1
|
Harrar A, Hamat RA, Hamidechi MA. Bioinformatics Analysis and Spatiotemporal Distribution of the fliC Gene and Its Protein Isolated from Escherichia coli-Infected Patients in Eastern Algeria. Malays J Med Sci 2024; 31:161-195. [PMID: 39416740 PMCID: PMC11477471 DOI: 10.21315/mjms2024.31.5.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 07/04/2024] [Indexed: 10/19/2024] Open
Abstract
Background The fliC locus in Escherichia coli primarily encodes flagellar (H) antigens. Exploring fliC sequence diversity will shed light on the mechanisms of bacterial pathogenicity. This study examined the presence of fliC mutant strains of E. coli in infected patients from different age groups, sexes and sample types in eastern Algerian provinces over a span of 2 years. Methods This retrospective, cross-sectional study involved three provinces in eastern Algeria: i) Bordj Bou Arreridj, ii) Setif and iii) Batna. A total of 75 E. coli isolates were obtained from the University State Hospital Centre. Two types of analyses were conducted: i) a bioinformatics analysis of the protein sequences translated from the fliC genes, specifically the fliC flagellar sequences and ii) a multifactorial statistical analysis (multiple correspondence analysis [MCA]) of the population of infected patients, considering various parameters. The fliC protein sequences were aligned using the Multiple Alignment using Fast Fourier Transform (MAFFT) programme. The alignment results were then visualised using the MView programme. Finally, a phylogenetic tree was constructed using the maximum likelihood algorithm in MEGA 11 software. Results Bioinformatics analysis highlighted the strong conservation of the structures of the fliC protein sequences, especially at the two N- and C-terminal ends, and strong variability in the central zone. This remarkable fliC intersequence similarity is corroborated by the presence of protein motifs identified in the PROSITE protein motif database. Conclusion fliC mutations in E. coli were not detected in the clinical samples of patients from hospitals in the three Algerian Provinces. Our analysis revealed that all the samples exhibited characteristics of wild-type virulent bacteria without mutations. A multicentre study is warranted for epidemiological surveillance of fliC mutant strains for future preventive measures.
Collapse
Affiliation(s)
- Abdenassar Harrar
- Department of Microbiology, Faculty of Nature and Life Sciences, Frère Mentouri Constantine 1 University, Ain El-Bey, Algeria
- Department of Microbiology and Biochemistry, Faculty of Sciences, Laboratory of Biologie: Application en Santé et Environnement, University Mohamed Boudiaf of M’sila, Algeria
| | - Rukman Awang Hamat
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Mohamed Abdelhafid Hamidechi
- Department of Applied Biology, Faculty of Nature and Life Sciences, Laboratory of Microbiology Engineering and Applications, Frère Mentouri Constantine 1 University, Ain El-Bey, Algeria
| |
Collapse
|
2
|
Li H, Xie R, Xu X, Liao X, Guo J, Fang Y, Fang Z, Huang J. Static Magnetic Field Inhibits Growth of Escherichia coli Colonies via Restriction of Carbon Source Utilization. Cells 2022; 11:cells11050827. [PMID: 35269449 PMCID: PMC8909705 DOI: 10.3390/cells11050827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023] Open
Abstract
Magnetobiological effects on growth and virulence have been widely reported in Escherichia coli (E. coli). However, published results are quite varied and sometimes conflicting because the underlying mechanism remains unknown. Here, we reported that the application of 250 mT static magnetic field (SMF) significantly reduces the diameter of E. coli colony-forming units (CFUs) but has no impact on the number of CFUs. Transcriptomic analysis revealed that the inhibitory effect of SMF is attributed to differentially expressed genes (DEGs) primarily involved in carbon source utilization. Consistently, the addition of glycolate or glyoxylate to the culture media successfully restores the bacterial phenotype in SMF, and knockout mutants lacking glycolate oxidase are no longer sensitive to SMF. These results suggest that SMF treatment results in a decrease in glycolate oxidase activity. In addition, metabolomic assay showed that long-chain fatty acids (LCFA) accumulate while phosphatidylglycerol and middle-chain fatty acids decrease in the SMF-treated bacteria, suggesting that SMF inhibits LCFA degradation. Based on the published evidence together with ours derived from this study, we propose a model showing that free radicals generated by LCFA degradation are the primary target of SMF action, which triggers the bacterial oxidative stress response and ultimately leads to growth inhibition.
Collapse
Affiliation(s)
- Haodong Li
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; (H.L.); (R.X.); (X.X.); (X.L.); (J.G.)
| | - Runnan Xie
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; (H.L.); (R.X.); (X.X.); (X.L.); (J.G.)
| | - Xiang Xu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; (H.L.); (R.X.); (X.X.); (X.L.); (J.G.)
| | - Xingru Liao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; (H.L.); (R.X.); (X.X.); (X.L.); (J.G.)
| | - Jiaxin Guo
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; (H.L.); (R.X.); (X.X.); (X.L.); (J.G.)
| | - Yanwen Fang
- Heye Health Industrial Research Institute, Zhejiang Heye Health Technology, Anji, Huzhou 313300, China; (Y.F.); (Z.F.)
| | - Zhicai Fang
- Heye Health Industrial Research Institute, Zhejiang Heye Health Technology, Anji, Huzhou 313300, China; (Y.F.); (Z.F.)
| | - Jirong Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; (H.L.); (R.X.); (X.X.); (X.L.); (J.G.)
