1
|
Tsaplina O. The Balance between Protealysin and Its Substrate, the Outer Membrane Protein OmpX, Regulates Serratia proteamaculans Invasion. Int J Mol Sci 2024; 25:6159. [PMID: 38892348 PMCID: PMC11172720 DOI: 10.3390/ijms25116159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/23/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Serratia are opportunistic bacteria, causing infections in plants, insects, animals and humans under certain conditions. The development of bacterial infection in the human body involves several stages of host-pathogen interaction, including entry into non-phagocytic cells to evade host immune cells. The facultative pathogen Serratia proteamaculans is capable of penetrating eukaryotic cells. These bacteria synthesize an actin-specific metalloprotease named protealysin. After transformation with a plasmid carrying the protealysin gene, noninvasive E. coli penetrate eukaryotic cells. This suggests that protealysin may play a key role in S. proteamaculans invasion. This review addresses the mechanisms underlying protealysin's involvement in bacterial invasion, highlighting the main findings as follows. Protealysin can be delivered into the eukaryotic cell by the type VI secretion system and/or by bacterial outer membrane vesicles. By cleaving actin in the host cell, protealysin can mediate the reversible actin rearrangements required for bacterial invasion. However, inactivation of the protealysin gene leads to an increase, rather than decrease, in the intensity of S. proteamaculans invasion. This indicates the presence of virulence factors among bacterial protealysin substrates. Indeed, protealysin cleaves the virulence factors, including the bacterial surface protein OmpX. OmpX increases the expression of the EGFR and β1 integrin, which are involved in S. proteamaculans invasion. It has been shown that an increase in the invasion of genetically modified S. proteamaculans may be the result of the accumulation of full-length OmpX on the bacterial surface, which is not cleaved by protealysin. Thus, the intensity of the S. proteamaculans invasion is determined by the balance between the active protealysin and its substrate OmpX.
Collapse
Affiliation(s)
- Olga Tsaplina
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky av. 4, 194064 St. Petersburg, Russia
| |
Collapse
|
2
|
Kijewski ACR, Witsø IL, Sundaram AYM, Brynildsrud OB, Pettersen K, Anonsen EB, Anonsen JH, Aspholm ME. Transcriptomic and proteomic analysis of the virulence inducing effect of ciprofloxacin on enterohemorrhagic Escherichia coli. PLoS One 2024; 19:e0298746. [PMID: 38787890 PMCID: PMC11125564 DOI: 10.1371/journal.pone.0298746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/29/2024] [Indexed: 05/26/2024] Open
Abstract
Enterohemorrhagic E. coli (EHEC) is considered to be the most dangerous pathotype of E. coli, as it causes severe conditions such as hemorrhagic colitis (HC) and hemolytic uremic syndrome (HUS). Antibiotic treatment of EHEC infections is generally not recommended since it may promote the production of the Shiga toxin (Stx) and lead to worsened symptoms. This study explores how exposure to the fluoroquinolone ciprofloxacin reorganizes the transcriptome and proteome of EHEC O157:H7 strain EDL933, with special emphasis on virulence-associated factors. As expected, exposure to ciprofloxacin caused an extensive upregulation of SOS-response- and Stx-phage proteins, including Stx. A range of other virulence-associated factors were also upregulated, including many genes encoded by the LEE-pathogenicity island, the enterohemolysin gene (ehxA), as well as several genes and proteins involved in LPS production. However, a large proportion of the genes and proteins (17 and 8%, respectively) whose expression was upregulated upon ciprofloxacin exposure (17 and 8%, respectively) are not functionally assigned. This indicates a knowledge gap in our understanding of mechanisms involved in EHECs response to antibiotic-induced stress. Altogether, the results contribute to better understanding of how exposure to ciprofloxacin influences the virulome of EHEC and generates a knowledge base for further studies on how EHEC responds to antibiotic-induced stress. A deeper understanding on how EHEC responds to antibiotics will facilitate development of novel and safer treatments for EHEC infections.
Collapse
Affiliation(s)
| | - Ingun Lund Witsø
- Faculty of Veterinary Medicine, Unit for Food Safety, Norwegian University of Life Sciences, Oslo, Norway
| | - Arvind Y. M. Sundaram
- Department of Medical Genetics, Norwegian Sequencing Centre, Oslo University Hospital, Oslo, Norway
| | | | | | | | - Jan Haug Anonsen
- Department of Biosciences IBV, Mass Spectrometry and Proteomics Unit, University of Oslo, Oslo, Norway
- Norwegian Research Centre AS, Stavanger, Norway
| | - Marina Elisabeth Aspholm
- Faculty of Veterinary Medicine, Unit for Food Safety, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
3
|
Crane JK, Catanzaro MN. Role of Extracellular DNA in Bacterial Response to SOS-Inducing Drugs. Antibiotics (Basel) 2023; 12:antibiotics12040649. [PMID: 37107011 PMCID: PMC10135224 DOI: 10.3390/antibiotics12040649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
The SOS response is a conserved stress response pathway that is triggered by DNA damage in the bacterial cell. Activation of this pathway can, in turn, cause the rapid appearance of new mutations, sometimes called hypermutation. We compared the ability of various SOS-inducing drugs to trigger the expression of RecA, cause hypermutation, and produce elongation of bacteria. During this study, we discovered that these SOS phenotypes were accompanied by the release of large amounts of DNA into the extracellular medium. The release of DNA was accompanied by a form of bacterial aggregation in which the bacteria became tightly enmeshed in DNA. We hypothesize that DNA release triggered by SOS-inducing drugs could promote the horizontal transfer of antibiotic resistance genes by transformation or by conjugation.
Collapse
Affiliation(s)
- John K Crane
- Division of Infectious Diseases, Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - Marissa N Catanzaro
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| |
Collapse
|
4
|
Jiang M, Wang Z, Xia F, Wen Z, Chen R, Zhu D, Wang M, Zhuge X, Dai J. Reductions in bacterial viability stimulate the production of Extra-intestinal Pathogenic Escherichia coli (ExPEC) cytoplasm-carrying Extracellular Vesicles (EVs). PLoS Pathog 2022; 18:e1010908. [PMID: 36260637 PMCID: PMC9621596 DOI: 10.1371/journal.ppat.1010908] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/31/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022] Open
Abstract
Extra-intestinal Pathogenic Escherichia coli (ExPEC) is defined as an extra-intestinal foodborne pathogen, and several dominant sequence types (STs) ExPEC isolates are highly virulent, with zoonotic potential. Bacteria extracellular vesicles (EVs) carry specific subsets of molecular cargo, which affect various biological processes in bacteria and host. The mechanisms of EVs formation in ExPEC remains to be elucidated. Here, the purified EVs of ExPEC strains of different STs were isolated with ultracentrifugation processes. A comparative analysis of the strain proteomes showed that cytoplasmic proteins accounted for a relatively high proportion of the proteins among ExPEC EVs. The proportion of cytoplasm-carrying vesicles in ExPEC EVs was calculated with a simple green fluorescent protein (GFP) expression method. The RecA/LexA-dependent SOS response is a critical mediator of generation of cytoplasm-carrying EVs. The SOS response activates the expression of prophage-associated endolysins, Epel1, Epel2.1, and Epel2.2, which triggered cell lysis, increasing the production of ExPEC cytoplasm-carrying EVs. The repressor LexA controlled directly the expression of these endolysins by binding to the SOS boxes in the endolysin promoter regions. Reducing bacterial viability stimulated the production of ExPEC EVs, especially cytoplasm-carrying EVs. The imbalance in cell division caused by exposure to H2O2, the deletion of ftsK genes, or t6A synthesis defects activated the RecA/LexA-dependent SOS response, inducing the expression of endolysins, and thus increasing the proportion of cytoplasm-carrying EVs in the total ExPEC EVs. Antibiotics, which decreased bacterial viability, also increase the production of ExPEC cytoplasm-carrying EVs through the SOS response. Changes in the proportion of cytoplasm-carrying EVs affected the total DNA content of ExPEC EVs. When macrophages are exposed to a higher proportion of cytoplasm-carrying vesicles, ExPEC EVs were more cytotoxic to macrophages, accompanied with more-severe mitochondrial disruption and a higher level of induced intrinsic apoptosis. In summary, we offered comprehensive insight into the proteome analysis of ExPEC EVs. This study demonstrated the novel formation mechanisms of E. coli cytoplasm-carrying EVs. Bacteria can release extracellular vesicles (EVs) into the extracellular environment. Bacterial EVs are primarily composed of protein, DNA, RNA, lipopolysaccharide (LPS), and diverse metabolite molecules. The molecular cargoes of EVs are critical for the interaction between microbes and their hosts, and affected various host biological processes. However, the mechanisms underlying the biogenesis of bacterial EVs had not been fully clarified in extra-intestinal pathogenic Escherichia coli (ExPEC). In this study, we demonstrated ExPEC EVs contained at least three types of vesicles, including outer membrane vesicles (OMVs), outer-inner membrane vesicles (OIMVs), and explosive outer membrane vesicles (EOMVs). Our results systematically identified important factors affecting the production of ExPEC cytoplasm-carrying EVs, especially EOMVs. A reduction in bacterial viability activated the RecA/LexA-dependent SOS response, inducing the expression of endolysins, which increased the production of ExPEC cytoplasm-carrying EVs. This increase in the proportion of cytoplasm-carrying EVs increased the cytotoxicity of EVs. It was noteworthy that antibiotics increased the production of ExPEC EVs, especially the numbers of cytoplasm-carrying EVs, which in turn increased EV cytotoxicity, suggesting that the treatment of infections of multidrug-resistant strains infection with antibiotics might cause greater host damage. Our study should improve the prevention and treatment of ExPEC infections.
