1
|
Bierbaumer S, Nattermann M, Schulz L, Zschoche R, Erb TJ, Winkler CK, Tinzl M, Glueck SM. Enzymatic Conversion of CO 2: From Natural to Artificial Utilization. Chem Rev 2023; 123:5702-5754. [PMID: 36692850 PMCID: PMC10176493 DOI: 10.1021/acs.chemrev.2c00581] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Indexed: 01/25/2023]
Abstract
Enzymatic carbon dioxide fixation is one of the most important metabolic reactions as it allows the capture of inorganic carbon from the atmosphere and its conversion into organic biomass. However, due to the often unfavorable thermodynamics and the difficulties associated with the utilization of CO2, a gaseous substrate that is found in comparatively low concentrations in the atmosphere, such reactions remain challenging for biotechnological applications. Nature has tackled these problems by evolution of dedicated CO2-fixing enzymes, i.e., carboxylases, and embedding them in complex metabolic pathways. Biotechnology employs such carboxylating and decarboxylating enzymes for the carboxylation of aromatic and aliphatic substrates either by embedding them into more complex reaction cascades or by shifting the reaction equilibrium via reaction engineering. This review aims to provide an overview of natural CO2-fixing enzymes and their mechanistic similarities. We also discuss biocatalytic applications of carboxylases and decarboxylases for the synthesis of valuable products and provide a separate summary of strategies to improve the efficiency of such processes. We briefly summarize natural CO2 fixation pathways, provide a roadmap for the design and implementation of artificial carbon fixation pathways, and highlight examples of biocatalytic cascades involving carboxylases. Additionally, we suggest that biochemical utilization of reduced CO2 derivates, such as formate or methanol, represents a suitable alternative to direct use of CO2 and provide several examples. Our discussion closes with a techno-economic perspective on enzymatic CO2 fixation and its potential to reduce CO2 emissions.
Collapse
Affiliation(s)
- Sarah Bierbaumer
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Maren Nattermann
- Department
of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany
| | - Luca Schulz
- Department
of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany
| | | | - Tobias J. Erb
- Department
of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany
| | - Christoph K. Winkler
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Matthias Tinzl
- Department
of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany
| | - Silvia M. Glueck
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| |
Collapse
|
2
|
Santos Correa S, Schultz J, Lauersen KJ, Soares Rosado A. Natural carbon fixation and advances in synthetic engineering for redesigning and creating new fixation pathways. J Adv Res 2022; 47:75-92. [PMID: 35918056 PMCID: PMC10173188 DOI: 10.1016/j.jare.2022.07.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/30/2022] [Accepted: 07/25/2022] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Autotrophic carbon fixation is the primary route through which organic carbon enters the biosphere, and it is a key step in the biogeochemical carbon cycle. The Calvin-Benson-Bassham pathway, which is predominantly found in plants, algae, and some bacteria (mainly cyanobacteria), was previously considered to be the sole carbon-fixation pathway. However, the discovery of a new carbon-fixation pathway in sulfurous green bacteria almost two decades ago encouraged further research on previously overlooked ancient carbon-fixation pathways in taxonomically and phylogenetically distinct microorganisms. AIM OF REVIEW In this review, we summarize the six known natural carbon-fixation pathways and outline the newly proposed additions to this list. We also discuss the recent achievements in synthetic carbon fixation and the importance of the metabolism of thermophilic microorganisms in this field. KEY SCIENTIFIC CONCEPTS OF REVIEW Currently, at least six carbon-fixation routes have been confirmed in Bacteria and Archaea. Other possible candidate routes have also been suggested on the basis of emerging "omics" data analyses, expanding our knowledge and stimulating discussions on the importance of these pathways in the way organisms acquire carbon. Notably, the currently known natural fixation routes cannot balance the excessive anthropogenic carbon emissions in a highly unbalanced global carbon cycle. Therefore, significant efforts have also been made to improve the existing carbon-fixation pathways and/or design new efficient in vitro and in vivo synthetic pathways.