- Correspondence:
| |
Collapse
|
3
|
Nakae K, Ooka T, Murakami K, Hara-Kudo Y, Imuta N, Gotoh Y, Ogura Y, Hayashi T, Okamoto Y, Nishi J. Diversification of Escherichia albertii H-Antigens and Development of H-Genotyping PCR. Front Microbiol 2021; 12:737979. [PMID: 34790177 PMCID: PMC8591213 DOI: 10.3389/fmicb.2021.737979] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/07/2021] [Indexed: 11/24/2022] Open
Abstract
Escherichia albertii is a recently recognized human enteropathogen that is closely related to Escherichia coli. As E. albertii sometimes causes outbreaks of gastroenteritis, rapid strain typing systems, such as the O- and H-serotyping systems widely used for E. coli, will be useful for outbreak investigation and surveillance. Although an O-genotyping system has recently been developed, the diversity of E. albertii H-antigens (flagellins) encoded by fliC genes remains to be systematically investigated, and no H-serotyping or genotyping system is currently available. Here, we analyzed the fliC genes of 243 genome-sequenced E. albertii strains and identified 73 sequence types, which were grouped into four clearly distinguishable types designated E. albertii H-genotypes 1–4 (EAHg1–EAHg4). Although there was a clear sign of intraspecies transfer of fliC genes in E. albertii, none of the four E. albertii H-genotypes (EAHgs) were closely related to any of the 53 known E. coli H-antigens, indicating the absence or rare occurrence of interspecies transfer of fliC genes between the two species. Although the analysis of more E. albertii strains will be required to confirm the low level of variation in their fliC genes, this finding suggests that E. albertii may exist in limited natural hosts or environments and/or that the flagella of E. albertii may function in a limited stage(s) in their life cycle. Based on the fliC sequences of the four EAHgs, we developed a multiplex PCR-based H-genotyping system for E. albertii (EAH-genotyping PCR), which will be useful for epidemiological studies of E. albertii infections.
Collapse
Affiliation(s)
- Koji Nakae
- Department of Pediatrics, Kagoshima University Hospital, Kagoshima, Japan
| | - Tadasuke Ooka
- Department of Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Koichi Murakami
- Center for Emergency Preparedness and Response, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Naoko Imuta
- Department of Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yasuhiro Gotoh
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshitoshi Ogura
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Infectious Medicine, Division of Microbiology, Kurume University School of Medicine, Kurume, Japan
| | - Tetsuya Hayashi
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasuhiro Okamoto
- Department of Pediatrics, Kagoshima University Hospital, Kagoshima, Japan
| | - Junichiro Nishi
- Department of Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
4
|
Rogé AD, Celi Castillo AB, van der Ploeg CA, Bordagorría XL, Padín VM, Bruno SB. Identification of Two New Sequences of Flagellin-Encoding Gene in Escherichia coli Using PCR and Sequencing-Based Methods. Foodborne Pathog Dis 2021; 19:31-35. [PMID: 34491107 DOI: 10.1089/fpd.2021.0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Escherichia coli has traditionally been serotyped using antisera against the O and H antigens. However, a proportion of E. coli isolates are nonmotile and, in addition, some isolates do not react with the currently available H-typing sera. Alternative molecular methods have been developed based on the detection of genes encoding for H antigens. In this study, we studied 13 serologically nontypable H antigen E. coli strains using polymerase chain reaction (PCR) and sequencing-based methods. We found two new sequences of flagellin-encoding gene, for each of which a specific antiserum was produced to confirm their expression. Sequencing of the flagellin gene offers a rapid determination of E. coli H antigens and could be used to detect potential novel flagellar antigens.
Collapse
Affiliation(s)
- Ariel Diego Rogé
- Servicio Antígenos y Antisueros, Instituto Nacional de Producción de Biológicos, ANLIS "Dr. Carlos G. Malbrán," Ciudad Autónoma de Buenos Aires, Argentina
| | - Ana Beatriz Celi Castillo
- Servicio Antígenos y Antisueros, Instituto Nacional de Producción de Biológicos, ANLIS "Dr. Carlos G. Malbrán," Ciudad Autónoma de Buenos Aires, Argentina
| | - Claudia Andrea van der Ploeg
- Servicio Antígenos y Antisueros, Instituto Nacional de Producción de Biológicos, ANLIS "Dr. Carlos G. Malbrán," Ciudad Autónoma de Buenos Aires, Argentina
| | - Ximena Luciana Bordagorría
- Servicio Antígenos y Antisueros, Instituto Nacional de Producción de Biológicos, ANLIS "Dr. Carlos G. Malbrán," Ciudad Autónoma de Buenos Aires, Argentina
| | - Valeria M Padín
- Servicio Antígenos y Antisueros, Instituto Nacional de Producción de Biológicos, ANLIS "Dr. Carlos G. Malbrán," Ciudad Autónoma de Buenos Aires, Argentina
| | - Susana Beatriz Bruno
- Servicio Antígenos y Antisueros, Instituto Nacional de Producción de Biológicos, ANLIS "Dr. Carlos G. Malbrán," Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
5
|
Ageorges V, Monteiro R, Leroy S, Burgess CM, Pizza M, Chaucheyras-Durand F, Desvaux M. Molecular determinants of surface colonisation in diarrhoeagenic Escherichia coli (DEC): from bacterial adhesion to biofilm formation. FEMS Microbiol Rev 2021; 44:314-350. [PMID: 32239203 DOI: 10.1093/femsre/fuaa008] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/31/2020] [Indexed: 12/11/2022] Open
Abstract
Escherichia coli is primarily known as a commensal colonising the gastrointestinal tract of infants very early in life but some strains being responsible for diarrhoea, which can be especially severe in young children. Intestinal pathogenic E. coli include six pathotypes of diarrhoeagenic E. coli (DEC), namely, the (i) enterotoxigenic E. coli, (ii) enteroaggregative E. coli, (iii) enteropathogenic E. coli, (iv) enterohemorragic E. coli, (v) enteroinvasive E. coli and (vi) diffusely adherent E. coli. Prior to human infection, DEC can be found in natural environments, animal reservoirs, food processing environments and contaminated food matrices. From an ecophysiological point of view, DEC thus deal with very different biotopes and biocoenoses all along the food chain. In this context, this review focuses on the wide range of surface molecular determinants acting as surface colonisation factors (SCFs) in DEC. In the first instance, SCFs can be broadly discriminated into (i) extracellular polysaccharides, (ii) extracellular DNA and (iii) surface proteins. Surface proteins constitute the most diverse group of SCFs broadly discriminated into (i) monomeric SCFs, such as autotransporter (AT) adhesins, inverted ATs, heat-resistant agglutinins or some moonlighting proteins, (ii) oligomeric SCFs, namely, the trimeric ATs and (iii) supramolecular SCFs, including flagella and numerous pili, e.g. the injectisome, type 4 pili, curli chaperone-usher pili or conjugative pili. This review also details the gene regulatory network of these numerous SCFs at the various stages as it occurs from pre-transcriptional to post-translocational levels, which remains to be fully elucidated in many cases.