Collapse
Affiliation(s)
- Min Jiang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China,Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China
| | - Zhongxing Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China,Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China
| | - Fufang Xia
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China,Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China
| | - Zhe Wen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China,Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China
| | - Rui Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China,Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China
| | - Dongyu Zhu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China,Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China
| | - Min Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China
| | - Xiangkai Zhuge
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China,* E-mail: (XZ); (JD)
| | - Jianjun Dai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China,College of Pharmacy, China Pharmaceutical University, Nanjing, China,* E-mail: (XZ); (JD)
| |
Collapse
|
5
|
Tsaplina O, Khaitlina S, Chukhontseva K, Karaseva M, Demidyuk I, Bakhlanova I, Baitin D, Artamonova T, Vedyaykin A, Khodorkovskii M, Vishnyakov I. Protealysin Targets the Bacterial Housekeeping Proteins FtsZ and RecA. Int J Mol Sci 2022; 23:ijms231810787. [PMID: 36142700 PMCID: PMC9505478 DOI: 10.3390/ijms231810787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 12/04/2022] Open
Abstract
Serratia proteamaculans synthesizes the intracellular metalloprotease protealysin. This work was aimed at searching for bacterial substrates of protealysin among the proteins responsible for replication and cell division. We have shown that protealysin unlimitedly cleaves the SOS response protein RecA. Even 20% of the cleaved RecA in solution appears to be incorporated into the polymer of uncleaved monomers, preventing further polymerization and inhibiting RecA ATPase activity. Transformation of Escherichia coli with a plasmid carrying the protealysin gene reduces the bacterial UV survival up to 10 times. In addition, the protealysin substrate is the FtsZ division protein, found in both E. coli and Acholeplasma laidlawii, which is only 51% identical to E. coli FtsZ. Protealysin cleaves FtsZ at the linker between the globular filament-forming domain and the C-terminal peptide that binds proteins on the bacterial membrane. Thus, cleavage of the C-terminal segment by protealysin can lead to the disruption of FtsZ’s attachment to the membrane, and thereby inhibit bacterial division. Since the protealysin operon encodes not only the protease, but also its inhibitor, which is typical for the system of interbacterial competition, we assume that in the case of penetration of protealysin into neighboring bacteria that do not synthesize a protealysin inhibitor, cleavage of FtsZ and RecA by protealysin may give S. proteamaculans an advantage in interbacterial competition.
Collapse
Affiliation(s)
- Olga Tsaplina
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia
- Correspondence: ; Tel.: +7-812-297-42-96
| | - Sofia Khaitlina
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia
| | - Ksenia Chukhontseva
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
| | - Maria Karaseva
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
| | - Ilya Demidyuk
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
| | - Irina Bakhlanova
- Kurchatov Genome Center—PNPI, Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre ‘‘Kurchatov Institute”, 188300 Gatchina, Russia
| | - Dmitry Baitin
- Kurchatov Genome Center—PNPI, Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre ‘‘Kurchatov Institute”, 188300 Gatchina, Russia
| | - Tatiana Artamonova
- Department of Nanobiotechnologies, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Alexey Vedyaykin
- Department of Nanobiotechnologies, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Mikhail Khodorkovskii
- Department of Nanobiotechnologies, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | | |
Collapse
|
6
|
Crane JK, Burke SR, Alvarado CL. Inhibition of SOS Response by Nitric Oxide Donors in Escherichia coli Blocks Toxin Production and Hypermutation. Front Cell Infect Microbiol 2022; 11:798136. [PMID: 35004358 PMCID: PMC8727911 DOI: 10.3389/fcimb.2021.798136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/30/2021] [Indexed: 12/03/2022] Open
Abstract
Background Previous reports have differed as to whether nitric oxide inhibits or stimulates the SOS response, a bacterial stress response that is often triggered by DNA damage. The SOS response is an important regulator of production of Shiga toxins (Stx) in Shiga-toxigenic E. coli (STEC). In addition, the SOS response is accompanied by hypermutation, which can lead to de novo emergence of antibiotic resistance. We studied these effects in vitro as well as in vivo. Results Nitric oxide donors inhibited induction of the SOS response by classical inducers such as mitomycin C, ciprofloxacin, and zidovudine, as measured by assays for E. coli RecA. Nitric oxide donors also inhibited Stx toxin protein production as well as stx2 RNA in vitro and in vivo. In vivo experiments were performed with ligated ileal segments in the rabbit using a 20 h infection. The NO donor S-nitroso-acetylpenicillamine (SNAP) reduced hypermutation in vitro and in vivo, as measured by emergence of rifampin resistance. SNAP blocked the ability of the RecA protein to bind to single-stranded DNA in an electrophoretic mobility shift assay (EMSA) in vitro, an early event in the SOS response. The inhibitory effects of SNAP were additive with those of zinc acetate. Conclusions Nitric oxide donors blocked the initiation step of the SOS response. Downstream effects of this blockade included inhibition of Stx production and of hypermutation. Infection of rabbit loops with STEC resulted in a downregulation, rather than stimulation, of nitric oxide host defenses at 20 h of infection.
Collapse
Affiliation(s)
- John K Crane
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Sarah R Burke
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Cassandra L Alvarado
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
7
|
Crane JK, Salehi M, Alvarado CL. Psychoactive Drugs Induce the SOS Response and Shiga Toxin Production in Escherichia coli. Toxins (Basel) 2021; 13:toxins13070437. [PMID: 34201801 PMCID: PMC8309737 DOI: 10.3390/toxins13070437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 01/14/2023] Open
Abstract
Several classes of non-antibiotic drugs, including psychoactive drugs, proton-pump inhibitors (PPIs), non-steroidal anti-inflammatory drugs (NSAIDs), and others, appear to have strong antimicrobial properties. We considered whether psychoactive drugs induce the SOS response in E. coli bacteria and, consequently, induce Shiga toxins in Shiga-toxigenic E. coli (STEC). We measured the induction of an SOS response using a recA-lacZ E. coli reporter strain, as RecA is an early, reliable, and quantifiable marker for activation of the SOS stress response pathway. We also measured the production and release of Shiga toxin 2 (Stx2) from a classic E. coli O157:H7 strain, derived from a food-borne outbreak due to spinach. Some, but not all, serotonin selective reuptake inhibitors (SSRIs) and antipsychotic drugs induced an SOS response. The use of SSRIs is widespread and increasing; thus, the use of these antidepressants could account for some cases of hemolytic-uremic syndrome due to STEC and is not attributable to antibiotic administration. SSRIs could have detrimental effects on the normal intestinal microbiome in humans. In addition, as SSRIs are resistant to environmental breakdown, they could have effects on microbial communities, including aquatic ecosystems, long after they have left the human body.
