies of these could well lead to novel potent and environmentally compatible insecticidal products for controlling a range of insect pests and vectors of disease.
Collapse
Affiliation(s)
- Colin Berry
- Cardiff School of Biosciences, Cardiff University, Park Place, Cardiff CF10 3AT, UK.
| |
Collapse
|
49
|
Morohoshi T, Tominaga Y, Someya N, Ikeda T. Complete genome sequence and characterization of the N-acylhomoserine lactone-degrading gene of the potato leaf-associated Solibacillus silvestris. J Biosci Bioeng 2011; 113:20-5. [PMID: 22019407 DOI: 10.1016/j.jbiosc.2011.09.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 09/13/2011] [Accepted: 09/14/2011] [Indexed: 11/19/2022]
Abstract
N-Acylhomoserine lactones (AHLs) are used as quorum-sensing signal molecules by many gram-negative bacteria. We have reported that Solibacillus silvestris, which was isolated from the potato leaf, has AHL-degrading activity. To identify the AHL-degrading gene, whole genome sequencing of S. silvestris StLB046 was performed by using pyrosequencing technology. As the result of the BLAST search, one predicted ORF (ahlS) showed slight similarity to AiiA-like AHL lactonase from Bacillus cereus group. Escherichia coli harboring the ahlS-expressing plasmid showed high AHL-degrading activity. The ahlS-cording region was also amplified by PCR from the other potato leaf-associated and AHL-degrading S. silvestris strains. Purified AhlS as a maltose binding fusion protein showed high AHL-degrading activity and catalyzes AHL ring opening by hydrolyzing lactones. In addition, expression of ahlS in plant pathogen Pectobacterium carotovorum subsp. carotovorum attenuated maceration of the potato slices. Our results suggest that AHL-degrading activity of ahlS might perform useful functions such as useful biocontrol agents.
Collapse
Affiliation(s)
- Tomohiro Morohoshi
- Department of Material and Environmental Chemistry, Graduate School of Engineering, Utsunomiya University, 7-1-2 Yoto, Utsunomiya 321-8585, Japan.
| | | | | | | |
Collapse
|
50
|
Allelic diversity and population structure of Bacillus sphaericus as revealed by multilocus sequence typing. Appl Environ Microbiol 2011; 77:5553-6. [PMID: 21685170 DOI: 10.1128/aem.00207-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The genetic diversity of 35 Bacillus sphaericus strains was analyzed by a newly developed multilocus sequence typing (MLST) scheme, toxin gene pool survey, and mosquito bioassay. The results demonstrated that strains assigned to the same sequence type (ST) had the same occurrence of toxin genes. Further sequence analysis revealed that toxic strains presented a nearly clonal population structure, whereas nontoxic strains had a high level of heterogeneity and were significantly distinct from toxic strains.
Collapse
|