Collapse
Affiliation(s)
- Valentin Ageorges
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France
| | - Ricardo Monteiro
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France.,GSK, Via Fiorentina 1, 53100 Siena, Italy
| | - Sabine Leroy
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France
| | - Catherine M Burgess
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland
| | | | - Frédérique Chaucheyras-Durand
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France.,Lallemand Animal Nutrition SAS, F-31702 Blagnac Cedex, France
| | - Mickaël Desvaux
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France
| |
Collapse
|
6
|
Elder JR, Fratamico PM, Liu Y, Needleman DS, Bagi L, Tebbs R, Allred A, Siddavatam P, Suren H, Gujjula KR, DebRoy C, Dudley EG, Yan X. A Targeted Sequencing Assay for Serotyping Escherichia coli Using AgriSeq Technology. Front Microbiol 2021; 11:627997. [PMID: 33519788 PMCID: PMC7844058 DOI: 10.3389/fmicb.2020.627997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/21/2020] [Indexed: 11/24/2022] Open
Abstract
The gold standard method for serotyping Escherichia coli has relied on antisera-based typing of the O- and H-antigens, which is labor intensive and often unreliable. In the post-genomic era, sequence-based assays are potentially faster to provide results, could combine O-serogrouping and H-typing in a single test, and could simultaneously screen for the presence of other genetic markers of interest such as virulence factors. Whole genome sequencing is one approach; however, this method has limited multiplexing capabilities, and only a small fraction of the sequence is informative for subtyping or identifying virulence potential. A targeted, sequence-based assay and accompanying software for data analysis would be a great improvement over the currently available methods for serotyping. The purpose of this study was to develop a high-throughput, molecular method for serotyping E. coli by sequencing the genes that are required for production of O- and H-antigens, as well as to develop software for data analysis and serotype identification. To expand the utility of the assay, targets for the virulence factors, Shiga toxins (stx1, and stx2) and intimin (eae) were included. To validate the assay, genomic DNA was extracted from O-serogroup and H-type standard strains and from Shiga toxin-producing E. coli, the targeted regions were amplified, and then sequencing libraries were prepared from the amplified products followed by sequencing of the libraries on the Ion S5™ sequencer. The resulting sequence files were analyzed via the SeroType Caller™ software for identification of O-serogroup, H-type, and presence of stx1, stx2, and eae. We successfully identified 169 O-serogroups and 41 H-types. The assay also routinely detected the presence of stx1a,c,d (3 of 3 strains), stx2c−e,g (8 of 8 strains), stx2f (1 strain), and eae (6 of 6 strains). Taken together, the high-throughput, sequence-based method presented here is a reliable alternative to antisera-based serotyping methods for E. coli.
Collapse
Affiliation(s)
- Jacob R Elder
- U. S. Department of Agriculture, Eastern Regional Research Center, Agricultural Research Service, Wyndmoor, PA, United States
| | - Pina M Fratamico
- U. S. Department of Agriculture, Eastern Regional Research Center, Agricultural Research Service, Wyndmoor, PA, United States
| | - Yanhong Liu
- U. S. Department of Agriculture, Eastern Regional Research Center, Agricultural Research Service, Wyndmoor, PA, United States
| | - David S Needleman
- U. S. Department of Agriculture, Eastern Regional Research Center, Agricultural Research Service, Wyndmoor, PA, United States
| | - Lori Bagi
- U. S. Department of Agriculture, Eastern Regional Research Center, Agricultural Research Service, Wyndmoor, PA, United States
| | - Robert Tebbs
- Thermo Fisher Scientific, Genetic Sciences Division, Austin, TX, United States
| | | | - Prasad Siddavatam
- Thermo Fisher Scientific, Genetic Sciences Division, Austin, TX, United States
| | - Haktan Suren
- Thermo Fisher Scientific, Genetic Sciences Division, Austin, TX, United States
| | | | - Chitrita DebRoy
- E. coli Reference Center, The Pennsylvania State University, University Park, PA, United States
| | - Edward G Dudley
- E. coli Reference Center, The Pennsylvania State University, University Park, PA, United States
| | - Xianghe Yan
- U. S. Department of Agriculture, Eastern Regional Research Center, Agricultural Research Service, Wyndmoor, PA, United States
| |
Collapse
|
7
|
Abstract
Bacterial flagellar motility plays an important role in many processes that occur at surfaces or in hydrogels, including adhesion, biofilm formation, and bacterium-host interactions. Consequently, expression of flagellar genes, as well as genes involved in biofilm formation and virulence, can be regulated by the surface contact. In a few bacterial species, flagella themselves are known to serve as mechanosensors, where an increased load on flagella experienced during surface contact or swimming in viscous media controls gene expression. In this study, we show that gene regulation by motility-dependent mechanosensing is common among pathogenic Escherichia coli strains. This regulatory mechanism requires flagellar rotation, and it enables pathogenic E. coli to repress flagellar genes at low loads in liquid culture, while activating motility in porous medium (soft agar) or upon surface contact. It also controls several other cellular functions, including metabolism and signaling. The mechanosensing response in pathogenic E. coli depends on the negative regulator of motility, RflP (YdiV), which inhibits basal expression of flagellar genes in liquid. While no conditional inhibition of flagellar gene expression in liquid and therefore no upregulation in porous medium was observed in the wild-type commensal or laboratory strains of E. coli, mechanosensitive regulation could be recovered by overexpression of RflP in the laboratory strain. We hypothesize that this conditional activation of flagellar genes in pathogenic E. coli reflects adaptation to the dual role played by flagella and motility during infection.IMPORTANCE Flagella and motility are widespread virulence factors among pathogenic bacteria. Motility enhances the initial host colonization, but the flagellum is a major antigen targeted by the host immune system. Here, we demonstrate that pathogenic E. coli strains employ a mechanosensory function of the flagellar motor to activate flagellar expression under high loads, while repressing it in liquid culture. We hypothesize that this mechanism allows pathogenic E. coli to regulate its motility dependent on the stage of infection, activating flagellar expression upon initial contact with the host epithelium, when motility is beneficial, but reducing it within the host to delay the immune response.