Collapse
Affiliation(s)
- Sulamita Santos Correa
- Laboratory of Molecular Microbial Ecology, Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Junia Schultz
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Kyle J Lauersen
- Bioengineering Program, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Alexandre Soares Rosado
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; Bioscience Program, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
3
|
Abstract
Carbon dioxide is a major greenhouse gas, and its fixation and transformation are receiving increasing attention. Biofixation of CO2 is an eco–friendly and efficient way to reduce CO2, and six natural CO2 fixation pathways have been identified in microorganisms and plants. In this review, the six pathways along with the most recent identified variant pathway were firstly comparatively characterized. The key metabolic process and enzymes of the CO2 fixation pathways were also summarized. Next, the enzymes of Rubiscos, biotin-dependent carboxylases, CO dehydrogenase/acetyl-CoA synthase, and 2-oxoacid:ferredoxin oxidoreductases, for transforming inorganic carbon (CO2, CO, and bicarbonate) to organic chemicals, were specially analyzed. Then, the factors including enzyme properties, CO2 concentrating, energy, and reducing power requirements that affect the efficiency of CO2 fixation were discussed. Recent progress in improving CO2 fixation through enzyme and metabolic engineering was then summarized. The artificial CO2 fixation pathways with thermodynamical and/or energetical advantages or benefits and their applications in biosynthesis were included as well. The challenges and prospects of CO2 biofixation and conversion are discussed.
Collapse
|
4
|
Buhrman G, Enríquez P, Dillard L, Baer H, Truong V, Grunden AM, Rose RB. Structure, Function, and Thermal Adaptation of the Biotin Carboxylase Domain Dimer from Hydrogenobacter thermophilus 2-Oxoglutarate Carboxylase. Biochemistry 2021; 60:324-345. [PMID: 33464881 DOI: 10.1021/acs.biochem.0c00815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
2-Oxoglutarate carboxylase (OGC), a unique member of the biotin-dependent carboxylase family from the order Aquificales, captures dissolved CO2 via the reductive tricarboxylic acid (rTCA) cycle. Structure and function studies of OGC may facilitate adaptation of the rTCA cycle to increase the level of carbon fixation for biofuel production. Here we compare the biotin carboxylase (BC) domain of Hydrogenobacter thermophilus OGC with the well-studied mesophilic homologues to identify features that may contribute to thermal stability and activity. We report three OGC BC X-ray structures, each bound to bicarbonate, ADP, or ADP-Mg2+, and propose that substrate binding at high temperatures is facilitated by interactions that stabilize the flexible subdomain B in a partially closed conformation. Kinetic measurements with varying ATP and biotin concentrations distinguish two temperature-dependent steps, consistent with biotin's rate-limiting role in organizing the active site. Transition state thermodynamic values derived from the Eyring equation indicate a larger positive ΔH⧧ and a less negative ΔS⧧ compared to those of a previously reported mesophilic homologue. These thermodynamic values are explained by partially rate limiting product release. Phylogenetic analysis of BC domains suggests that OGC diverged prior to Aquificales evolution. The phylogenetic tree identifies mis-annotations of the Aquificales BC sequences, including the Aquifex aeolicus pyruvate carboxylase structure. Notably, our structural data reveal that the OGC BC dimer comprises a "wet" dimerization interface that is dominated by hydrophilic interactions and structural water molecules common to all BC domains and likely facilitates the conformational changes associated with the catalytic cycle. Mutations in the dimerization domain demonstrate that dimerization contributes to thermal stability.
