1
|
García-Martín J, García-Abad L, Santamaría RI, Díaz M. Functional connexion of bacterioferritin in antibiotic production and morphological differentiation in Streptomyces coelicolor. Microb Cell Fact 2024; 23:234. [PMID: 39182107 PMCID: PMC11344345 DOI: 10.1186/s12934-024-02510-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Several two-component systems of Streptomyces coelicolor, a model organism used for studying antibiotic production in Streptomyces, affect the expression of the bfr (SCO2113) gene that encodes a bacterioferritin, a protein involved in iron storage. In this work, we have studied the effect of the deletion mutant ∆bfr in S. coelicolor. RESULTS The ∆bfr mutant exhibits a delay in morphological differentiation and produces a lesser amount of the two pigmented antibiotics (actinorhodin and undecylprodigiosin) compared to the wild type on complex media. The effect of iron in minimal medium was tested in the wild type and ∆bfr mutant. Consequently, we also observed different levels of production of the two pigmented antibiotics between the two strains, depending on the iron concentration and the medium (solid or liquid) used. Contrary to expectations, no differences in intracellular iron concentration were detected between the wild type and ∆bfr mutant. However, a higher level of reactive oxygen species in the ∆bfr mutant and a higher tolerance to oxidative stress were observed. Proteomic analysis showed no variation in iron response proteins, but there was a lower abundance of proteins related to actinorhodin and ribosomal proteins, as well as others related to secondary metabolite production and differentiation. Additionally, a higher abundance of proteins related to various types of stress, such as respiration and hypoxia among others, was also revealed. Data are available via ProteomeXchange with identifier PXD050869. CONCLUSION This bacterioferritin in S. coelicolor (Bfr) is a new element in the complex regulation of secondary metabolism in S. coelicolor and, additionally, iron acts as a signal to modulate the biosynthesis of active molecules. Our model proposes an interaction between Bfr and iron-containing regulatory proteins. Thus, identifying these interactions would provide new information for improving antibiotic production in Streptomyces.
Collapse
Affiliation(s)
- Javier García-Martín
- Departamento de Microbiología y Genética, Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca (USAL), C/ Zacarías González, nº 2, Salamanca, 37007, Spain
| | - Laura García-Abad
- Departamento de Microbiología y Genética, Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca (USAL), C/ Zacarías González, nº 2, Salamanca, 37007, Spain
| | - Ramón I Santamaría
- Departamento de Microbiología y Genética, Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca (USAL), C/ Zacarías González, nº 2, Salamanca, 37007, Spain.
| | - Margarita Díaz
- Departamento de Microbiología y Genética, Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca (USAL), C/ Zacarías González, nº 2, Salamanca, 37007, Spain.
| |
Collapse
|
2
|
Li X, Ren Q, Sun Z, Wu Y, Pan H. Resuscitation Promotion Factor: A Pronounced Bacterial Cytokine in Propelling Bacterial Resuscitation. Microorganisms 2024; 12:1528. [PMID: 39203370 PMCID: PMC11356341 DOI: 10.3390/microorganisms12081528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
While confronted with unfavorable growth conditions, bacteria may transform into the dormant state, such as viable but nonculturable (VBNC) state, which is a reversible state characterized by low metabolic activity and lack of division. These dormant cells can be reactivated through the influence of the resuscitation promoting factor (Rpf) family, which are classified as autocrine growth factors and possess peptidoglycan hydrolase activities. To date, with the significant resuscitation or growth promotion ability of Rpf, it has been extensively applied to increasing bacterial diversity and isolating functional microbial species. This review provides a comprehensive analysis of the distribution, mode of action, and functional mechanisms of Rpf proteins in various bacterial species. The aim is to create opportunities for decoding microbial communities and extracting microbial resources from real samples across different research fields.
Collapse
Affiliation(s)
| | | | | | | | - Hanxu Pan
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (X.L.); (Q.R.); (Z.S.); (Y.W.)