Collapse
|
8
|
Abstract
Bacterial and archaeal flagellins are remarkable in having a shared region with variation in housekeeping proteins and a region with extreme diversity, perhaps greater than for any other protein. Analysis of the 113,285 available full-gene sequences of flagellin genes from published bacterial and archaeal sequences revealed the nature and enormous extent of flagellin diversity. There were 35,898 unique amino acid sequences that were resolved into 187 clusters. Analysis of the Escherichia coli and Salmonella enterica flagellins revealed that the variation occurs at two levels. The first is the division of the variable regions into sequence forms that are so divergent that there is no meaningful alignment even within species, and these corresponded to the E. coli or S. enterica H-antigen groups. The second level is variation within these groups, which is extensive in both species. Shared sequence would allow PCR of the variable regions and thus strain-level analysis of microbiome DNA. Flagellin, the agent of prokaryotic flagellar motion, is very widely distributed and is the H antigen of serology. Flagellin molecules have a variable region that confers serotype specificity, encoded by the middle of the gene, and also conserved regions encoded by the two ends of the gene. We collected all available prokaryotic flagellin protein sequences and found the variable region diversity to be at two levels. In each species investigated, there are hypervariable region (HVR) forms without detectable homology in protein sequences between them. There is also considerable variation within HVR forms, indicating that some have been diverging for thousands of years and that interphylum horizontal gene transfers make a major contribution to the evolution of such atypical diversity. IMPORTANCE Bacterial and archaeal flagellins are remarkable in having a shared region with variation in housekeeping proteins and a region with extreme diversity, perhaps greater than for any other protein. Analysis of the 113,285 available full-gene sequences of flagellin genes from published bacterial and archaeal sequences revealed the nature and enormous extent of flagellin diversity. There were 35,898 unique amino acid sequences that were resolved into 187 clusters. Analysis of the Escherichia coli and Salmonella enterica flagellins revealed that the variation occurs at two levels. The first is the division of the variable regions into sequence forms that are so divergent that there is no meaningful alignment even within species, and these corresponded to the E. coli or S. enterica H-antigen groups. The second level is variation within these groups, which is extensive in both species. Shared sequence would allow PCR of the variable regions and thus strain-level analysis of microbiome DNA.
Collapse
|
9
|
De Maayer P, Pillay T, Coutinho TA. Comparative genomic analysis of the secondary flagellar (flag-2) system in the order Enterobacterales. BMC Genomics 2020; 21:100. [PMID: 32000682 PMCID: PMC6993521 DOI: 10.1186/s12864-020-6529-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/22/2020] [Indexed: 01/24/2023] Open
Abstract
Background The order Enterobacterales encompasses a broad range of metabolically and ecologically versatile bacterial taxa, most of which are motile by means of peritrichous flagella. Flagellar biosynthesis has been linked to a primary flagella locus, flag-1, encompassing ~ 50 genes. A discrete locus, flag-2, encoding a distinct flagellar system, has been observed in a limited number of enterobacterial taxa, but its function remains largely uncharacterized. Results Comparative genomic analyses showed that orthologous flag-2 loci are present in 592/4028 taxa belonging to 5/8 and 31/76 families and genera, respectively, in the order Enterobacterales. Furthermore, the presence of only the outermost flag-2 genes in many taxa suggests that this locus was far more prevalent and has subsequently been lost through gene deletion events. The flag-2 loci range in size from ~ 3.4 to 81.1 kilobases and code for between five and 102 distinct proteins. The discrepancy in size and protein number can be attributed to the presence of cargo gene islands within the loci. Evolutionary analyses revealed a complex evolutionary history for the flag-2 loci, representing ancestral elements in some taxa, while showing evidence of recent horizontal acquisition in other enterobacteria. Conclusions The flag-2 flagellar system is a fairly common, but highly variable feature among members of the Enterobacterales. Given the energetic burden of flagellar biosynthesis and functioning, the prevalence of a second flagellar system suggests it plays important biological roles in the enterobacteria and we postulate on its potential role as locomotory organ or as secretion system.