Collapse
Affiliation(s)
- Greg Buhrman
- Department of Molecular & Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695-7622, United States
| | - Paul Enríquez
- Department of Molecular & Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695-7622, United States
| | - Lucas Dillard
- Department of Molecular & Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695-7622, United States
| | - Hayden Baer
- Department of Molecular & Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695-7622, United States
| | - Vivian Truong
- Department of Molecular & Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695-7622, United States
| | - Amy M Grunden
- Department of Plant & Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695-7612, United States
| | - Robert B Rose
- Department of Molecular & Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695-7622, United States
| |
Collapse
|
5
|
Kacar B, Guy L, Smith E, Baross J. Resurrecting ancestral genes in bacteria to interpret ancient biosignatures. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2017; 375:20160352. [PMID: 29133450 PMCID: PMC5686408 DOI: 10.1098/rsta.2016.0352] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/17/2017] [Indexed: 05/04/2023]
Abstract
Two datasets, the geologic record and the genetic content of extant organisms, provide complementary insights into the history of how key molecular components have shaped or driven global environmental and macroevolutionary trends. Changes in global physico-chemical modes over time are thought to be a consistent feature of this relationship between Earth and life, as life is thought to have been optimizing protein functions for the entirety of its approximately 3.8 billion years of history on the Earth. Organismal survival depends on how well critical genetic and metabolic components can adapt to their environments, reflecting an ability to optimize efficiently to changing conditions. The geologic record provides an array of biologically independent indicators of macroscale atmospheric and oceanic composition, but provides little in the way of the exact behaviour of the molecular components that influenced the compositions of these reservoirs. By reconstructing sequences of proteins that might have been present in ancient organisms, we can downselect to a subset of possible sequences that may have been optimized to these ancient environmental conditions. How can one use modern life to reconstruct ancestral behaviours? Configurations of ancient sequences can be inferred from the diversity of extant sequences, and then resurrected in the laboratory to ascertain their biochemical attributes. One way to augment sequence-based, single-gene methods to obtain a richer and more reliable picture of the deep past, is to resurrect inferred ancestral protein sequences in living organisms, where their phenotypes can be exposed in a complex molecular-systems context, and then to link consequences of those phenotypes to biosignatures that were preserved in the independent historical repository of the geological record. As a first step beyond single-molecule reconstruction to the study of functional molecular systems, we present here the ancestral sequence reconstruction of the beta-carbonic anhydrase protein. We assess how carbonic anhydrase proteins meet our selection criteria for reconstructing ancient biosignatures in the laboratory, which we term palaeophenotype reconstruction.This article is part of the themed issue 'Reconceptualizing the origins of life'.
Collapse
Affiliation(s)
- Betul Kacar
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Lionel Guy
- Department of Medical Biochemistry and Microbiology, Uppsala University, 75123 Uppsala, Sweden
| | - Eric Smith
- Earth-Science Life Institute, Meguro-ku, Tokyo 152-8550, Japan
- Santa Fe Institute, Santa Fe, NM 87501, USA
| | - John Baross
- The School of Oceanography, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
6
|
Quasem I, Achille AN, Caddick BA, Carter TA, Daniels C, Delaney JA, Delic V, Denton KA, Duran MC, Fatica MK, Ference CM, Galkiewicz JP, Garcia AM, Hendrick JD, Horton SA, Kun MS, Koch PW, Lee TM, McCabe CR, McHale S, McDaniel LD, Menning DM, Menning KJ, Mirzaei-Souderjani H, Mostajabian S, Nicholson DA, Nugent CK, Osman NP, Pappas DI, Rocha AM, Rosario K, Rubelmann H, Schwartz JA, Seeley KW, Staley CM, Wallace EM, Wong TM, Zielinski BL, Hanson TE, Scott KM. Peculiar citric acid cycle of hydrothermal vent chemolithoautotroph Hydrogenovibrio crunogenus, and insights into carbon metabolism by obligate autotrophs. FEMS Microbiol Lett 2017; 364:3958794. [DOI: 10.1093/femsle/fnx148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/10/2017] [Indexed: 12/24/2022] Open
Affiliation(s)
- Ishtiaque Quasem
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | - Alexandra N. Achille
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | - Brittany A. Caddick
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | - Travis A. Carter
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | - Camille Daniels
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | - Jennifer A. Delaney
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | - Vedad Delic
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | - Kimberly A. Denton
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | - Martina C. Duran
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | - Marianne K. Fatica
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | | | - Julie P. Galkiewicz