Collapse
|
8
|
Atypical Enteropathogenic Escherichia coli: from Kittens to Humans and Beyond! Infect Immun 2021; 89:IAI.00752-20. [PMID: 33361199 DOI: 10.1128/iai.00752-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Atypical enteropathogenic Escherichia coli (aEPEC) are associated with diarrhea worldwide, yet genome-wide investigations to probe their virulome are lacking. In this issue of Infection and Immunity, V. E. Watson, T. H. Hazen, D. A. Rasko, M. E. Jacob, et al. (IAI 89:e00619-20, 2020, https://doi.org/10.1128/IAI.00619-20) sequenced aEPEC isolates from diarrheic and asymptomatic kittens. Using phylogenomics, they demonstrated that these isolates were genetically indistinguishable from human isolates, suggesting that kittens may serve as a reservoir and, perhaps, a much-needed model to interrogate aEPEC virulence. The diarrheic isolates were hypermotile, suggesting that this phenotype may distinguish virulent strains from their innocuous counterparts.
Collapse
|
9
|
Koppenhöfer S, Wang H, Scharfe M, Kaever V, Wagner-Döbler I, Tomasch J. Integrated Transcriptional Regulatory Network of Quorum Sensing, Replication Control, and SOS Response in Dinoroseobacter shibae. Front Microbiol 2019; 10:803. [PMID: 31031742 PMCID: PMC6473078 DOI: 10.3389/fmicb.2019.00803] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/28/2019] [Indexed: 12/13/2022] Open
Abstract
Quorum sensing (QS) coordinates population wide gene expression of bacterial species. Highly adaptive traits like gene transfer agents (GTA), morphological heterogeneity, type 4 secretion systems (T4SS), and flagella are QS controlled in Dinoroseobacter shibae, a Roseobacter model organism. Its QS regulatory network is integrated with the CtrA phosphorelay that controls cell division in alphaproteobacteria. To elucidate the network topology, we analyzed the transcriptional response of the QS-negative D. shibae strain ΔluxI1 toward externally added autoinducer (AI) over a time period of 3 h. The signaling cascade is initiated by the CtrA phosphorelay, followed by the QS genes and other target genes, including the second messenger c-di-GMP, competence, flagella and pili. Identification of transcription factor binding sites in promoters of QS induced genes revealed the integration of QS, CtrA phosphorelay and the SOS stress response mediated by LexA. The concentration of regulatory genes located close to the origin or terminus of replication suggests that gene regulation and replication are tightly coupled. Indeed, addition of AI first stimulates and then represses replication. The restart of replication comes along with increased c-di-GMP levels. We propose a model in which QS induces replication followed by differentiation into GTA producing and non-producing cells. CtrA-activity is controlled by the c-di-GMP level, allowing some of the daughter cells to replicate again. The size of the GTA producing subpopulation is tightly controlled by QS via the AI Synthase LuxI2. Finally, induction of the SOS response allows for integration of GTA DNA into the host chromosome.
Collapse
Affiliation(s)
- Sonja Koppenhöfer
- Group Microbial Communication, Technical University of Braunschweig, Braunschweig, Germany.,Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Hui Wang
- Group Microbial Communication, Technical University of Braunschweig, Braunschweig, Germany
| | - Maren Scharfe
- Group Genomic Analytics, Helmholtz Centre for Infection Research, Helmholtz Association of German Research Centers, Braunschweig, Germany
| | - Volkhard Kaever
- Research Core Unit Metabolomics, Institute of Pharmacology, Hannover Medical School, Hanover, Germany
| | - Irene Wagner-Döbler
- Group Microbial Communication, Technical University of Braunschweig, Braunschweig, Germany
| | - Jürgen Tomasch
- Group Microbial Communication, Technical University of Braunschweig, Braunschweig, Germany
| |
Collapse
|
10
|
Chatterjee R, Shreenivas MM, Sunil R, Chakravortty D. Enteropathogens: Tuning Their Gene Expression for Hassle-Free Survival. Front Microbiol 2019; 9:3303. [PMID: 30687282 PMCID: PMC6338047 DOI: 10.3389/fmicb.2018.03303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/19/2018] [Indexed: 12/27/2022] Open
Abstract
Enteropathogenic bacteria have been the cause of the majority of foodborne illnesses. Much of the research has been focused on elucidating the mechanisms by which these pathogens evade the host immune system. One of the ways in which they achieve the successful establishment of a niche in the gut microenvironment and survive is by a chain of elegantly regulated gene expression patterns. Studies have shown that this process is very elaborate and is also regulated by several factors. Pathogens like, enteropathogenic Escherichia coli (EPEC), Salmonella Typhimurium, Shigellaflexneri, Yersinia sp. have been seen to employ various regulated gene expression strategies. These include toxin-antitoxin systems, quorum sensing systems, expression controlled by nucleoid-associated proteins (NAPs), several regulons and operons specific to these pathogens. In the following review, we have tried to discuss the common gene regulatory systems of enteropathogenic bacteria as well as pathogen-specific regulatory mechanisms.
Collapse
Affiliation(s)
- Ritika Chatterjee
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India.,Division of Biological Sciences, Indian Institute of Science, Bengaluru, India
| | - Meghanashree M Shreenivas
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India.,Division of Biological Sciences, Indian Institute of Science, Bengaluru, India.,Undergraduate Studies, Indian Institute of Science, Bengaluru, India
| | - Rohith Sunil
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India.,Division of Biological Sciences, Indian Institute of Science, Bengaluru, India.,Undergraduate Studies, Indian Institute of Science, Bengaluru, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India.,Division of Biological Sciences, Indian Institute of Science, Bengaluru, India.,Centre for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
11
|
Bunnell BE, Escobar JF, Bair KL, Sutton MD, Crane JK. Zinc blocks SOS-induced antibiotic resistance via inhibition of RecA in Escherichia coli. PLoS One 2017; 12:e0178303. [PMID: 28542496 PMCID: PMC5440055 DOI: 10.1371/journal.pone.0178303] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 05/10/2017] [Indexed: 01/22/2023] Open
Abstract
Zinc inhibits the virulence of diarrheagenic E. coli by inducing the envelope stress response and inhibiting the SOS response. The SOS response is triggered by damage to bacterial DNA. In Shiga-toxigenic E. coli, the SOS response strongly induces the production of Shiga toxins (Stx) and of the bacteriophages that encode the Stx genes. In E. coli, induction of the SOS response is accompanied by a higher mutation rate, called the mutator response, caused by a shift to error-prone DNA polymerases when DNA damage is too severe to be repaired by canonical DNA polymerases. Since zinc inhibited the other aspects of the SOS response, we hypothesized that zinc would also inhibit the mutator response, also known as hypermutation. We explored various different experimental paradigms to induce hypermutation triggered by the SOS response, and found that hypermutation was induced not just by classical inducers such as mitomycin C and the quinolone antibiotics, but also by antiviral drugs such as zidovudine and anti-cancer drugs such as 5-fluorouracil, 6-mercaptopurine, and azacytidine. Zinc salts inhibited the SOS response and the hypermutator phenomenon in E. coli as well as in Klebsiella pneumoniae, and was more effective in inhibiting the SOS response than other metals. We then attempted to determine the mechanism by which zinc, applied externally in the medium, inhibits hypermutation. Our results show that zinc interferes with the actions of RecA, and protects LexA from RecA-mediated cleavage, an early step in initiation of the SOS response. The SOS response may play a role in the development of antibiotic resistance and the effect of zinc suggests ways to prevent it.