Collapse
Affiliation(s)
- Pieter De Maayer
- School of Molecular & Cell Biology, University of the Witwatersrand, 2050 Wits, Johannesburg, South Africa.
| | - Talia Pillay
- School of Molecular & Cell Biology, University of the Witwatersrand, 2050 Wits, Johannesburg, South Africa
| | - Teresa A Coutinho
- Centre for Microbial Ecology and Genomics, University of Pretoria 0002, Pretoria, South Africa
| |
Collapse
|
10
|
Escherichia coli H-Genotyping PCR: a Complete and Practical Platform for Molecular H Typing. J Clin Microbiol 2018; 56:JCM.00190-18. [PMID: 29593058 DOI: 10.1128/jcm.00190-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/12/2018] [Indexed: 11/20/2022] Open
Abstract
In Escherichia coli, more than 180 O groups and 53 H types have been recognized. The O:H serotyping of E. coli strains is an effective method for identifying strains with pathogenic potential and classifying them into clonal groups. In particular, the serotyping of Shiga toxin-producing E. coli (STEC) strains provides valuable information to evaluate the routes, sources, and prevalence of agents in outbreak investigations and surveillance. Here, we present a complete and practical PCR-based H-typing system, E. coli H-genotyping PCR, consisting of 10 multiplex PCR kits with 51 single PCR primer pairs. Primers were designed based on a detailed comparative analysis of sequences from all H-antigen (flagellin)-encoding genes, fliC and its homologs. The specificity of this system was confirmed by using all H type reference strains. Additionally, 362 serotyped wild strains were also used to evaluate its practicality. All 277 H-type-identified isolates gave PCR products that corresponded to the results of serological H typing. Moreover, 76 nonmotile and nine untypeable strains could be successfully subtyped into any H type by the PCR system. The E. coli H-genotyping PCR developed here allows broader, rapid, and low-cost subtyping of H types and will assist epidemiological studies as well as surveillance of pathogenic E. coli.
Collapse
|
11
|
Leimbach A, Poehlein A, Vollmers J, Görlich D, Daniel R, Dobrindt U. No evidence for a bovine mastitis Escherichia coli pathotype. BMC Genomics 2017; 18:359. [PMID: 28482799 PMCID: PMC5422975 DOI: 10.1186/s12864-017-3739-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 04/27/2017] [Indexed: 11/30/2022] Open
Abstract
Background Escherichia coli bovine mastitis is a disease of significant economic importance in the dairy industry. Molecular characterization of mastitis-associated E. coli (MAEC) did not result in the identification of common traits. Nevertheless, a mammary pathogenic E. coli (MPEC) pathotype has been proposed suggesting virulence traits that differentiate MAEC from commensal E. coli. The present study was designed to investigate the MPEC pathotype hypothesis by comparing the genomes of MAEC and commensal bovine E. coli. Results We sequenced the genomes of eight E. coli isolated from bovine mastitis cases and six fecal commensal isolates from udder-healthy cows. We analyzed the phylogenetic history of bovine E. coli genomes by supplementing this strain panel with eleven bovine-associated E. coli from public databases. The majority of the isolates originate from phylogroups A and B1, but neither MAEC nor commensal strains could be unambiguously distinguished by phylogenetic lineage. The gene content of both MAEC and commensal strains is highly diverse and dominated by their phylogenetic background. Although individual strains carry some typical E. coli virulence-associated genes, no traits important for pathogenicity could be specifically attributed to MAEC. Instead, both commensal strains and MAEC have very few gene families enriched in either pathotype. Only the aerobactin siderophore gene cluster was enriched in commensal E. coli within our strain panel. Conclusions This is the first characterization of a phylogenetically diverse strain panel including several MAEC and commensal isolates. With our comparative genomics approach we could not confirm previous studies that argue for a positive selection of specific traits enabling MAEC to elicit bovine mastitis. Instead, MAEC are facultative and opportunistic pathogens recruited from the highly diverse bovine gastrointestinal microbiota. Virulence-associated genes implicated in mastitis are a by-product of commensalism with the primary function to enhance fitness in the bovine gastrointestinal tract. Therefore, we put the definition of the MPEC pathotype into question and suggest to designate corresponding isolates as MAEC. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3739-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andreas Leimbach
- Institute of Hygiene, University of Münster, Mendelstrasse 7, 48149, Münster, Germany. .,Department of Genomic and Applied Microbiology, Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Göttingen, Germany. .,Institute for Molecular Infection Biology, Julius-Maximilians-University of Würzburg, Würzburg, Germany.
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology, Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Göttingen, Germany
| | - John Vollmers
- Leibniz Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Dennis Görlich
- Institute of Biostatistics and Clinical Research, University of Münster, Münster, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology, Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Göttingen, Germany
| | - Ulrich Dobrindt
- Institute of Hygiene, University of Münster, Mendelstrasse 7, 48149, Münster, Germany. .,Institute for Molecular Infection Biology, Julius-Maximilians-University of Würzburg, Würzburg, Germany.
| |
Collapse
|
12
|
De Maayer P, Cowan DA. Comparative genomic analysis of the flagellin glycosylation island of the Gram-positive thermophile Geobacillus. BMC Genomics 2016; 17:913. [PMID: 27842516 PMCID: PMC5109656 DOI: 10.1186/s12864-016-3273-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/05/2016] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Protein glycosylation involves the post-translational attachment of sugar chains to target proteins and has been observed in all three domains of life. Post-translational glycosylation of flagellin, the main structural protein of the flagellum, is a common characteristic among many Gram-negative bacteria and Archaea. Several distinct functions have been ascribed to flagellin glycosylation, including stabilisation and maintenance of the flagellar filament, motility, surface recognition, adhesion, and virulence. However, little is known about this trait among Gram-positive bacteria. RESULTS Using comparative genomic approaches the flagellin glycosylation loci of multiple strains of the Gram-positive thermophilic genus Geobacillus were identified and characterized. Eighteen of thirty-six compared strains of the genus carry these loci, which show evidence of horizontal acquisition. The Geobacillus flagellin glycosylation islands (FGIs) can be clustered into five distinct types, which are predicted to encode highly variable glycans decorated with distinct and heavily modified sugars. CONCLUSIONS Our comparative genomic analyses showed that, while not universal, flagellin glycosylation islands are relatively common among members of the genus Geobacillus and that the encoded flagellin glycans are highly variable. This suggests that flagellin glycosylation plays an important role in the lifestyles of members of this thermophilic genus.