| |
Collapse
|
3
|
Kwan JMC, Liang Y, Ng EWL, Sviriaeva E, Li C, Zhao Y, Zhang XL, Liu XW, Wong SH, Qiao Y. In silico MS/MS prediction for peptidoglycan profiling uncovers novel anti-inflammatory peptidoglycan fragments of the gut microbiota. Chem Sci 2024; 15:1846-1859. [PMID: 38303944 PMCID: PMC10829024 DOI: 10.1039/d3sc05819k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/19/2023] [Indexed: 02/03/2024] Open
Abstract
Peptidoglycan is an essential exoskeletal polymer across all bacteria. Gut microbiota-derived peptidoglycan fragments (PGNs) are increasingly recognized as key effector molecules that impact host biology. However, the current peptidoglycan analysis workflow relies on laborious manual identification from tandem mass spectrometry (MS/MS) data, impeding the discovery of novel bioactive PGNs in the gut microbiota. In this work, we built a computational tool PGN_MS2 that reliably simulates MS/MS spectra of PGNs and integrated it into the user-defined MS library of in silico PGN search space, facilitating automated PGN identification. Empowered by PGN_MS2, we comprehensively profiled gut bacterial peptidoglycan composition. Strikingly, the probiotic Bifidobacterium spp. manifests an abundant amount of the 1,6-anhydro-MurNAc moiety that is distinct from Gram-positive bacteria. In addition to biochemical characterization of three putative lytic transglycosylases (LTs) that are responsible for anhydro-PGN production in Bifidobacterium, we established that these 1,6-anhydro-PGNs exhibit potent anti-inflammatory activity in vitro, offering novel insights into Bifidobacterium-derived PGNs as molecular signals in gut microbiota-host crosstalk.
Collapse
Affiliation(s)
- Jeric Mun Chung Kwan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 21 Nanyang Link 637371 Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University 11 Mandalay Road 308232 Singapore
| | - Yaquan Liang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - Evan Wei Long Ng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - Ekaterina Sviriaeva
- Lee Kong Chian School of Medicine, Nanyang Technological University 11 Mandalay Road 308232 Singapore
| | - Chenyu Li
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - Yilin Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - Xiao-Lin Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - Xue-Wei Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - Sunny H Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University 11 Mandalay Road 308232 Singapore
| | - Yuan Qiao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| |
Collapse
|
4
|
Guzman J, Raval D, Hauck D, Titz A, Poehlein A, Degenkolb T, Daniel R, Vilcinskas A. The resuscitation-promoting factor (Rpf) from Micrococcus luteus and its putative reaction product 1,6-anhydro-MurNAc increase culturability of environmental bacteria. Access Microbiol 2023; 5:000647.v4. [PMID: 37841103 PMCID: PMC10569661 DOI: 10.1099/acmi.0.000647.v4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/09/2023] [Indexed: 10/17/2023] Open
Abstract
Dormant bacterial cells do not divide and are not immediately culturable, but they persist in a state of low metabolic activity, a physiological state having clinical relevance, for instance in latent tuberculosis. Resuscitation-promoting factors (Rpfs) are proteins that act as signalling molecules mediating growth and replication. In this study we aimed to test the effect of Rpfs from Micrococcus luteus on the number and diversity of cultured bacteria using insect and soil samples, and to examine if the increase in culturability could be reproduced with the putative reaction product of Rpf, 1,6-anhydro-N-acetylmuramic acid (1,6-anhydro-MurNAc). The rpf gene from Micrococcus luteus was amplified and cloned into a pET21b expression vector and the protein was expressed in Escherichia coli BL21(DE3) cells and purified by affinity chromatography using a hexa-histidine tag. 1,6-Anhydro-MurNAc was prepared using reported chemical synthesis methods. Recombinant Rpf protein or 1,6-anhydro-MurNAc were added to R2A cultivation media, and their effect on the culturability of bacteria from eight environmental samples including four cockroach guts and four soils was examined. Colony-forming units, 16S rRNA gene copies and Illumina amplicon sequencing of the 16S rRNA gene were measured for all eight samples subjected to three different treatments: Rpf, 1,6-anhydro-MurNAc or blank control. Both Rpf and 1,6-anhydro-MurNAc increased the number of colony-forming units and of 16S rRNA gene copies across the samples although the protein was more effective. The Rpf and 1,6-anhydro-MurNAc promoted the cultivation of a diverse set of bacteria and in particular certain clades of the phyla Actinomycetota and Bacillota . This study opens the path for improved cultivation strategies aiming to isolate and study yet undescribed living bacterial organisms.