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | - Ana M. Garcia
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | | | - Steven A. Horton
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | - Mey S. Kun
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | - Phoebe W. Koch
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | - Tien Min Lee
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | - Christie R. McCabe
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | - Sean McHale
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | - Lauren D. McDaniel
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | - Damian M. Menning
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | - Kristy J. Menning
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | | | - Salina Mostajabian
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | - David A. Nicholson
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | - Courtney K. Nugent
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | - Nicholas P. Osman
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | - Desiree I. Pappas
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | - Andrea M. Rocha
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | - Karyna Rosario
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | - Haydn Rubelmann
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | - Julie A. Schwartz
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | - Kent W. Seeley
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | - Christopher M. Staley
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | - Elizabeth M. Wallace
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | - Terianne M. Wong
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | - Brian L. Zielinski
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | - Thomas E. Hanson
- School of Marine Science and Policy, Delaware Biotechnology Institute, and Department of Biological Sciences, University of Delaware, Newark, DE 19711, USA
| | - Kathleen M. Scott
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
7
|
Giovannelli D, Sievert SM, Hügler M, Markert S, Becher D, Schweder T, Vetriani C. Insight into the evolution of microbial metabolism from the deep-branching bacterium, Thermovibrio ammonificans. eLife 2017; 6. [PMID: 28436819 PMCID: PMC5441870 DOI: 10.7554/elife.18990] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 04/23/2017] [Indexed: 01/10/2023] Open
Abstract
Anaerobic thermophiles inhabit relic environments that resemble the early Earth. However, the lineage of these modern organisms co-evolved with our planet. Hence, these organisms carry both ancestral and acquired genes and serve as models to reconstruct early metabolism. Based on comparative genomic and proteomic analyses, we identified two distinct groups of genes in Thermovibrio ammonificans: the first codes for enzymes that do not require oxygen and use substrates of geothermal origin; the second appears to be a more recent acquisition, and may reflect adaptations to cope with the rise of oxygen on Earth. We propose that the ancestor of the Aquificae was originally a hydrogen oxidizing, sulfur reducing bacterium that used a hybrid pathway for CO2 fixation. With the gradual rise of oxygen in the atmosphere, more efficient terminal electron acceptors became available and this lineage acquired genes that increased its metabolic flexibility while retaining ancestral metabolic traits. DOI:http://dx.doi.org/10.7554/eLife.18990.001 Life may have arisen on our planet as far back as four billion years ago. Unlike today, the Earth’s atmosphere at the time had no oxygen and an abundance of volcanic emissions including hydrogen, carbon dioxide and sulfur gases. These dramatic differences have led scientists to wonder: how did the ancient microorganisms that inhabited our early planet make a living? And how has microbial life co-evolved with the Earth? One way to answer these questions is to study bacteria that live today in environments that resemble the early Earth. Deep-sea hydrothermal vents are regions of the deep ocean where active volcanic processes recreate primordial conditions. These habitats support microorganisms that are highly adapted to live off hydrogen, carbon dioxide and sulfur gases, and studying these modern-day microorganisms could give insights into the earliest life on Earth. Thermovibrio ammonificans is a bacterium that was obtained from an underwater volcanic system in the East Pacific. Giovannelli et al. have now asked if T. ammonificans might have inherited some of its genetic traits from a long-gone ancestor that also thrived off volcanic gases. The genetic makeup of this microorganism was examined for genes that would help it thrive at a deep-sea hydrothermal vent. Next, Giovannelli et al. compared these genes to related copies in other species of bacteria to reconstruct how the metabolism of T. ammonificans might have changed over time. This approach identified a group of likely ancient genesthat allow a microorganism to use chemicals like hydrogen, carbon dioxide and sulfur to fuel its growth and metabolism. These findings support the hypothesis that an ancestor of T. ammonificans could live off volcanic gases and that the core set of genes involved in those activities had been passed on, through the generations, to this modern-day microorganism. Giovannelli et al. also identified a second group of genes in T. ammonificans that indicate that this bacterium also co-evolved with Earth’s changing conditions, in particular the rise in the concentration of oxygen. The findings of Giovannelli et al. provide insight into how the metabolism of microbes has co-evolved with the Earth’s changing conditions, and will allow others to formulate new hypotheses that can be tested in laboratory experiments. DOI:http://dx.doi.org/10.7554/eLife.18990.002