Collapse
Affiliation(s)
- Pieter De Maayer
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Wits, 2050, Johannesburg, South Africa.
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Genomics Research Institute, University of Pretoria, Pretoria, 0002, South Africa
| |
Collapse
|
13
|
Ingle DJ, Valcanis M, Kuzevski A, Tauschek M, Inouye M, Stinear T, Levine MM, Robins-Browne RM, Holt KE. In silico serotyping of E. coli from short read data identifies limited novel O-loci but extensive diversity of O:H serotype combinations within and between pathogenic lineages. Microb Genom 2016; 2:e000064. [PMID: 28348859 PMCID: PMC5343136 DOI: 10.1099/mgen.0.000064] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/21/2016] [Indexed: 11/18/2022] Open
Abstract
The lipopolysaccharide (O) and flagellar (H) surface antigens of Escherichia coli are targets for serotyping that have traditionally been used to identify pathogenic lineages. These surface antigens are important for the survival of E. coli within mammalian hosts. However, traditional serotyping has several limitations, and public health reference laboratories are increasingly moving towards whole genome sequencing (WGS) to characterize bacterial isolates. Here we present a method to rapidly and accurately serotype E. coli isolates from raw, short read WGS data. Our approach bypasses the need for de novo genome assembly by directly screening WGS reads against a curated database of alleles linked to known and novel E. coli O-groups and H-types (the EcOH database) using the software package srst2. We validated the approach by comparing in silico results for 197 enteropathogenic E. coli isolates with those obtained by serological phenotyping in an independent laboratory. We then demonstrated the utility of our method to characterize isolates in public health and clinical settings, and to explore the genetic diversity of >1500 E. coli genomes from multiple sources. Importantly, we showed that transfer of O- and H-antigen loci between E. coli chromosomal backbones is common, with little evidence of constraints by host or pathotype, suggesting that E. coli ‘strain space’ may be virtually unlimited, even within specific pathotypes. Our findings show that serotyping is most useful when used in combination with strain genotyping to characterize microevolution events within an inferred population structure.
Collapse
Affiliation(s)
- Danielle J Ingle
- 2Centre for Systems Genomics, University of Melbourne, Parkville, Victoria 3010, Australia
- 1Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia
- 3Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Mary Valcanis
- 4Microbiological Diagnostic Unit Public Health Laboratory, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3010, Australia
| | - Alex Kuzevski
- 4Microbiological Diagnostic Unit Public Health Laboratory, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3010, Australia
| | - Marija Tauschek
- 1Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Michael Inouye
- 2Centre for Systems Genomics, University of Melbourne, Parkville, Victoria 3010, Australia
- 5School of BioSciences, University of Melbourne, Victoria 3010, Australia
| | - Tim Stinear
- 1Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Myron M Levine
- 6Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Roy M Robins-Browne
- 1Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia
- 7Murdoch Childrens Research Institute, Royal Children's Hospital, Victoria 3010, Australia
| | - Kathryn E Holt
- 2Centre for Systems Genomics, University of Melbourne, Parkville, Victoria 3010, Australia
- 3Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
14
|
Hybrid Shiga Toxin-Producing and Enterotoxigenic Escherichia sp. Cryptic Lineage 1 Strain 7v Harbors a Hybrid Plasmid. Appl Environ Microbiol 2016; 82:4309-4319. [PMID: 27208138 DOI: 10.1128/aem.01129-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/03/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Hybrid isolates of Shiga toxin-producing Escherichia coli (STEC) and enterotoxigenic E. coli (ETEC) encoding heat-stable enterotoxin (ST) are being reported with increasing frequency from a variety of sources. However, information regarding the plasmids that these strains harbor is scarce. In this study, we sequence and characterize a plasmid, p7v, from the STEC/ETEC hybrid strain 7v. Whole-genome phylogenetic analyses of STEC/ETEC hybrid strains and prototype E. coli isolates of other pathotypes placed 7v in the Escherichia sp. cryptic lineage 1 (CL1) clade. The complete plasmid, p7v, was determined to be 229,275 bp and encodes putative virulence factors that are typically carried on STEC plasmids as well as those often carried on ETEC plasmids, indicating that the hybrid nature of the strain extends beyond merely encoding the two toxins. Plasmid p7v carries two copies of sta with identical sequences, which were discovered to be divergent from the sta sequences found in the prototype human ETEC strains. Using a nomenclature scheme based on a phylogeny constructed from sta and stb sequences, the sta encoded on p7v is designated STa4. In silico analysis determined that p7v also encodes the K88 fimbria, a colonization factor usually associated with porcine ETEC plasmids. The p7v sequence and the presence of plasmid-encoded virulence factors are compared to those of other STEC/ETEC CL1 hybrid genomes and reveal gene acquisition/loss at the strain level. In addition, the interrogation of 24 STEC/ETEC hybrid genomes for identification of plasmid replicons, colonization factors, Stx and ST subtypes, and other plasmid-encoded virulence genes highlights the diversity of these hybrid strains. IMPORTANCE Hybrid Shiga toxin-producing Escherichia coli/enterotoxigenic Escherichia coli (STEC/ETEC) strains, which have been isolated from environmental, animal, and human clinical samples, may represent an emerging threat as food-borne pathogens. Characterization of these strains is important for assessing virulence potential, aiding in the development of pathogen detection methods, and understanding how the hybrid strains evolve to potentially have a greater impact on public health. This study represents, to our knowledge, both the first characterization of a closed plasmid sequence from a STEC/ETEC hybrid strain and the most comprehensive phylogenetic analysis of available STEC/ETEC hybrid genomes to date. The results demonstrate how the mobility of plasmid-associated virulence genes has resulted in the creation of a diverse plasmid repertoire within the STEC/ETEC hybrid strains.