Collapse
Affiliation(s)
- Juan Guzman
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Dipansi Raval
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Dirk Hauck
- Chemical Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- German Center for Infection Research, site Hannover-Braunschweig, Saarbrücken, Germany
- Department of Chemistry, Saarland University, Saarbrücken, Germany
| | - Alexander Titz
- Chemical Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- German Center for Infection Research, site Hannover-Braunschweig, Saarbrücken, Germany
- Department of Chemistry, Saarland University, Saarbrücken, Germany
| | - Anja Poehlein
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Thomas Degenkolb
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, Giessen, Germany
| |
Collapse
|
5
|
Kapinusova G, Lopez Marin MA, Uhlik O. Reaching unreachables: Obstacles and successes of microbial cultivation and their reasons. Front Microbiol 2023; 14:1089630. [PMID: 36960281 PMCID: PMC10027941 DOI: 10.3389/fmicb.2023.1089630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/10/2023] [Indexed: 03/09/2023] Open
Abstract
In terms of the number and diversity of living units, the prokaryotic empire is the most represented form of life on Earth, and yet it is still to a significant degree shrouded in darkness. This microbial "dark matter" hides a great deal of potential in terms of phylogenetically or metabolically diverse microorganisms, and thus it is important to acquire them in pure culture. However, do we know what microorganisms really need for their growth, and what the obstacles are to the cultivation of previously unidentified taxa? Here we review common and sometimes unexpected requirements of environmental microorganisms, especially soil-harbored bacteria, needed for their replication and cultivation. These requirements include resuscitation stimuli, physical and chemical factors aiding cultivation, growth factors, and co-cultivation in a laboratory and natural microbial neighborhood.
Collapse
Affiliation(s)
| | | | - Ondrej Uhlik
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czechia
| |
Collapse
|
6
|
Role of Resuscitation Promoting Factor-like Protein from Nocardiopsis halophila. Microorganisms 2023; 11:microorganisms11020485. [PMID: 36838450 PMCID: PMC9966590 DOI: 10.3390/microorganisms11020485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Resuscitation promoting factors (Rpf), a class of proteins secreted by gram-positive bacteria including actinobacteria, promote the resuscitation of dormant bacteria and spore germination. Here, we describe the reconstitution of the resuscitation promoting activity of the Rpf protein from Nocardiopsis halophila CGMCC 4.1195Tin vitro and in vivo. The Rpf protein was expressed in the host Escherichia coli BL21 codon plus (DE3) and was confirmed to have a significant resuscitation effect on the viable but non-culturable (VBNC) N. halophila. Subsequently, the rpf gene of N. halophila was knocked out. We found that the growth rate of the mutant strain (Δrpf) was slower than that of the wild strain, and the former produced significantly shorter spores than the wild-type strain. Our results confirmed the activity of the Rpf protein in N. halophila to promote dormant bacteria resuscitation. This study will lay the foundation for the application of the Rpf protein from N. halophila to exploit actinomycetes resources.
Collapse
|
7
|
Gong X, Lu H, Wu J, Zhou Y, Yang L, Wang Y, Shen N, Jiang M. Enzymatic properties and biological activity of resuscitation-promoting factor B of Rhodococcus sp. (GX12401). Front Microbiol 2022; 13:965843. [PMID: 36274735 PMCID: PMC9580463 DOI: 10.3389/fmicb.2022.965843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
Resuscitation-promoting factor B (RpfB) is one of the five members of Rpf-like family in Mycobacteriales, which have the resuscitation-promoting activity. Most strains of Rhodococcus also have RpfB gene, but the study of rpfB gene in Rhodococcus is not thorough. Here, we amplified the rpfB gene of intact Rhodococcus sp. (GX12401) and cloned it into pET30a (+) expression vector. Then a recombinant form of soluble RpfB was expressed in Escherichia coli BL21. The soluble recombinant RpfB was purified by Ni–Sepharose affinity chromatography and molecular weight of the protein was 55 kDa, determined by 12% SDS–PAGE stained with Coomassie brilliant blue R-250. When 4-methylumbelliferyl-β-D-N,N′,N″-triacetylchitoside was used as enzyme substrate to test lysozyme activity, the recombinant protein RpfB had good stability and enzyme activity, and the lysozyme activity was low (4.74 U), among which Mg2+, Na+, Al3+ and DMSO could significantly increase the activity of RpfB. The purified recombinant protein was added to Rhodococcus VBNC cells, and the VBNC cells were resuscitated at the concentration of 1 picomolar concentrations, which increased by 18% compared with the control, while the cell resuscitation was inhibited at the concentration of 1,000 picomolar concentrations. Therefore, RpfB can improve the survival ability of Rhodococcus in extreme or harsh environment and enhance the corresponding biological activity.