Collapse
Affiliation(s)
- Bryan E. Bunnell
- Department of Medicine, Division of Infectious Diseases, University at Buffalo, Buffalo, NY, United States of America
| | - Jillian F. Escobar
- Department of Medicine, Division of Infectious Diseases, University at Buffalo, Buffalo, NY, United States of America
| | - Kirsten L. Bair
- Department of Medicine, Division of Infectious Diseases, University at Buffalo, Buffalo, NY, United States of America
| | - Mark D. Sutton
- Department of Biochemistry, University at Buffalo, Buffalo, NY, United States of America
| | - John K. Crane
- Department of Medicine, Division of Infectious Diseases, University at Buffalo, Buffalo, NY, United States of America
- * E-mail:
| |
Collapse
|
12
|
Bhatt S, Egan M, Ramirez J, Xander C, Jenkins V, Muche S, El-Fenej J, Palmer J, Mason E, Storm E, Buerkert T. Hfq and three Hfq-dependent small regulatory RNAs-MgrR, RyhB and McaS-coregulate the locus of enterocyte effacement in enteropathogenic Escherichia coli. Pathog Dis 2016; 75:ftw113. [PMID: 27956465 DOI: 10.1093/femspd/ftw113] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/28/2016] [Accepted: 12/10/2016] [Indexed: 11/15/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) is a significant cause of infantile diarrhea and death in developing countries. The pathogenicity island locus of enterocyte effacement (LEE) is essential for EPEC to cause diarrhea. Besides EPEC, the LEE is also present in other gastrointestinal pathogens, most notably enterohemorrhagic E. coli (EHEC). Whereas transcriptional control of the LEE has been meticulously examined, posttranscriptional regulation, including the role of Hfq-dependent small RNAs, remains undercharacterized. However, the past few years have witnessed a surge in the identification of riboregulators of the LEE in EHEC. Contrastingly, the posttranscriptional regulatory landscape of EPEC remains cryptic. Here we demonstrate that the RNA-chaperone Hfq represses the LEE of EPEC by targeting the 5' untranslated leader region of grlR in the grlRA mRNA. Three conserved small regulatory RNAs (sRNAs)-MgrR, RyhB and McaS-are involved in the Hfq-dependent regulation of grlRA MgrR and RyhB exert their effects by directly base-pairing to the 5' region of grlR Whereas MgrR selectively represses grlR but activates grlA, RyhB represses gene expression from the entire grlRA transcript. Meanwhile, McaS appears to target the grlRA mRNA indirectly. Thus, our results provide the first definitive evidence that implicates multiple sRNAs in regulating the LEE and the resulting virulence of EPEC.
Collapse
Affiliation(s)
- Shantanu Bhatt
- Department of Biology, Saint Joseph's University, 5600 City Avenue, Science Center, Philadelphia, PA 19131, USA
| | - Marisa Egan
- Department of Biology, Saint Joseph's University, 5600 City Avenue, Science Center, Philadelphia, PA 19131, USA
| | - Jasmine Ramirez
- Department of Biology, Saint Joseph's University, 5600 City Avenue, Science Center, Philadelphia, PA 19131, USA
| | - Christian Xander
- Department of Biology, Saint Joseph's University, 5600 City Avenue, Science Center, Philadelphia, PA 19131, USA
| | - Valerie Jenkins
- Department of Biology, Saint Joseph's University, 5600 City Avenue, Science Center, Philadelphia, PA 19131, USA
| | - Sarah Muche
- Department of Biology, Saint Joseph's University, 5600 City Avenue, Science Center, Philadelphia, PA 19131, USA
| | - Jihad El-Fenej
- Department of Biology, Saint Joseph's University, 5600 City Avenue, Science Center, Philadelphia, PA 19131, USA
| | - Jamie Palmer
- Department of Biology, Saint Joseph's University, 5600 City Avenue, Science Center, Philadelphia, PA 19131, USA
| | - Elisabeth Mason
- Department of Biology, Saint Joseph's University, 5600 City Avenue, Science Center, Philadelphia, PA 19131, USA
| | - Elizabeth Storm
- Department of Biology, Saint Joseph's University, 5600 City Avenue, Science Center, Philadelphia, PA 19131, USA
| | - Thomas Buerkert
- Department of Biology, Saint Joseph's University, 5600 City Avenue, Science Center, Philadelphia, PA 19131, USA
| |
Collapse
|
13
|
Intracellular d-Serine Accumulation Promotes Genetic Diversity via Modulated Induction of RecA in Enterohemorrhagic Escherichia coli. J Bacteriol 2016; 198:3318-3328. [PMID: 27698085 DOI: 10.1128/jb.00548-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 09/27/2016] [Indexed: 01/28/2023] Open
Abstract
We recently discovered that exposure of enterohemorrhagic Escherichia coli (EHEC) to d-serine resulted in accumulation of this unusual amino acid, induction of the SOS regulon, and downregulation of the type III secretion system that is essential for efficient colonization of the host. Here, we have investigated the physiological relevance of this elevated SOS response, which is of particular interest given the presence of Stx toxin-carrying lysogenic prophages on the EHEC chromosome that are activated during the SOS response. We found that RecA elevation in response to d-serine, while being significant, was heterogeneous and not capable of activating stx expression or stx phage transduction to a nonlysogenic recipient. This "SOS-like response" was, however, capable of increasing the mutation frequency associated with low-level RecA activity, thus promoting genetic diversity. Furthermore, this response was entirely dependent on RecA and enhanced in the presence of a DNA-damaging agent, indicating a functional SOS response, but did not result in observable cleavage of the LexA repressor alone, indicating a controlled mechanism of induction. This work demonstrates that environmental factors not usually associated with DNA damage are capable of promoting an SOS-like response. We propose that this modulated induction of RecA allows EHEC to adapt to environmental insults such as d-serine while avoiding unwanted phage-induced lysis. IMPORTANCE The SOS response is a global stress network that is triggered by the presence of DNA damage due to breakage or stalled replication forks. Activation of the SOS response can trigger the replication of lytic bacteriophages and promote genetic diversification through error-prone polymerases. We have demonstrated that the host-associated metabolite d-serine contributes to Escherichia coli niche specification and accumulates inside cells that cannot catabolize it. This results in a modulated activation of the SOS antirepressor RecA that is insufficient to trigger lytic bacteriophage but capable of increasing the SOS-associated mutation frequency. These findings describe how relevant signals not normally associated with DNA damage can hijack the SOS response, promoting diversity as E. coli strains adapt while avoiding unwanted phage lysis.
Collapse
|
14
|
Schons-Fonseca L, da Silva JB, Milanez JS, Domingos RH, Smith JL, Nakaya HI, Grossman AD, Ho PL, da Costa RMA. Analysis of LexA binding sites and transcriptomics in response to genotoxic stress in Leptospira interrogans. Nucleic Acids Res 2016; 44:1179-91. [PMID: 26762976 PMCID: PMC4756842 DOI: 10.1093/nar/gkv1536] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 12/15/2015] [Accepted: 12/25/2015] [Indexed: 11/13/2022] Open
Abstract
We determined the effects of DNA damage caused by ultraviolet radiation on gene expression in Leptospira interrogans using DNA microarrays. These data were integrated with DNA binding in vivo of LexA1, a regulator of the DNA damage response, assessed by chromatin immunoprecipitation and massively parallel DNA sequencing (ChIP-seq). In response to DNA damage, Leptospira induced expression of genes involved in DNA metabolism, in mobile genetic elements and defective prophages. The DNA repair genes involved in removal of photo-damage (e.g. nucleotide excision repair uvrABC, recombinases recBCD and resolvases ruvABC) were not induced. Genes involved in various metabolic pathways were down regulated, including genes involved in cell growth, RNA metabolism and the tricarboxylic acid cycle. From ChIP-seq data, we observed 24 LexA1 binding sites located throughout chromosome 1 and one binding site in chromosome 2. Expression of many, but not all, genes near those sites was increased following DNA damage. Binding sites were found as far as 550 bp upstream from the start codon, or 1 kb into the coding sequence. Our findings indicate that there is a shift in gene expression following DNA damage that represses genes involved in cell growth and virulence, and induces genes involved in mutagenesis and recombination.
Collapse
Affiliation(s)
- Luciane Schons-Fonseca
- Centro de Biotecnologia, Instituto Butantan, São Paulo, São Paulo 05503-900, Brazil Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo 05508-000, Brazil Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, MA 02139, USA
| | - Josefa B da Silva
- Centro de Biotecnologia, Instituto Butantan, São Paulo, São Paulo 05503-900, Brazil
| | - Juliana S Milanez
- Centro de Biotecnologia, Instituto Butantan, São Paulo, São Paulo 05503-900, Brazil Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo 05508-000, Brazil
| | - Renan H Domingos
- Centro de Biotecnologia, Instituto Butantan, São Paulo, São Paulo 05503-900, Brazil
| | - Janet L Smith
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, MA 02139, USA
| | - Helder I Nakaya
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo 05508-000, Brazil
| | - Alan D Grossman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, MA 02139, USA
| | - Paulo L Ho
- Centro de Biotecnologia, Instituto Butantan, São Paulo, São Paulo 05503-900, Brazil
| | - Renata M A da Costa
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo 09210580, Brazil
| |
Collapse
|
15
|
Shintani M, Suzuki-Minakuchi C, Nojiri H. Nucleoid-associated proteins encoded on plasmids: Occurrence and mode of function. Plasmid 2015; 80:32-44. [PMID: 25952329 DOI: 10.1016/j.plasmid.2015.04.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 04/14/2015] [Accepted: 04/22/2015] [Indexed: 01/31/2023]
Abstract
Nucleoid-associated proteins (NAPs) play a role in changing the shape of microbial DNA, making it more compact and affecting the regulation of transcriptional networks in host cells. Genes that encode NAPs include H-NS family proteins (H-NS, Ler, MvaT, BpH3, Bv3F, HvrA, and Lsr2), FIS, HU, IHF, Lrp, and NdpA, and are found in both microbial chromosomes and plasmid DNA. In the present study, NAP genes were distributed among 442 plasmids out of 4602 plasmid sequences, and many H-NS family proteins, and HU, IHF, Lrp, and NdpA were found in plasmids of Alpha-, Beta-, and Gammaproteobacteria, while HvrA, Lsr2, HU, and Lrp were found in other classes including Actinobacteria and Bacilli. Larger plasmids frequently carried multiple NAP genes. In addition, NAP genes were more frequently found in conjugative plasmids than non-transmissible plasmids. Several host cells carried the same types of H-NS family proteins on both their plasmids and chromosome(s), while this was not observed for other NAPs. Recent studies have shown that NAP genes on plasmids and chromosomes play important roles in the physical and regulatory integration of plasmids into the host cell.