Collapse
|
15
|
More than a locomotive organelle: flagella in Escherichia coli. Appl Microbiol Biotechnol 2015; 99:8883-90. [DOI: 10.1007/s00253-015-6946-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 08/17/2015] [Accepted: 08/20/2015] [Indexed: 10/23/2022]
|
16
|
Joensen KG, Tetzschner AMM, Iguchi A, Aarestrup FM, Scheutz F. Rapid and Easy In Silico Serotyping of Escherichia coli Isolates by Use of Whole-Genome Sequencing Data. J Clin Microbiol 2015; 53:2410-26. [PMID: 25972421 PMCID: PMC4508402 DOI: 10.1128/jcm.00008-15] [Citation(s) in RCA: 629] [Impact Index Per Article: 62.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 05/02/2015] [Indexed: 11/20/2022] Open
Abstract
Accurate and rapid typing of pathogens is essential for effective surveillance and outbreak detection. Conventional serotyping of Escherichia coli is a delicate, laborious, time-consuming, and expensive procedure. With whole-genome sequencing (WGS) becoming cheaper, it has vast potential in routine typing and surveillance. The aim of this study was to establish a valid and publicly available tool for WGS-based in silico serotyping of E. coli applicable for routine typing and surveillance. A FASTA database of specific O-antigen processing system genes for O typing and flagellin genes for H typing was created as a component of the publicly available Web tools hosted by the Center for Genomic Epidemiology (CGE) (www.genomicepidemiology.org). All E. coli isolates available with WGS data and conventional serotype information were subjected to WGS-based serotyping employing this specific SerotypeFinder CGE tool. SerotypeFinder was evaluated on 682 E. coli genomes, 108 of which were sequenced for this study, where both the whole genome and the serotype were available. In total, 601 and 509 isolates were included for O and H typing, respectively. The O-antigen genes wzx, wzy, wzm, and wzt and the flagellin genes fliC, flkA, fllA, flmA, and flnA were detected in 569 and 508 genome sequences, respectively. SerotypeFinder for WGS-based O and H typing predicted 560 of 569 O types and 504 of 508 H types, consistent with conventional serotyping. In combination with other available WGS typing tools, E. coli serotyping can be performed solely from WGS data, providing faster and cheaper typing than current routine procedures and making WGS typing a superior alternative to conventional typing strategies.
Collapse
Affiliation(s)
- Katrine G Joensen
- National Food Institute, Division for Epidemiology and Microbial Genomics, Technical University of Denmark, Kgs. Lyngby, Denmark WHO Collaborating Centre for Reference and Research on Escherichia and Klebsiella, Department of Microbiology and Infection Control, Statens Serum Institut, Copenhagen, Denmark
| | - Anna M M Tetzschner
- WHO Collaborating Centre for Reference and Research on Escherichia and Klebsiella, Department of Microbiology and Infection Control, Statens Serum Institut, Copenhagen, Denmark
| | - Atsushi Iguchi
- Department of Animal and Grassland Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Frank M Aarestrup
- National Food Institute, Division for Epidemiology and Microbial Genomics, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Flemming Scheutz
- WHO Collaborating Centre for Reference and Research on Escherichia and Klebsiella, Department of Microbiology and Infection Control, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
17
|
Bellanger X, Payot S, Leblond-Bourget N, Guédon G. Conjugative and mobilizable genomic islands in bacteria: evolution and diversity. FEMS Microbiol Rev 2014; 38:720-60. [DOI: 10.1111/1574-6976.12058] [Citation(s) in RCA: 223] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 11/15/2013] [Accepted: 12/19/2013] [Indexed: 11/28/2022] Open
|
18
|
Moura CD, Tiba MR, Silva MJD, Leite DDS. Identification of new flagellin-encoding fliC genes in Escherichia coli isolated from domestic animals using RFLP-PCR and sequencing methods. PESQUISA VETERINARIA BRASILEIRA 2013. [DOI: 10.1590/s0100-736x2013000400001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Identification of Escherichia coli requires knowledge regarding the prevalent serotypes and virulence factors profiles allows the classification in pathogenic/non-pathogenic. However, some of these bacteria do not express flagellar antigen invitro. In this case the PCR-restriction fragment length polymorphism (RFLP-PCR) and sequencing of the fliC may be suitable for the identification of antigens by replacing the traditional serology. We studied 17 samples of E. coli isolated from animals and presenting antigen H nontypeable (HNT). The H antigens were characterized by PCR-RFLP and sequencing of fliC gene. Three new flagellin genes were identified, for which specific antisera were obtained. The PCR-RFLP was shown to be faster than the serotyping H antigen in E. coli, provided information on some characteristics of these antigens and indicated the presence of new genes fliC.