Collapse
Affiliation(s)
- Xu Gong
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Huijiao Lu
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Jiafa Wu
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Yan Zhou
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Lifang Yang
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, China
| | - Yibing Wang
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Naikun Shen
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Mingguo Jiang
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
- *Correspondence: Mingguo Jiang,
| |
Collapse
|
8
|
Zambri MP, Williams MA, Elliot MA. How Streptomyces thrive: Advancing our understanding of classical development and uncovering new behaviors. Adv Microb Physiol 2022; 80:203-236. [PMID: 35489792 DOI: 10.1016/bs.ampbs.2022.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Streptomyces are soil- and marine-dwelling microbes that need to survive dramatic fluctuations in nutrient levels and environmental conditions. Here, we explore the advances made in understanding how Streptomyces bacteria can thrive in their natural environments. We examine their classical developmental cycle, and the intricate regulatory cascades that govern it. We discuss alternative growth strategies and behaviors, like the rapid expansion and colonization properties associated with exploratory growth, the release of membrane vesicles and S-cells from hyphal tips, and the acquisition of exogenous DNA along the lateral walls. We further investigate Streptomyces interactions with other organisms through the release of volatile compounds that impact nutrient levels, microbial growth, and insect behavior. Finally, we explore the increasingly diverse strategies employed by Streptomyces species in escaping and thwarting phage infections.
Collapse
Affiliation(s)
- Matthew P Zambri
- Department of Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Michelle A Williams
- Department of Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Marie A Elliot
- Department of Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
9
|
Wang Y, Shi J, Tang L, Zhang Y, Zhang Y, Wang X, Zhang X. Evaluation of Rpf protein of Micrococcus luteus for cultivation of soil actinobacteria. Syst Appl Microbiol 2021; 44:126234. [PMID: 34343788 DOI: 10.1016/j.syapm.2021.126234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 12/13/2022]
Abstract
Rpf protein, a kind of resuscitation promoting factor, was first found in the culture supernatant of Micrococcus luteus. It can resuscitate the growth of M. luteus in "viable but non-culture, VBNC" state and promote the growth of Gram-positive bacteria with high G + C content. This paper investigates the resuscitating activity of M. luteus ACCC 41016T Rpf protein, which was heterologously expressed in E. coli, to cells of M. luteus ACCC 41016T and Rhodococcus marinonascens HBUM200062 in VBNC state, and examines the effect on the cultivation of actinobacteria in soil. The results showed that the recombinant Rpf protein had resuscitation effect on M. luteus ACCC 41016T and R. marinonascens HBUM200062 in VBNC state. 83 strains of actinobacteria, which were distributed in 9 families and 12 genera, were isolated from the experimental group with recombinant Rpf protein in the culture medium. A total of 41 strains of bacteria, which were distributed in 8 families and 9 genera, were isolated from the control group without Rpf protein. The experimental group showed richer species diversity than the control group. Two rare actinobacteria, namely HBUM206391T and HBUM206404T, were obtained in the experimental group supplemented with Rpf protein. Both may be potential new species of Actinomadura and Actinokineospora, indicating that the recombinant expression of M. luteus ACCC 41016T Rpf protein can effectively promote the isolation and culture of actinobacteria in soil.
Collapse
Affiliation(s)
- Yuhui Wang
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Baoding 071002, PR China
| | - Jiangli Shi
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Baoding 071002, PR China
| | - Lingjie Tang
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Baoding 071002, PR China
| | - Yufan Zhang
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Baoding 071002, PR China
| | - Yujia Zhang
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Baoding 071002, PR China
| | - Xinyu Wang
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Baoding 071002, PR China
| | - Xiumin Zhang
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Baoding 071002, PR China.
| |
Collapse
|
10
|
Beskrovnaya P, Sexton DL, Golmohammadzadeh M, Hashimi A, Tocheva EI. Structural, Metabolic and Evolutionary Comparison of Bacterial Endospore and Exospore Formation. Front Microbiol 2021; 12:630573. [PMID: 33767680 PMCID: PMC7985256 DOI: 10.3389/fmicb.2021.630573] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/15/2021] [Indexed: 12/20/2022] Open
Abstract
Sporulation is a specialized developmental program employed by a diverse set of bacteria which culminates in the formation of dormant cells displaying increased resilience to stressors. This represents a major survival strategy for bacteria facing harsh environmental conditions, including nutrient limitation, heat, desiccation, and exposure to antimicrobial compounds. Through dispersal to new environments via biotic or abiotic factors, sporulation provides a means for disseminating genetic material and promotes encounters with preferable environments thus promoting environmental selection. Several types of bacterial sporulation have been characterized, each involving numerous morphological changes regulated and performed by non-homologous pathways. Despite their likely independent evolutionary origins, all known modes of sporulation are typically triggered by limited nutrients and require extensive membrane and peptidoglycan remodeling. While distinct modes of sporulation have been observed in diverse species, two major types are at the forefront of understanding the role of sporulation in human health, and microbial population dynamics and survival. Here, we outline endospore and exospore formation by members of the phyla Firmicutes and Actinobacteria, respectively. Using recent advances in molecular and structural biology, we point to the regulatory, genetic, and morphological differences unique to endo- and exospore formation, discuss shared characteristics that contribute to the enhanced environmental survival of spores and, finally, cover the evolutionary aspects of sporulation that contribute to bacterial species diversification.