Collapse
Affiliation(s)
- Masaki Shintani
- Applied Chemistry and Biochemical Engineering Course, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka 432-8561, Japan; Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka 432-8561, Japan
| | - Chiho Suzuki-Minakuchi
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hideaki Nojiri
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
16
|
Haq IU, Zhang M, Yang P, van Elsas JD. The interactions of bacteria with fungi in soil: emerging concepts. ADVANCES IN APPLIED MICROBIOLOGY 2014; 89:185-215. [PMID: 25131403 DOI: 10.1016/b978-0-12-800259-9.00005-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this chapter, we review the existing literature on bacterial-fungal interactions in soil, exploring the role fungi may play for soil bacteria as providers of hospitable niches. A focus is placed on the mycosphere, i.e., the narrow zone of influence of fungal hyphae on the external soil milieu, in which hypha-associated bacterial cells dwell. Evidence is brought forward for the contention that the hyphae of both mycorrhizal and saprotrophic fungi serve as providers of ecological opportunities in a grossly carbon-limited soil, as a result of their release of carbonaceous compounds next to the provision of a colonizable surface. Soil bacteria of particular nature are postulated to have adapted to such selection pressures, evolving to the extent that they acquired capabilities that allow them to thrive in the novel habitat created by the emerging fungal hyphae. The mechanisms involved in the interactions and the modes of genetic adaptation of the mycosphere dwellers are discussed, with an emphasis on one key mycosphere-adapted bacterium, Burkholderia terrae BS001. In this discussion, we interrogate the positive interactions between soil fungi and bacteria, and refrain from considering negative interactions.
Collapse
Affiliation(s)
- Irshad Ul Haq
- Department of Microbial Ecology, Center for Ecological and Evolutionary Studies (CEES), University of Groningen, Groningen, The Netherlands
| | - Miaozhi Zhang
- Department of Microbial Ecology, Center for Ecological and Evolutionary Studies (CEES), University of Groningen, Groningen, The Netherlands
| | - Pu Yang
- Department of Microbial Ecology, Center for Ecological and Evolutionary Studies (CEES), University of Groningen, Groningen, The Netherlands
| | - Jan Dirk van Elsas
- Department of Microbial Ecology, Center for Ecological and Evolutionary Studies (CEES), University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
17
|
Abstract
ABSTRACT
Coordinated expression of enterohemorrhagic
Escherichia coli
virulence genes enables the bacterium to cause hemorrhagic colitis and the complication known as hemolytic-uremic syndrome. Horizontally acquired genes and those common to
E. coli
contribute to the disease process, and increased virulence gene expression is correlated with more severe disease in humans. Researchers have gained considerable knowledge about how the type III secretion system, secreted effectors, adhesin molecules, and the Shiga toxins are regulated by environmental signals and multiple genetic pathways. Also emergent from the data is an understanding of how enterohemorrhagic
E. coli
regulates response to acid stress, the role of flagellar motility, and how passage through the human host and bovine intestinal tract causes disease and supports carriage in the cattle reservoir, respectively. Particularly exciting areas of discovery include data suggesting how expression of the myriad effectors is coordinately regulated with their cognate type III secretion system and how virulence is correlated with bacterial metabolism and gut physiology.
Collapse
|
18
|
Crane JK, Broome JE, Reddinger RM, Werth BB. Zinc protects against Shiga-toxigenic Escherichia coli by acting on host tissues as well as on bacteria. BMC Microbiol 2014; 14:145. [PMID: 24903402 PMCID: PMC4072484 DOI: 10.1186/1471-2180-14-145] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/21/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Zinc supplements can treat or prevent enteric infections and diarrheal disease. Many articles on zinc in bacteria, however, highlight the essential nature of this metal for bacterial growth and virulence, suggesting that zinc should make infections worse, not better. To address this paradox, we tested whether zinc might have protective effects on intestinal epithelium as well as on the pathogen. RESULTS Using polarized monolayers of T84 cells we found that zinc protected against damage induced by hydrogen peroxide, as measured by trans-epithelial electrical resistance. Zinc also reduced peroxide-induced translocation of Shiga toxin (Stx) across T84 monolayers from the apical to basolateral side. Zinc was superior to other divalent metals to (iron, manganese, and nickel) in protecting against peroxide-induced epithelial damage, while copper also showed a protective effect.The SOS bacterial stress response pathway is a powerful regulator of Stx production in STEC. We examined whether zinc's known inhibitory effects on Stx might be mediated by blocking the SOS response. Zinc reduced expression of recA, a reliable marker of the SOS. Zinc was more potent and more efficacious than other metals tested in inhibiting recA expression induced by hydrogen peroxide, xanthine oxidase, or the antibiotic ciprofloxacin. The close correlation between zinc's effects on recA/SOS and on Stx suggested that inhibition of the SOS response is one mechanism by which zinc protects against STEC infection. CONCLUSIONS Zinc's ability to protect against enteric bacterial pathogens may be the result of its combined effects on host tissues as well as inhibition of virulence in some pathogens. Research focused solely on the effects of zinc on pathogenic microbes may give an incomplete picture by failing to account for protective effects of zinc on host epithelia.
Collapse
Affiliation(s)
- John K Crane
- Department of Medicine, Division of Infectious Diseases, University at Buffalo, Room 317 Biomedical Research Bldg, 3435 Main St, Buffalo, NY 14214, USA.
| | | | | | | |
Collapse
|
19
|
|
20
|
The acyl-homoserine lactone synthase YenI from Yersinia enterocolitica modulates virulence gene expression in enterohemorrhagic Escherichia coli O157:H7. Infect Immun 2013; 81:4192-9. [PMID: 23980115 DOI: 10.1128/iai.00889-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human pathogen enterohemorrhagic Escherichia coli (EHEC) O157:H7 colonizes the rectoanal junction (RAJ) in cattle, its natural reservoir. Colonization at the RAJ poses a serious risk for fecal shedding and contamination of the environment. We previously demonstrated that EHEC senses acyl-homoserine lactones (AHLs) produced by the microbiota in the rumen to activate the gad acid resistance genes necessary for survival through the acidic stomachs in cattle and to repress the locus of enterocyte effacement (LEE) genes important for colonization of the RAJ, but unnecessary in the rumen. Devoid of AHLs, the RAJ is the prominent site of colonization of EHEC in cattle. To determine if the presence of AHLs in the RAJ could repress colonization at this site, we engineered EHEC to express the Yersinia enterocolitica AHL synthase gene yenI, which constitutively produces AHLs, to mimic a constant exposure of AHLs in the environment. The yenI(+) EHEC produces oxo-C6-homoserine lactone (oxo-C6-HSL) and had a significant reduction in LEE expression, effector protein secretion, and attaching and effacing (A/E) lesion formation in vitro compared to the wild type (WT). The yenI(+) EHEC also activated expression of the gad genes. To assess whether AHL production, which decreases LEE expression, would decrease RAJ colonization by EHEC, cattle were challenged at the RAJ with WT or yenI(+) EHEC. Although the yenI(+) EHEC colonized the RAJ with efficiency equal to that of the WT, there was a trend for the cattle to shed the WT strain longer than the yenI(+) EHEC.