Collapse
Affiliation(s)
- Donato Giovannelli
- Institute of Earth, Ocean and Atmospheric Sciences, Rutgers University, New Brunswick, United States.,Institute of Marine Science, National Research Council of Italy, Ancona, Italy.,Program in Interdisciplinary Studies, Institute for Advanced Studies, Princeton, United States.,Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - Stefan M Sievert
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, United States
| | | | - Stephanie Markert
- Pharmaceutical Biotechnology, Institute of Pharmacy, Institute of Pharmacy, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany
| | - Dörte Becher
- Institute for Microbiology, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany
| | - Thomas Schweder
- Pharmaceutical Biotechnology, Institute of Pharmacy, Institute of Pharmacy, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany
| | - Costantino Vetriani
- Institute of Earth, Ocean and Atmospheric Sciences, Rutgers University, New Brunswick, United States.,Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, United States
| |
Collapse
|
8
|
Kamal GM, Yuan B, Hussain AI, Wang J, Jiang B, Zhang X, Liu M. (13)C-NMR-Based Metabolomic Profiling of Typical Asian Soy Sauces. Molecules 2016; 21:molecules21091168. [PMID: 27598115 PMCID: PMC6272901 DOI: 10.3390/molecules21091168] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/29/2016] [Accepted: 08/30/2016] [Indexed: 11/16/2022] Open
Abstract
It has been a strong consumer interest to choose high quality food products with clear information about their origin and composition. In the present study, a total of 22 Asian soy sauce samples have been analyzed in terms of (13)C-NMR spectroscopy. Spectral data were analyzed by multivariate statistical methods in order to find out the important metabolites causing the discrimination among typical soy sauces from different Asian regions. It was found that significantly higher concentrations of glutamate in Chinese red cooking (CR) soy sauce may be the result of the manual addition of monosodium glutamate (MSG) in the final soy sauce product. Whereas lower concentrations of amino acids, like leucine, isoleucine and valine, observed in CR indicate the different fermentation period used in production of CR soy sauce, on the other hand, the concentration of some fermentation cycle metabolites, such as acetate and sucrose, can be divided into two groups. The concentrations of these fermentation cycle metabolites were lower in CR and Singapore Kikkoman (SK), whereas much higher in Japanese shoyu (JS) and Taiwan (China) light (TL), which depict the influence of climatic conditions. Therefore, the results of our study directly indicate the influences of traditional ways of fermentation, climatic conditions and the selection of raw materials and can be helpful for consumers to choose their desired soy sauce products, as well as for researchers in further authentication studies about soy sauce.
Collapse
Affiliation(s)
- Ghulam Mustafa Kamal
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Bin Yuan
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Abdullah Ijaz Hussain
- Institute of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan.
| | - Jie Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Bin Jiang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Xu Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| |
Collapse
|
9
|
Kamal GM, Wang X, Bin Yuan, Wang J, Sun P, Zhang X, Liu M. Compositional differences among Chinese soy sauce types studied by 13C NMR spectroscopy coupled with multivariate statistical analysis. Talanta 2016; 158:89-99. [DOI: 10.1016/j.talanta.2016.05.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/08/2016] [Accepted: 05/13/2016] [Indexed: 01/19/2023]
|
10
|
Butch CJ, Wang J, Gu J, Vindas R, Crowe J, Pollet P, Gelbaum L, Leszczynski J, Krishnamurthy R, Liotta CL. pH‐controlled reaction divergence of decarboxylation versus fragmentation in reactions of dihydroxyfumarate with glyoxylate and formaldehyde: parallels to biological pathways. J PHYS ORG CHEM 2016. [DOI: 10.1002/poc.3542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Christopher J. Butch
- School of Chemical and Biological Engineering Georgia Institute of Technology Atlanta GA 30332 USA
| | - Jing Wang
- Department of Chemistry and Biochemistry Jackson State University Jackson MS 39217 USA
| | - Jiande Gu
- Drug Design & Discovery Center, State Key Laboratory of Drug Research Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
| | - Rebeca Vindas
- Department of Chemistry Georgia State University Atlanta GA 30302 USA
| | - Jacob Crowe
- School of Chemical and Biological Engineering Georgia Institute of Technology Atlanta GA 30332 USA
| | - Pamela Pollet
- School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta GA 30332 USA
| | - Leslie Gelbaum
- School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta GA 30332 USA
| | - Jerzy Leszczynski
- Department of Chemistry and Biochemistry Jackson State University Jackson MS 39217 USA
| | | | - Charles L. Liotta
- School of Chemical and Biological Engineering Georgia Institute of Technology Atlanta GA 30332 USA