Collapse
Affiliation(s)
| | | | | | | | - Elitza I. Tocheva
- Department of Microbiology and Immunology, Life Sciences Institute, Health Sciences Mall, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
11
|
Jia Y, Yu C, Fan J, Fu Y, Ye Z, Guo X, Xu Y, Shen C. Alterations in the Cell Wall of Rhodococcus biphenylivorans Under Norfloxacin Stress. Front Microbiol 2020; 11:554957. [PMID: 33123102 PMCID: PMC7573542 DOI: 10.3389/fmicb.2020.554957] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/14/2020] [Indexed: 01/20/2023] Open
Abstract
Many microorganisms can enter a viable but non-culturable (VBNC) state under various environmental stresses, while they can also resuscitate when the surroundings turn to suitable conditions. Cell walls play a vital role in maintaining cellular integrity and protecting cells from ambient threats. Here, we investigated the alterations in the cell wall of Rhodococcus biphenylivorans TG9 at VBNC state under norfloxacin stress and then at resuscitated state in fresh lysogeny broth medium. Electron microscopy analyses presented that TG9 in the VBNC state had a thicker and rougher cell wall than that in exponential phase or resuscitated state. Meanwhile, the results from infrared spectroscopy also showed that its VBNC state has different peptidoglycan structures in the cell wall. Moreover, in the VBNC cells the gene expressions related to cell wall synthesis and remodeling maintain a relatively high level. It indicates that the morphological variations of TG9 at the VBNC state might result from kinetic changes in the cell wall synthesis and remodeling. As a consequence, the alterations in the cell wall of VBNC TG9 may somewhat account for its tolerance mechanisms to antibiotic treatment.
Collapse
Affiliation(s)
- Yangyang Jia
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Chungui Yu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Jiahui Fan
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Yulong Fu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Zhe Ye
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Xiaoguang Guo
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Ying Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chaofeng Shen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China
| |
Collapse
|
12
|
Sexton DL, Herlihey FA, Brott AS, Crisante DA, Shepherdson E, Clarke AJ, Elliot MA. Roles of LysM and LytM domains in resuscitation-promoting factor (Rpf) activity and Rpf-mediated peptidoglycan cleavage and dormant spore reactivation. J Biol Chem 2020; 295:9171-9182. [PMID: 32434927 PMCID: PMC7335776 DOI: 10.1074/jbc.ra120.013994] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/15/2020] [Indexed: 11/06/2022] Open
Abstract
Bacterial dormancy can take many forms, including formation of Bacillus endospores, Streptomyces exospores, and metabolically latent Mycobacterium cells. In the actinobacteria, including the streptomycetes and mycobacteria, the rapid resuscitation from a dormant state requires the activities of a family of cell-wall lytic enzymes called resuscitation-promoting factors (Rpfs). Whether Rpf activity promotes resuscitation by generating peptidoglycan fragments (muropeptides) that function as signaling molecules for spore germination or by simply remodeling the dormant cell wall has been the subject of much debate. Here, to address this question, we used mutagenesis and peptidoglycan binding and cleavage assays to first gain broader insight into the biochemical function of diverse Rpf enzymes. We show that their LysM and LytM domains enhance Rpf enzyme activity; their LytM domain and, in some cases their LysM domain, also promoted peptidoglycan binding. We further demonstrate that the Rpfs function as endo-acting lytic transglycosylases, cleaving within the peptidoglycan backbone. We also found that unlike in other systems, Rpf activity in the streptomycetes is not correlated with peptidoglycan-responsive Ser/Thr kinases for cell signaling, and the germination of rpf mutant strains could not be stimulated by the addition of known germinants. Collectively, these results suggest that in Streptomyces, Rpfs have a structural rather than signaling function during spore germination, and that in the actinobacteria, any signaling function associated with spore resuscitation requires the activity of additional yet to be identified enzymes.