Collapse
|
21
|
Burke C, Liu M, Britton W, Triccas JA, Thomas T, Smith AL, Allen S, Salomon R, Harry E. Harnessing single cell sorting to identify cell division genes and regulators in bacteria. PLoS One 2013; 8:e60964. [PMID: 23565292 PMCID: PMC3614548 DOI: 10.1371/journal.pone.0060964] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 03/04/2013] [Indexed: 11/19/2022] Open
Abstract
Cell division is an essential cellular process that requires an array of known and unknown proteins for its spatial and temporal regulation. Here we develop a novel, high-throughput screening method for the identification of bacterial cell division genes and regulators. The method combines the over-expression of a shotgun genomic expression library to perturb the cell division process with high-throughput flow cytometry sorting to screen many thousands of clones. Using this approach, we recovered clones with a filamentous morphology for the model bacterium, Escherichia coli. Genetic analysis revealed that our screen identified both known cell division genes, and genes that have not previously been identified to be involved in cell division. This novel screening strategy is applicable to a wide range of organisms, including pathogenic bacteria, where cell division genes and regulators are attractive drug targets for antibiotic development.
Collapse
Affiliation(s)
- Catherine Burke
- The ithree Institute, University of Technology, Sydney, New South Wales, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Beceiro A, Tomás M, Bou G. Antimicrobial resistance and virulence: a successful or deleterious association in the bacterial world? Clin Microbiol Rev 2013; 26:185-230. [PMID: 23554414 PMCID: PMC3623377 DOI: 10.1128/cmr.00059-12] [Citation(s) in RCA: 643] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Hosts and bacteria have coevolved over millions of years, during which pathogenic bacteria have modified their virulence mechanisms to adapt to host defense systems. Although the spread of pathogens has been hindered by the discovery and widespread use of antimicrobial agents, antimicrobial resistance has increased globally. The emergence of resistant bacteria has accelerated in recent years, mainly as a result of increased selective pressure. However, although antimicrobial resistance and bacterial virulence have developed on different timescales, they share some common characteristics. This review considers how bacterial virulence and fitness are affected by antibiotic resistance and also how the relationship between virulence and resistance is affected by different genetic mechanisms (e.g., coselection and compensatory mutations) and by the most prevalent global responses. The interplay between these factors and the associated biological costs depend on four main factors: the bacterial species involved, virulence and resistance mechanisms, the ecological niche, and the host. The development of new strategies involving new antimicrobials or nonantimicrobial compounds and of novel diagnostic methods that focus on high-risk clones and rapid tests to detect virulence markers may help to resolve the increasing problem of the association between virulence and resistance, which is becoming more beneficial for pathogenic bacteria.
Collapse
Affiliation(s)
- Alejandro Beceiro
- Servicio de Microbiología, Complejo Hospitalario Universitario A Coruña-INIBIC, A Coruña, Spain
| | | | | |
Collapse
|
23
|
A distinct regulatory sequence is essential for the expression of a subset of nle genes in attaching and effacing Escherichia coli. J Bacteriol 2012; 194:5589-603. [PMID: 22904277 DOI: 10.1128/jb.00190-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enteropathogenic Escherichia coli uses a type III secretion system (T3SS), encoded in the locus of enterocyte effacement (LEE) pathogenicity island, to translocate a wide repertoire of effector proteins into the host cell in order to subvert cell signaling cascades and promote bacterial colonization and survival. Genes encoding type III-secreted effectors are located in the LEE and scattered throughout the chromosome. While LEE gene regulation is better understood, the conditions and factors involved in the expression of effectors encoded outside the LEE are just starting to be elucidated. Here, we identified a highly conserved sequence containing a 13-bp inverted repeat (IR), located upstream of a subset of genes coding for different non-LEE-encoded effectors in A/E pathogens. Site-directed mutagenesis and deletion analysis of the nleH1 and nleB2 regulatory regions revealed that this IR is essential for the transcriptional activation of both genes. Growth conditions that favor the expression of LEE genes also facilitate the activation of nleH1 and nleB2; however, their expression is independent of the LEE-encoded positive regulators Ler and GrlA but is repressed by GrlR and the global regulator H-NS. In contrast, GrlA and Ler are required for nleA expression, while H-NS silences it. Consistent with their role in the regulation of nleA, purified Ler and H-NS bound to the regulatory region of nleA upstream of its promoter. This work shows that at least two modes of regulation control the expression of effector genes in attaching and effacing (A/E) pathogens, suggesting that a subset of effector functions may be coordinately expressed in a particular niche or time during infection.
Collapse
|
24
|
Mellies JL, Thomas K, Turvey M, Evans NR, Crane J, Boedeker E, Benison GC. Zinc-induced envelope stress diminishes type III secretion in enteropathogenic Escherichia coli. BMC Microbiol 2012; 12:123. [PMID: 22727253 PMCID: PMC3438133 DOI: 10.1186/1471-2180-12-123] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 06/12/2012] [Indexed: 11/17/2022] Open
Abstract
Background Dietary supplementation with zinc has been shown to reduce the duration and severity of diarrhoeal disease caused by Enteropathogenic Escherichia coli, common in infants in developing countries. Initially this therapeutic benefit was attributed to the correction of zinc deficiency in malnourished individuals, but recently evidence has emerged that zinc significantly impacts the pathogens themselves: zinc concentrations achievable by oral supplementation can reduce the expression of key virulence-related genes in EPEC and related organisms. Results Here, we investigate three possible mechanisms for such zinc-induced changes in expression of EPEC virulence: direct interaction of zinc with regulators of LEE operons; genetic interaction of LEE operons with known regulators of zinc homeostasis; and finally, downregulation of LEE transcription associated with activation of the σEenvelope stress response by zinc. We find evidence only for the latter mechanism, including zinc-induced down-regulation of type III secretion in EPEC similar to that caused by ammonium metavanadate, another known inducer of the σEstress response. Conclusions We conclude therefore that envelope stress is a major mechanism by which zinc attenuates the virulence of EPEC and related pathogens.
Collapse
|
25
|
Lysogeny with Shiga toxin 2-encoding bacteriophages represses type III secretion in enterohemorrhagic Escherichia coli. PLoS Pathog 2012; 8:e1002672. [PMID: 22615557 PMCID: PMC3355084 DOI: 10.1371/journal.ppat.1002672] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 03/13/2012] [Indexed: 12/22/2022] Open
Abstract
Lytic or lysogenic infections by bacteriophages drive the evolution of enteric bacteria. Enterohemorrhagic Escherichia coli (EHEC) have recently emerged as a significant zoonotic infection of humans with the main serotypes carried by ruminants. Typical EHEC strains are defined by the expression of a type III secretion (T3S) system, the production of Shiga toxins (Stx) and association with specific clinical symptoms. The genes for Stx are present on lambdoid bacteriophages integrated into the E. coli genome. Phage type (PT) 21/28 is the most prevalent strain type linked with human EHEC infections in the United Kingdom and is more likely to be associated with cattle shedding high levels of the organism than PT32 strains. In this study we have demonstrated that the majority (90%) of PT 21/28 strains contain both Stx2 and Stx2c phages, irrespective of source. This is in contrast to PT 32 strains for which only a minority of strains contain both Stx2 and 2c phages (28%). PT21/28 strains had a lower median level of T3S compared to PT32 strains and so the relationship between Stx phage lysogeny and T3S was investigated. Deletion of Stx2 phages from EHEC strains increased the level of T3S whereas lysogeny decreased T3S. This regulation was confirmed in an E. coli K12 background transduced with a marked Stx2 phage followed by measurement of a T3S reporter controlled by induced levels of the LEE-encoded regulator (Ler). The presence of an integrated Stx2 phage was shown to repress Ler induction of LEE1 and this regulation involved the CII phage regulator. This repression could be relieved by ectopic expression of a cognate CI regulator. A model is proposed in which Stx2-encoding bacteriophages regulate T3S to co-ordinate epithelial cell colonisation that is promoted by Stx and secreted effector proteins. Many significant infectious diseases that impact human health evolve in animal hosts. Our work focuses on infections caused by strains of enterohemorrhagic Escherichia coli (EHEC) that cause bloody diarrhoea and life threatening kidney and brain damage in humans as an incidental host, while ruminants are a reservoir host. EHEC strains are infected with bacteriophages that can integrate their genetic material into the bacterial chromosome. This includes genes for the production of Shiga toxins (Stx) that are responsible for the severe pathology in humans. It has been demonstrated that certain EHEC strains are more likely to be associated with human disease and ‘supershedding’ animals. The current study has shown that these EHEC strains are more likely to contain two related Stx bacteriophages, rather than one, and that the intercalating bacteriophages take control of the bacterial type III secretion system that is essential for ruminant colonization. We propose that this regulation favours co-acquisition of other genetic regions that encode type III-secreted proteins and regulators that can overcome this control. This finding helps our understanding of EHEC strain evolution and indicates that selection of more toxic strains may be occurring in the ruminant host with important implications for human health.