- School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta GA 30332 USA
| |
Collapse
|
11
|
Spaans SK, Weusthuis RA, van der Oost J, Kengen SWM. NADPH-generating systems in bacteria and archaea. Front Microbiol 2015; 6:742. [PMID: 26284036 PMCID: PMC4518329 DOI: 10.3389/fmicb.2015.00742] [Citation(s) in RCA: 197] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/06/2015] [Indexed: 12/22/2022] Open
Abstract
Reduced nicotinamide adenine dinucleotide phosphate (NADPH) is an essential electron donor in all organisms. It provides the reducing power that drives numerous anabolic reactions, including those responsible for the biosynthesis of all major cell components and many products in biotechnology. The efficient synthesis of many of these products, however, is limited by the rate of NADPH regeneration. Hence, a thorough understanding of the reactions involved in the generation of NADPH is required to increase its turnover through rational strain improvement. Traditionally, the main engineering targets for increasing NADPH availability have included the dehydrogenase reactions of the oxidative pentose phosphate pathway and the isocitrate dehydrogenase step of the tricarboxylic acid (TCA) cycle. However, the importance of alternative NADPH-generating reactions has recently become evident. In the current review, the major canonical and non-canonical reactions involved in the production and regeneration of NADPH in prokaryotes are described, and their key enzymes are discussed. In addition, an overview of how different enzymes have been applied to increase NADPH availability and thereby enhance productivity is provided.
Collapse
Affiliation(s)
| | - Ruud A. Weusthuis
- Bioprocess Engineering, Wageningen UniversityWageningen, Netherlands
| | - John van der Oost
- Laboratory of Microbiology, Wageningen UniversityWageningen, Netherlands
| | - Servé W. M. Kengen
- Laboratory of Microbiology, Wageningen UniversityWageningen, Netherlands
| |
Collapse
|
12
|
Takahashi-Iñiguez T, Cruz-Rabadán S, Burciaga-Cifuentes LM, Flores ME. Molecular cloning, purification, and biochemical characterization of recombinant isocitrate dehydrogenase from Streptomyces coelicolor M-145. Biosci Biotechnol Biochem 2014; 78:1490-4. [PMID: 25209496 DOI: 10.1080/09168451.2014.923290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Isocitrate dehydrogenase is a key enzyme in carbon metabolism. In this study we demonstrated that SCO7000 of Streptomyces coelicolor M-145 codes for the isocitrate dehydrogenase. Recombinant enzyme expressed in Escherichia coli had a specific activity of 25.3 μmoles/mg/min using NADP(+) and Mn(2+) as a cofactor, 40-times higher than that obtained in cell-free extract. Pure IDH showed a single band with an apparent Mr of 84 KDa in SDS-PAGE, which was also recognized as His-tag protein in the Western blot. Unexpectedly, in ND-PAGE conditions showed a predominant band of ~168 KDa that corresponded to the dimeric form of ScIDH. Also, zymogram assay and analytical gel filtration reveal that dimer was the active form. Kinetic parameters were 1.38, 0.11, and 0.109 mM for isocitrate, NADP, and Mn(2+), respectively. ATP, ADP, AMP, and their mixtures were the main ScIDH activity inhibitors. Zn(2+), Mg(2+), Ca(2+), and Cu(+) had inhibitory effect on enzyme activity.
Collapse
Affiliation(s)
- Tóshiko Takahashi-Iñiguez
- a Departamento de Biología Molecular y Biotecnología , Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México , México, D.F., México
| | | | | | | |
Collapse
|
13
|
Braakman R, Smith E. Metabolic evolution of a deep-branching hyperthermophilic chemoautotrophic bacterium. PLoS One 2014; 9:e87950. [PMID: 24516572 PMCID: PMC3917532 DOI: 10.1371/journal.pone.0087950] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 01/05/2014] [Indexed: 11/19/2022] Open
Abstract
Aquifex aeolicus is a deep-branching hyperthermophilic chemoautotrophic bacterium restricted to hydrothermal vents and hot springs. These characteristics make it an excellent model system for studying the early evolution of metabolism. Here we present the whole-genome metabolic network of this organism and examine in detail the driving forces that have shaped it. We make extensive use of phylometabolic analysis, a method we recently introduced that generates trees of metabolic phenotypes by integrating phylogenetic and metabolic constraints. We reconstruct the evolution of a range of metabolic sub-systems, including the reductive citric acid (rTCA) cycle, as well as the biosynthesis and functional roles of several amino acids and cofactors. We show that A. aeolicus uses the reconstructed ancestral pathways within many of these sub-systems, and highlight how the evolutionary interconnections between sub-systems facilitated several key innovations. Our analyses further highlight three general classes of driving forces in metabolic evolution. One is the duplication and divergence of genes for enzymes as these progress from lower to higher substrate specificity, improving the kinetics of certain sub-systems. A second is the kinetic optimization of established pathways through fusion of enzymes, or their organization into larger complexes. The third is the minimization of the ATP unit cost to synthesize biomass, improving thermodynamic efficiency. Quantifying the distribution of these classes of innovations across metabolic sub-systems and across the tree of life will allow us to assess how a tradeoff between maximizing growth rate and growth efficiency has shaped the long-term metabolic evolution of the biosphere.