Collapse
Affiliation(s)
- Danielle L Sexton
- Michael G. DeGroote Institute for Infectious Disease Research and Department of Biology, McMaster University, Hamilton, Canada
| | - Francesca A Herlihey
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| | - Ashley S Brott
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| | - David A Crisante
- Michael G. DeGroote Institute for Infectious Disease Research and Department of Biology, McMaster University, Hamilton, Canada
| | - Evan Shepherdson
- Michael G. DeGroote Institute for Infectious Disease Research and Department of Biology, McMaster University, Hamilton, Canada
| | - Anthony J Clarke
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| | - Marie A Elliot
- Michael G. DeGroote Institute for Infectious Disease Research and Department of Biology, McMaster University, Hamilton, Canada.
| |
Collapse
|
13
|
Li ZW, Liang S, Ke Y, Deng JJ, Zhang MS, Lu DL, Li JZ, Luo XC. The feather degradation mechanisms of a new Streptomyces sp. isolate SCUT-3. Commun Biol 2020; 3:191. [PMID: 32332852 PMCID: PMC7181669 DOI: 10.1038/s42003-020-0918-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 03/30/2020] [Indexed: 01/08/2023] Open
Abstract
Feather waste is the highest protein-containing resource in nature and is poorly reused. Bioconversion is widely accepted as a low-cost and environmentally benign process, but limited by the availability of safe and highly efficient feather degrading bacteria (FDB) for its industrial-scale fermentation. Excessive focuses on keratinase and limited knowledge of other factors have hindered complete understanding of the mechanisms employed by FDB to utilize feathers and feather cycling in the biosphere. Streptomyces sp. SCUT-3 can efficiently degrade feather to products with high amino acid content, useful as a nutrition source for animals, plants and microorganisms. Using multiple omics and other techniques, we reveal how SCUT-3 turns on its feather utilization machinery, including its colonization, reducing agent and protease secretion, peptide/amino acid importation and metabolism, oxygen consumption and iron uptake, spore formation and resuscitation, and so on. This study would shed light on the feather utilization mechanisms of FDBs. Li et a. report a new Streptromyces isolate, SCUT-3 which can efficiently degrade feather into products with high amino acid content, useful as feed for plants, animals and microbes. Using multiple omics and other techniques, they report how SCUT-3 turns on its feather utilization machinery and suggest a number of expressed genes most likely implicated in feather degradation.
Collapse
Affiliation(s)
- Zhi-Wei Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, P. R. China
| | - Shuang Liang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, P. R. China
| | - Ye Ke
- Yingdong College of Life Sciences, Shaoguan University, Shaoguan, Guangdong, P. R. China
| | - Jun-Jin Deng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, P. R. China
| | - Ming-Shu Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, P. R. China
| | - De-Lin Lu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, P. R. China
| | - Jia-Zhou Li
- Zhanjiang Ocean Sciences and Technologies Research Co. LTD, Zhanjiang, Guangdong, P. R. China
| | - Xiao-Chun Luo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, P. R. China.
| |
Collapse
|
14
|
Gibhardt J, Heidemann JL, Bremenkamp R, Rosenberg J, Seifert R, Kaever V, Ficner R, Commichau FM. An extracytoplasmic protein and a moonlighting enzyme modulate synthesis of c-di-AMP in Listeria monocytogenes. Environ Microbiol 2020; 22:2771-2791. [PMID: 32250026 DOI: 10.1111/1462-2920.15008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/17/2020] [Accepted: 03/31/2020] [Indexed: 01/06/2023]
Abstract
The second messenger cyclic di-AMP (c-di-AMP) is essential for growth of many bacteria because it controls osmolyte homeostasis. c-di-AMP can regulate the synthesis of potassium uptake systems in some bacteria and it also directly inhibits and activates potassium import and export systems, respectively. Therefore, c-di-AMP production and degradation have to be tightly regulated depending on the environmental osmolarity. The Gram-positive pathogen Listeria monocytogenes relies on the membrane-bound diadenylate cyclase CdaA for c-di-AMP production and degrades the nucleotide with two phosphodiesterases. While the enzymes producing and degrading the dinucleotide have been reasonably well examined, the regulation of c-di-AMP production is not well understood yet. Here we demonstrate that the extracytoplasmic regulator CdaR interacts with CdaA via its transmembrane helix to modulate c-di-AMP production. Moreover, we show that the phosphoglucosamine mutase GlmM forms a complex with CdaA and inhibits the diadenylate cyclase activity in vitro. We also found that GlmM inhibits c-di-AMP production in L. monocytogenes when the bacteria encounter osmotic stress. Thus, GlmM is the major factor controlling the activity of CdaA in vivo. GlmM can be assigned to the class of moonlighting proteins because it is active in metabolism and adjusts the cellular turgor depending on environmental osmolarity.