Collapse
|
26
|
Acinetobacter baumannii RecA protein in repair of DNA damage, antimicrobial resistance, general stress response, and virulence. J Bacteriol 2011; 193:3740-7. [PMID: 21642465 DOI: 10.1128/jb.00389-11] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
RecA is the major enzyme involved in homologous recombination and plays a central role in SOS mutagenesis. In Acinetobacter spp., including Acinetobacter baumannii , a multidrug-resistant bacterium responsible for nosocomial infections worldwide, DNA repair responses differ in many ways from those of other bacterial species. In this work, the function of A. baumannii RecA was examined by constructing a recA mutant. Alteration of this single gene had a pleiotropic effect, showing the involvement of RecA in DNA damage repair and consequently in cellular protection against stresses induced by DNA damaging agents, several classes of antibiotics, and oxidative agents. In addition, the absence of RecA decreased survival in response to both heat shock and desiccation. Virulence assays in vitro (with macrophages) and in vivo (using a mouse model) similarly implicated RecA in the pathogenicity of A. baumannii . Thus, the data strongly suggest a protective role for RecA in the bacterium and indicate that inactivation of the protein can contribute to a combined therapeutic approach to controlling A. baumannii infections.
Collapse
|
27
|
Kamenšek S, Podlesek Z, Gillor O, Zgur-Bertok D. Genes regulated by the Escherichia coli SOS repressor LexA exhibit heterogeneous expression. BMC Microbiol 2010; 10:283. [PMID: 21070632 PMCID: PMC2994835 DOI: 10.1186/1471-2180-10-283] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 11/11/2010] [Indexed: 11/10/2022] Open
Abstract
Background Phenotypic heterogeneity may ensure that a small fraction of a population survives environmental perturbations or may result in lysis in a subpopulation, to increase the survival of siblings. Genes involved in DNA repair and population dynamics play key roles in rapid responses to environmental conditions. In Escherichia coli the transcriptional repressor LexA controls a coordinated cellular response to DNA damage designated the SOS response. Expression of LexA regulated genes, e.g. colicin encoding genes, recA, lexA and umuDC, was examined utilizing transcription fusions with the promoterless gfp at the single cell level. Results The investigated LexA regulated genes exhibited heterogeneity, as only in a small fraction of the population more intense fluorescence was observed. Unlike recA and lexA, the pore forming and nuclease colicin activity genes as well as umuDC, exhibited no basal level activity. However, in a lexA defective strain high level expression of the gene fusions was observed in the large majority of the cells. All of the investigated genes were expressed in a recA defective strain, albeit at lower levels, revealing expression in the absence of a spontaneous SOS response. In addition, the simultaneous expression of cka, encoding the pore forming colicin K, and lexA, investigated at the single cell level revealed high level expression of only cka in rare individual cells. Conclusion LexA regulated genes exhibit phenotypic heterogeneity as high level expression is observed in only a small subpopulation of cells. Heterogenous expression is established primarily by stochastic factors and the binding affinity of LexA to SOS boxes.
Collapse
Affiliation(s)
- Simona Kamenšek
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Slovenia
| | | | | | | |
Collapse
|
28
|
SOS regulatory elements are essential for UPEC pathogenesis. Microbes Infect 2010; 12:662-8. [PMID: 20435157 DOI: 10.1016/j.micinf.2010.04.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 03/26/2010] [Accepted: 04/20/2010] [Indexed: 01/11/2023]
Abstract
Epithelial cells are highly regarded as the first line of defense against microorganisms, but the mechanisms used to control bacterial diseases are poorly understood. A component of the DNA damage repair regulon, SulA, is essential for UPEC virulence in a mouse model for human urinary tract infection, suggesting that DNA damage is a key mediator in the primary control of pathogens within the epithelium. In this study, we examine the role of DNA damage repair regulators in the intracellular lifestyle of UPEC within superficial bladder epithelial cells. LexA and RecA coordinate various operons for repair of DNA damage due to exogenous and endogenous agents and are known regulators of sulA. UPEC strains defective in regulation of the SOS response mediated by RecA and LexA display attenuated virulence in immunocompetent mice within the first 6 h post infection. RecA and LexA regulation of the SOS regulon is dispensable in immunocompromised mice. These data suggest that epithelial cells produce sufficient levels of DNA damaging agents, such that the bacterial DNA damage repair response is essential, as a means to control invading bacteria. Since many pathogens interact with the epithelium before exposure to professional phagocytes, it is likely that adaptation to oxidative radicals during intracellular growth provides additional protection from killing by innate immune phagocytes.
Collapse
|
29
|
Menezes MA, Rocha LB, Koga PCM, Fernandes I, Nara JM, Magalhães CA, Abe CM, Ayala CO, Burgos YK, Elias WP, Castro AFP, Piazza RMF. Identification of enteropathogenic and enterohaemorrhagic Escherichia coli strains by immunoserological detection of intimin. J Appl Microbiol 2009; 108:878-887. [PMID: 19709337 DOI: 10.1111/j.1365-2672.2009.04484.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS To evaluate the sensitivity and specificity of polyclonal and monoclonal antibodies (Mabs) against intimin in the detection of enteropathogenic and enterohaemorrhagic Escherichia coli isolates using immunoblotting. METHODS AND RESULTS Polyclonal and Mabs against the intimin-conserved region were raised, and their reactivities were compared in enteropathogenic E. coli (EPEC) and enterohaemorrhagic E. coli (EHEC) isolates using immunoblotting analysis. In comparison with rat antiserum, rabbit anti-intimin IgG-enriched fraction had a stronger recognition pattern to a wide spectrum of intimin types in different EPEC and EHEC serotypes. On the other hand, murine monoclonal IgG2b specific to intimin, with dissociation constant of 1.3x10(-8) mol l(-1), failed in the detection of some of these isolates. CONCLUSION All employed antibodies showed 100% specificity, not reacting with any of the eae-negative isolates. The sensitivity range was according to the employed antisera, and 97% for rabbit anti-intimin IgG-enriched fraction, followed by 92% and 78% sensitivity with rat antisera and Mab. SIGNIFICANCE AND IMPACT OF THE STUDY The rabbit anti-intimin IgG-enriched fraction in immunoblotting analysis is a useful tool for EPEC and EHEC diagnoses.
Collapse
Affiliation(s)
- M A Menezes
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, SP, Brazil
| | - L B Rocha
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, SP, Brazil
| | - P C M Koga
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, SP, Brazil
| | - I Fernandes
- Laboratório de Imunopatologia, Instituto Butantan, São Paulo, SP, Brazil
| | - J M Nara
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, SP, Brazil
| | - C A Magalhães
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, SP, Brazil
| | - C M Abe
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, SP, Brazil
| | - C O Ayala
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Y K Burgos
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - W P Elias
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, SP, Brazil
| | - A F P Castro
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - R M F Piazza
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, SP, Brazil
| |
Collapse
|
30
|
Tree JJ, Wolfson EB, Wang D, Roe AJ, Gally DL. Controlling injection: regulation of type III secretion in enterohaemorrhagic Escherichia coli. Trends Microbiol 2009; 17:361-70. [PMID: 19660954 DOI: 10.1016/j.tim.2009.06.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 05/25/2009] [Accepted: 06/01/2009] [Indexed: 12/01/2022]
Abstract
Type III secretion (T3S) systems enable the injection of bacterial proteins through membrane barriers into host cells, either from outside the host cell or from within a vacuole. This system is required for colonization of their ruminant reservoir hosts by enterohaemorrhagic Escherichia coli (EHEC) and might also be important for the etiology of disease in the incidental human host. T3S systems of E. coli inject a cocktail of proteins into epithelial cells that enables bacterial attachment and promotes longer-term colonization in the animal. Here, we review recent progress in our understanding of the regulation of T3S in EHEC, focusing on the induction and assembly of the T3S system, the co-ordination of effector protein expression, and the timing of effector protein export through the apparatus. Strain variation is often associated with differences in bacteriophages encoding the production of Shiga toxin and in multiple cryptic prophage elements that can encode effector proteins and T3S regulators. It is evident that this repertoire of phage-related sequences results in the different levels of T3S demonstrated between strains, with implications for EHEC epidemiology and strain evolution.