Collapse
|
19
|
Liu B, Hu B, Zhou Z, Guo D, Guo X, Ding P, Feng L, Wang L. A novel non-homologous recombination-mediated mechanism for Escherichia coli unilateral flagellar phase variation. Nucleic Acids Res 2012; 40:4530-8. [PMID: 22287625 PMCID: PMC3378880 DOI: 10.1093/nar/gks040] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Flagella contribute to the virulence of bacteria through chemotaxis, adhesion to and invasion of host surfaces. Flagellar phase variation is believed to facilitate bacterial evasion of the host immune response. In this study, the flnA gene that encodes Escherichia coli H17 flagellin was examined by whole genome sequencing and genetic deletion analysis. Unilateral flagellar phase variation has been reported in E. coli H3, H47 and H17 strains, although the mechanism for phase variation in the H17 strain has not been previously understood. Analysis of phase variants indicated that the flagellar phase variation in the H17 strain was caused by the deletion of an ∼35 kb DNA region containing the flnA gene from diverse excision sites. The presence of covalently closed extrachromosomal circular forms of this excised 35 kb region was confirmed by the two-step polymerase chain reaction. The deletion and complementation test revealed that the Int1157 integrase, a tyrosine recombinase, mediates the excision of this region. Unlike most tyrosine recombinases, Int1157 is suggested to recognize diverse sites and mediate recombination between non-homologous DNA sequences. This is the first report of non-homologous recombination mediating flagellar phase variation.
Collapse
Affiliation(s)
- Bin Liu
- TEDA School of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin Research Center for Functional Genomics and Biochip, Tianjin 300457 and The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
| | - Bo Hu
- TEDA School of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin Research Center for Functional Genomics and Biochip, Tianjin 300457 and The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
| | - Zhemin Zhou
- TEDA School of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin Research Center for Functional Genomics and Biochip, Tianjin 300457 and The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
| | - Dan Guo
- TEDA School of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin Research Center for Functional Genomics and Biochip, Tianjin 300457 and The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
| | - Xi Guo
- TEDA School of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin Research Center for Functional Genomics and Biochip, Tianjin 300457 and The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
| | - Peng Ding
- TEDA School of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin Research Center for Functional Genomics and Biochip, Tianjin 300457 and The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
| | - Lu Feng
- TEDA School of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin Research Center for Functional Genomics and Biochip, Tianjin 300457 and The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
| | - Lei Wang
- TEDA School of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin Research Center for Functional Genomics and Biochip, Tianjin 300457 and The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
- *To whom correspondence should be addressed. Tel: +86 22 66229588; Fax: +86 22 66229596;
| |
Collapse
|
20
|
Bellanger X, Morel C, Gonot F, Puymege A, Decaris B, Guédon G. Site-specific accretion of an integrative conjugative element together with a related genomic island leads to cis mobilization and gene capture. Mol Microbiol 2011; 81:912-25. [PMID: 21722203 DOI: 10.1111/j.1365-2958.2011.07737.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Genomic islands, flanked by attachment sites, devoid of conjugation and recombination modules and related to the integrative and conjugative element (ICE) ICESt3, were previously found in Streptococcus thermophilus. Here, we show that ICESt3 transfers to a recipient harbouring a similar engineered genomic island, CIMEL₃catR₃, and integrates by site-specific recombination into its attachment sites, leading to their accretion. The resulting composite island can excise, showing that ICESt3 mobilizes CIMEL₃catR₃, in cis. ICESt3, CIMEL₃catR₃, and the whole composite element can transfer from the strain harbouring the composite structure. The ICESt3 transfer to a recipient bearing CIMEL₃catR₃, can also lead to retromobilization, i.e. its capture by the donor. This is the first demonstration of specific conjugative mobilization of a genomic island in cis and the first report of ICE-mediated retromobilization. CIMEL₃catR₃, would be the prototype of a novel class of non-autonomous mobile elements (CIMEs: CIs mobilizable elements), which hijack the recombination and conjugation machinery of related ICEs to excise, transfer and integrate. Few genome analyses have shown that CIMEs could be widespread and have revealed internal repeats that could result from accretions in numerous genomic islands, suggesting that accretion and cis mobilization have a key role in evolution of genomic islands.
Collapse
Affiliation(s)
- Xavier Bellanger
- Nancy-Université, UMR1128 Génétique et Microbiologie, F-54506 Vandœuvre-lès-Nancy, France
| | | | | | | | | | | |
Collapse
|
21
|
Ratiner YA, Sihvonen LM, Liu Y, Wang L, Siitonen A. Alteration of flagellar phenotype of Escherichia coli strain P12b, the standard type strain for flagellar antigen H17, possessing a new non-fliC flagellin gene flnA, and possible loss of original flagellar phenotype and genotype in the course of subculturing through semisolid media. Arch Microbiol 2010; 192:267-78. [PMID: 20174918 DOI: 10.1007/s00203-010-0556-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 02/03/2010] [Indexed: 11/30/2022]
Abstract
A practically important phenomenon, resulting in the loss of the original flagellar phenotype (genotype) of bacteria, is described in the Escherichia coli H17 type strain P12b possessing two distinct genes for H17 and H4 flagellins, respectively. By PCR, sequencing, and phylogenetic investigation, the H17 gene (originally expressed) was considered a new non-fliC flagellin gene and assigned flnA, while the H4 gene (originally cryptic) was reaffirmed as fliC. H17 and H4 flagella differed morphologically. The phenomenon consisted in the replacement of H17 cells by H4 cells during subculturing through certain semisolid media and resulted from the excision of flnA (H17) entirely or in part. The substitution rate depended on the density and nutrient composition of media and reached 100% even after a single passage through 0.3% LB agar. Such phenomenon can lead to an unexpected loss of original H17 phenotype. Our review of the literature showed that the loss of the original flagellar genotype (phenotype) of P12b has occurred in some laboratories while the authors continued to consider their cultures H17. We showed how to distinguish these alternative flagellin genotypes using popular fliC primers. Attention was also paid to possible discrepancies between serological and molecular results in flagellar typing of E. coli.
Collapse
Affiliation(s)
- Yuliy A Ratiner
- Department of Microbiology, Mechnikov Research Institute for Vaccines and Sera of The Russian Academy of Medical Sciences, Moscow, Russia.
| | | | | | | | | |
Collapse
|