Collapse
Affiliation(s)
- Rogier Braakman
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia, United States of America
- * E-mail:
| | - Eric Smith
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia, United States of America
| |
Collapse
|
14
|
Isocitrate dehydrogenase from Streptococcus mutans: biochemical properties and evaluation of a putative phosphorylation site at Ser102. PLoS One 2013; 8:e58918. [PMID: 23484056 PMCID: PMC3590139 DOI: 10.1371/journal.pone.0058918] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 02/08/2013] [Indexed: 11/30/2022] Open
Abstract
Isocitrate deyhdrogenase (IDH) is a reversible enzyme in the tricarboxylic acid cycle that catalyzes the NAD(P)+-dependent oxidative decarboxylation of isocitrate to α-ketoglutarate (αKG) and the NAD(P)H/CO2-dependent reductive carboxylation of αKG to isocitrate. The IDH gene from Streptococcus mutans was fused with the icd gene promoter from Escherichia coli to initiate its expression in the glutamate auxotrophic strain E. coli Δicd::kanr of which the icd gene has been replaced by kanamycin resistance gene. The expression of S. mutans IDH (SmIDH) may restore the wild-type phenotype of the icd-defective strain on minimal medium without glutamate. The molecular weight of SmIDH was estimated to be 70 kDa by gel filtration chromatography, suggesting a homodimeric structure. SmIDH was divalent cation-dependent and Mn2+ was found to be the most effective cation. The optimal pH of SmIDH was 7.8 and the maximum activity was around 45°C. SmIDH was completely NAD+ dependent and its apparent Km for NAD+ was 137 μM. In order to evaluate the role of the putative phosphorylation site at Ser102 in catalysis, two “stably phosphorylated” mutants were constructed by converting Ser102 into Glu102 or Asp102 in SmIDH to mimick a constitutively phosphorylated state. Meanwhile, the functional roles of another four amino acids (threonine, glycine, alanine and tyrosine) containing variant size of side chains were investigated. The replacement of Asp102 or Glu102 totally inactivated the enzyme, while the S102T, S102G, S102A and S102Y mutants decreased the affinity to isocitrate and only retained 16.0%, 2.8%, 3.3% and 1.1% of the original activity, respectively. These results reveal that Ser102 plays important role in substrate binding and is required for the enzyme function. Also, Ser102 in SmIDH is a potential phosphorylation site, indicating that the ancient NAD-dependent IDHs might be the underlying origin of “phosphorylation mechanism” used by their bacterial NADP-dependent homologs.
Collapse
|
15
|
|
16
|
Fuchs G. Alternative Pathways of Carbon Dioxide Fixation: Insights into the Early Evolution of Life? Annu Rev Microbiol 2011; 65:631-58. [PMID: 21740227 DOI: 10.1146/annurev-micro-090110-102801] [Citation(s) in RCA: 386] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Georg Fuchs
- Lehrstuhl Mikrobiologie, Fakultät für Biologie, Universität Freiburg, D-79104 Freiburg, Germany;
| |
Collapse
|
17
|
Berg IA. Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Appl Environ Microbiol 2011; 77:1925-36. [PMID: 21216907 PMCID: PMC3067309 DOI: 10.1128/aem.02473-10] [Citation(s) in RCA: 424] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Autotrophic CO(2) fixation represents the most important biosynthetic process in biology. Besides the well-known Calvin-Benson cycle, five other totally different autotrophic mechanisms are known today. This minireview discusses the factors determining their distribution. As will be made clear, the observed diversity reflects the variety of the organisms and the ecological niches existing in nature.