Collapse
Affiliation(s)
- Johannes Gibhardt
- Department of General Microbiology, Institute for Microbiology and Genetics, University of Goettingen, 37077, Göttingen, Germany.,FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, 01968, Senftenberg, Germany
| | - Jana L Heidemann
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, GZMB, University of Goettingen, 37077, Göttingen, Germany
| | - Rica Bremenkamp
- Department of General Microbiology, Institute for Microbiology and Genetics, University of Goettingen, 37077, Göttingen, Germany
| | - Jonathan Rosenberg
- Department of General Microbiology, Institute for Microbiology and Genetics, University of Goettingen, 37077, Göttingen, Germany
| | - Roland Seifert
- Institute of Pharmacology & Research Core Unit Metabolomics, Hannover Medical School, Hannover, Germany
| | - Volkhard Kaever
- Institute of Pharmacology & Research Core Unit Metabolomics, Hannover Medical School, Hannover, Germany
| | - Ralf Ficner
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, GZMB, University of Goettingen, 37077, Göttingen, Germany
| | - Fabian M Commichau
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, 01968, Senftenberg, Germany
| |
Collapse
|
15
|
Luo D, Chen J, Xie G, Yue L, Wang Y. Enzyme characterization and biological activities of a resuscitation promoting factor from an oil degrading bacterium Rhodococcus erythropolis KB1. PeerJ 2019; 7:e6951. [PMID: 31149404 PMCID: PMC6534110 DOI: 10.7717/peerj.6951] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 04/14/2019] [Indexed: 01/28/2023] Open
Abstract
Resuscitation-promoting factors (Rpf) are a class of muralytic enzymes, which participate in recovery of dormant cells and promoting bacteria growth in poor media. In the present study the expression vector of the rpf-1 gene from an oil-degrading bacterium Rhodococcus erythropolis KB1 was constructed and expressed in Escherichia coli. The expressed protein was purified by Ni2+-affinity chromatography, and showed muralytic activity when measured with 4-methylumbelliferyl-β-D-N,N',N″-triacetyl chitotrioside as substrate. Addition of purified Rpf-1 to R. erythropolis culture efficiently improved bacterial cell growth. The purified protein also increased resuscitation of viable but nonculturable cells of R. erythropolis to culturable state. The conserved amino acid residues including Asp45, Glu51, Cys50, Thr60, Gln69, Thr74, Trp75 and Cys114 of the Rpf-1 were replaced with different amino acids. The mutant proteins were also expressed and purified with Ni2+-affinity chromatography. The muralytic activities of the mutant proteins decreased to different extents when compared with that of the wild type Rpf-1. Gln69 was found to play the most important role in the enzyme activity, substitution of Gln69 with lysine (Q69K) resulted in the greatest decrease of muralytic activity. The other amino acid residues such as Asp45, Glu51, Cys50 and Cys114 were also found to be very important in maintaining muralytic activity and biological function of the Rpf-1. Our results indicated that Rpf-1 from R. erythropolis showed muralytic activities and weak protease activity, but the muralytic activity was responsible for its growth promotion and resuscitation activity.
Collapse
Affiliation(s)
- Dan Luo
- School of Petrochemical Engineering, Lanzhou University of Technology, Lan Zhou, China
| | - Jixiang Chen
- School of Petrochemical Engineering, Lanzhou University of Technology, Lan Zhou, China
| | - Gang Xie
- School of Petrochemical Engineering, Lanzhou University of Technology, Lan Zhou, China
| | - Liang Yue
- School of Petrochemical Engineering, Lanzhou University of Technology, Lan Zhou, China
| | - Yonggang Wang
- School of Life science and Engineering, Lanzhou University of Technology, Lan Zhou, China
| |
Collapse
|
16
|
González-Quiñónez N, Corte-Rodríguez M, Álvarez-Fernández-García R, Rioseras B, López-García MT, Fernández-García G, Montes-Bayón M, Manteca A, Yagüe P. Cytosolic copper is a major modulator of germination, development and secondary metabolism in Streptomyces coelicolor. Sci Rep 2019; 9:4214. [PMID: 30862861 PMCID: PMC6414726 DOI: 10.1038/s41598-019-40876-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 02/25/2019] [Indexed: 11/24/2022] Open
Abstract
Streptomycetes are important biotechnological bacteria with complex differentiation. Copper is a well-known positive regulator of differentiation and antibiotic production. However, the specific mechanisms buffering cytosolic copper and the biochemical pathways modulated by copper remain poorly understood. Here, we developed a new methodology to quantify cytosolic copper in single spores which allowed us to propose that cytosolic copper modulates asynchrony of germination. We also characterised the SCO2730/2731 copper chaperone/P-type ATPase export system. A Streptomyces coelicolor strain mutated in SCO2730/2731 shows an important delay in germination, growth and sporulation. Secondary metabolism is heavily enhanced in the mutant which is activating the production of some specific secondary metabolites during its whole developmental cycle, including germination, the exponential growth phase and the stationary stage. Forty per cent of the S. coelicolor secondary metabolite pathways, are activated in the mutant, including several predicted pathways never observed in the lab (cryptic pathways). Cytosolic copper is precisely regulated and has a pleiotropic effect in gene expression. The only way that we know to achieve the optimal concentration for secondary metabolism activation, is the mutagenesis of SCO2730/2731. The SCO2730/2731 genes are highly conserved. Their inactivation in industrial streptomycetes may contribute to enhance bioactive compound discovery and production.