Collapse
Affiliation(s)
- Jai J Tree
- Immunity and Infection Division, The Roslin Institute and R(D)SVS, Chancellor's Building, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | | | | | | | | |
Collapse
|
31
|
Characterization of the effects of salicylidene acylhydrazide compounds on type III secretion in Escherichia coli O157:H7. Infect Immun 2009; 77:4209-20. [PMID: 19635828 DOI: 10.1128/iai.00562-09] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent work has highlighted a number of compounds that target bacterial virulence by affecting gene regulation. In this work, we show that small-molecule inhibitors affect the expression of the type III secretion system (T3SS) of Escherichia coli O157:H7 in liquid culture and when this bacterium is attached to bovine epithelial cells. Inhibition of T3SS expression resulted in a reduction in the capacity of the bacteria to form attaching and effacing lesions. Our results show that there is marked variation in the abilities of four structurally related compounds to inhibit the T3SS of a panel of isolates. Using transcriptomics, we performed a comprehensive analysis of the conserved and inhibitor-specific transcriptional responses to these four compounds. These analyses of gene expression show that numerous virulence genes, located on horizontally acquired DNA elements, are affected by the compounds, but the number of genes significantly affected varied markedly for the different compounds. Overall, we highlight the importance of assessing the effect of such "antivirulence" agents on a range of isolates and discuss the possible mechanisms which may lead to the coordinate downregulation of horizontally acquired virulence genes.
Collapse
|
32
|
Mellies JL, Larabee FJ, Zarr MA, Horback KL, Lorenzen E, Mavor D. Ler interdomain linker is essential for anti-silencing activity in enteropathogenic Escherichia coli. MICROBIOLOGY-SGM 2009; 154:3624-3638. [PMID: 19047730 DOI: 10.1099/mic.0.2008/023382-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Enteropathogenic Escherichia coli (EPEC) expresses a type III secretion system (T3SS) required for pathogenesis. Regulation of the genes encoding the T3SS is complex; two major regulators control transcription, the silencer H-NS, and the related H-NS-like protein Ler. Our laboratory is interested in understanding the molecular differences that distinguish the anti-silencer Ler from H-NS, and how Ler differentially regulates EPEC virulence genes. Here, we demonstrate that mutated Ler proteins either containing H-NS alpha-helices 1 and 2, missing from Ler, or truncated for the 11 aa C-terminal extension compared with the related H-NS protein, did not appreciably alter Ler function. In contrast, mutating the proline at position 92 of Ler, in the conserved C-terminal DNA binding motif, eliminated Ler activity. Inserting 11 H-NS-specific amino acids, 11 alanines or 6 alanines into the Ler linker severely impaired the ability of Ler to increase LEE5 transcription. To extend our analysis, we constructed six chimeric proteins containing the N terminus, linker region or C terminus of Ler in different combinations with the complementary domains of H-NS, and monitored their in vivo activities. Replacing the Ler linker domain with that of H-NS, or replacing the Ler C-terminal, DNA binding domain with that of H-NS eliminated the ability of Ler to increase transcription at the LEE5 promoter. Thus, the linker and C-terminal domains of Ler and H-NS are not functionally equivalent. Conversely, replacing the H-NS linker region with that of Ler caused increased transcription at LEE5 in a strain deleted for hns. In summary, the interdomain linker specific to Ler is necessary for anti-silencing activity in EPEC.
Collapse
Affiliation(s)
- Jay L Mellies
- Biology Department, Reed College, Portland, OR 97202, USA
| | | | | | - Katy L Horback
- Oregon Health Sciences University, Portland, OR 97202, USA
| | - Emily Lorenzen
- Biology Department, Reed College, Portland, OR 97202, USA
| | - David Mavor
- Biology Department, Reed College, Portland, OR 97202, USA
| |
Collapse
|
33
|
Abstract
All organisms possess a diverse set of genetic programs that are used to alter cellular physiology in response to environmental cues. The gram-negative bacterium, Escherichia coli, mounts what is known as the "SOS response" following DNA damage, replication fork arrest, and a myriad of other environmental stresses. For over 50 years, E. coli has served as the paradigm for our understanding of the transcriptional, and physiological changes that occur following DNA damage (400). In this chapter, we summarize the current view of the SOS response and discuss how this genetic circuit is regulated. In addition to examining the E. coli SOS response, we also include a discussion of the SOS regulatory networks in other bacteria to provide a broader perspective on how prokaryotes respond to DNA damage.
Collapse
|
34
|
Regulation of expression and secretion of NleH, a new non-locus of enterocyte effacement-encoded effector in Citrobacter rodentium. J Bacteriol 2008; 190:2388-99. [PMID: 18223087 DOI: 10.1128/jb.01602-07] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Together with enterohemorrhagic Escherichia coli and enteropathogenic Escherichia coli, Citrobacter rodentium is a member of the attaching-and-effacing (A/E) family of bacterial pathogens. A/E pathogens use a type III secretion system (T3SS) to translocate an assortment of effector proteins, encoded both within and outside the locus of enterocyte effacement (LEE), into the colonized host cell, leading to the formation of A/E lesions and disease. Here we report the identification and characterization of a new non-LEE encoded effector, NleH, in C. rodentium. NleH is conserved among A/E pathogens and shares identity with OspG, a type III secreted effector protein in Shigella flexneri. Downstream of nleH, genes encoding homologues of the non-LEE-encoded effectors EspJ and NleG/NleI are found. NleH secretion and translocation into Caco-2 cells requires a functional T3SS and signals located at its amino-terminal domain. Transcription of nleH is not significantly reduced in mutants lacking the LEE-encoded regulators Ler and GrlA; however, NleH protein levels are highly reduced in these strains, as well as in escN and cesT mutants. Inactivation of Lon, but not of ClpP, protease restores NleH levels even in the absence of CesT. Our results indicate that the efficient engagement of NleH in active secretion is needed for its stability, thus establishing a posttranslational regulatory mechanism that coregulates NleH levels with the expression of LEE-encoded proteins. A C. rodentium nleH mutant shows a moderate defect during the colonization of C57BL/6 mice at early stages of infection.
Collapse
|
35
|
Tobe T. [Modulation of virulence expression in Escherichia coli and Shigella spp. by environmental factors]. Nihon Saikingaku Zasshi 2007; 62:337-46. [PMID: 17891998 DOI: 10.3412/jsb.62.337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Toru Tobe
- Division of Applied Microbiology, Graduate School of Medicine, Osaka University, Japan
| |
Collapse
|
36
|
Butala M, Hodoscek M, Anderluh G, Podlesek Z, Zgur-Bertok D. Intradomain LexA rotation is a prerequisite for DNA binding specificity. FEBS Lett 2007; 581:4816-20. [PMID: 17884043 DOI: 10.1016/j.febslet.2007.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2007] [Revised: 09/04/2007] [Accepted: 09/06/2007] [Indexed: 10/22/2022]
Abstract
In the absence of DNA damage the LexA protein represses the bacterial SOS system. We performed molecular dynamic simulations of two LexA dimers bound to operators. Our model predicted that rotation of the LexA DNA binding domain, with respect to the dimerised C-terminal domain, is required for selective DNA binding. To confirm the model, double and quadruple cysteine LexA mutants were engineered. Electrophoretic mobility-shift assay and surface plasmon resonance showed that disulfide bond formation between the introduced cysteine residues precluded LexA specific DNA binding due to blocked domain reorientation. Our model could provide the basis for novel drug design.
Collapse
Affiliation(s)
- Matej Butala
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Vecna pot 111, Ljubljana, Slovenia.
| | | | | | | | | |
Collapse
|
37
|
Mellies JL, Barron AMS, Carmona AM. Enteropathogenic and enterohemorrhagic Escherichia coli virulence gene regulation. Infect Immun 2007; 75:4199-210. [PMID: 17576759 PMCID: PMC1951183 DOI: 10.1128/iai.01927-06] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Jay L Mellies
- Biology Department, Reed College, 3203 S.E. Woodstock Boulevard, Portland, OR 97202, USA.
| | | | | |
Collapse
|