Collapse
Affiliation(s)
- Ivan A Berg
- Mikrobiologie, Fakultät für Biologie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.
| |
Collapse
|
18
|
Heteroexpression and characterization of a monomeric isocitrate dehydrogenase from the multicellular prokaryote Streptomyces avermitilis MA-4680. Mol Biol Rep 2010; 38:3717-24. [PMID: 21104016 DOI: 10.1007/s11033-010-0486-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2010] [Accepted: 11/09/2010] [Indexed: 12/21/2022]
Abstract
A monomeric NADP-dependent isocitrate dehydrogenase from the multicellular prokaryote Streptomyces avermitilis MA-4680 (SaIDH) was heteroexpressed in Escherichia coli, and the His-tagged enzyme was further purified to homogeneity. The molecular weight of SaIDH was about 80 kDa which is typical for monomeric isocitrate dehydrogenases. Structure-based sequence alignment reveals that the deduced amino acid sequence of SaIDH shows high sequence identity with known momomeric isocitrate dehydrogenase, and the coenzyme, substrate and metal ion binding sites are completely conserved. The optimal pH and temperature of SaIDH were found to be pH 9.4 and 45°C, respectively. Heat-inactivation studies showed that heating for 20 min at 50°C caused a 50% loss in enzymatic activity. In addition, SaIDH was absolutely specific for NADP+ as electron acceptor. Apparent Km values were 4.98 μM for NADP+ and 6,620 μM for NAD+, respectively, using Mn2+ as divalent cation. The enzyme performed a 33,000-fold greater specificity (kcat/Km) for NADP+ than NAD+. Moreover, SaIDH activity was entirely dependent on the presence of Mn2+ or Mg2+, but was strongly inhibited by Ca2+ and Zn2+. Taken together, our findings implicate the recombinant SaIDH is a divalent cation-dependent monomeric isocitrate dehydrogenase which presents a remarkably high cofactor preference for NADP+.
Collapse
|
19
|
Kameya M, Arai H, Ishii M, Igarashi Y. Purification of three aminotransferases from Hydrogenobacter thermophilus TK-6 - novel types of alanine or glycine aminotransferase. FEBS J 2010; 277:1876-85. [DOI: 10.1111/j.1742-4658.2010.07604.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Comparative genomic analysis of carbon and nitrogen assimilation mechanisms in three indigenous bioleaching bacteria: predictions and validations. BMC Genomics 2008; 9:581. [PMID: 19055775 PMCID: PMC2607301 DOI: 10.1186/1471-2164-9-581] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Accepted: 12/03/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Carbon and nitrogen fixation are essential pathways for autotrophic bacteria living in extreme environments. These bacteria can use carbon dioxide directly from the air as their sole carbon source and can use different sources of nitrogen such as ammonia, nitrate, nitrite, or even nitrogen from the air. To have a better understanding of how these processes occur and to determine how we can make them more efficient, a comparative genomic analysis of three bioleaching bacteria isolated from mine sites in Chile was performed. This study demonstrated that there are important differences in the carbon dioxide and nitrogen fixation mechanisms among bioleaching bacteria that coexist in mining environments. RESULTS In this study, we probed that both Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans incorporate CO2 via the Calvin-Benson-Bassham cycle; however, the former bacterium has two copies of the Rubisco type I gene whereas the latter has only one copy. In contrast, we demonstrated that Leptospirillum ferriphilum utilizes the reductive tricarboxylic acid cycle for carbon fixation. Although all the species analyzed in our study can incorporate ammonia by an ammonia transporter, we demonstrated that Acidithiobacillus thiooxidans could also assimilate nitrate and nitrite but only Acidithiobacillus ferrooxidans could fix nitrogen directly from the air. CONCLUSION The current study utilized genomic and molecular evidence to verify carbon and nitrogen fixation mechanisms for three bioleaching bacteria and provided an analysis of the potential regulatory pathways and functional networks that control carbon and nitrogen fixation in these microorganisms.
Collapse
|