Collapse
Affiliation(s)
- Nathaly González-Quiñónez
- Área de Microbiología, Departamento de Biología Funcional, IUOPA and ISPA, Facultad de Medicina, Universidad de Oviedo, 33006, Oviedo, Spain
| | - Mario Corte-Rodríguez
- Department of Physical and Analytical Chemistry, Faculty of Chemistry and ISPA, Universidad de Oviedo, 33006, Oviedo, Spain
| | | | - Beatriz Rioseras
- Área de Microbiología, Departamento de Biología Funcional, IUOPA and ISPA, Facultad de Medicina, Universidad de Oviedo, 33006, Oviedo, Spain
| | - María Teresa López-García
- Área de Microbiología, Departamento de Biología Funcional, IUOPA and ISPA, Facultad de Medicina, Universidad de Oviedo, 33006, Oviedo, Spain
| | - Gemma Fernández-García
- Área de Microbiología, Departamento de Biología Funcional, IUOPA and ISPA, Facultad de Medicina, Universidad de Oviedo, 33006, Oviedo, Spain
| | - María Montes-Bayón
- Department of Physical and Analytical Chemistry, Faculty of Chemistry and ISPA, Universidad de Oviedo, 33006, Oviedo, Spain
| | - Angel Manteca
- Área de Microbiología, Departamento de Biología Funcional, IUOPA and ISPA, Facultad de Medicina, Universidad de Oviedo, 33006, Oviedo, Spain.
| | - Paula Yagüe
- Área de Microbiología, Departamento de Biología Funcional, IUOPA and ISPA, Facultad de Medicina, Universidad de Oviedo, 33006, Oviedo, Spain
| |
Collapse
|
17
|
Rebets Y, Tsolis KC, Guðmundsdóttir EE, Koepff J, Wawiernia B, Busche T, Bleidt A, Horbal L, Myronovskyi M, Ahmed Y, Wiechert W, Rückert C, Hamed MB, Bilyk B, Anné J, Friðjónsson Ó, Kalinowski J, Oldiges M, Economou A, Luzhetskyy A. Characterization of Sigma Factor Genes in Streptomyces lividans TK24 Using a Genomic Library-Based Approach for Multiple Gene Deletions. Front Microbiol 2018; 9:3033. [PMID: 30619125 PMCID: PMC6295645 DOI: 10.3389/fmicb.2018.03033] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/23/2018] [Indexed: 12/15/2022] Open
Abstract
Alternative sigma factors control numerous aspects of bacterial life, including adaptation to physiological stresses, morphological development, persistence states and virulence. This is especially true for the physiologically complex actinobacteria. Here we report the development of a robust gene deletions system for Streptomyces lividans TK24 based on a BAC library combined with the λ-Red recombination technique. The developed system was validated by systematically deleting the most highly expressed genes encoding alternative sigma factors and several other regulatory genes within the chromosome of S. lividans TK24. To demonstrate the possibility of large scale genomic manipulations, the major part of the undecylprodigiosin gene cluster was deleted as well. The resulting mutant strains were characterized in terms of morphology, growth parameters, secondary metabolites production and response to thiol-oxidation and cell-wall stresses. Deletion of SLIV_12645 gene encoding S. coelicolor SigR1 ortholog has the most prominent phenotypic effect, resulted in overproduction of actinorhodin and coelichelin P1 and increased sensitivity to diamide. The secreted proteome analysis of SLIV_12645 mutant revealed SigR1 influence on trafficking of proteins involved in cell wall biogenesis and refactoring. The reported here gene deletion system will further facilitate work on S. lividans strain improvement as a host for either secondary metabolites or protein production and will contribute to basic research in streptomycetes physiology, morphological development, secondary metabolism. On the other hand, the systematic deletion of sigma factors encoding genes demonstrates the complexity and conservation of regulatory processes conducted by sigma factors in streptomycetes.
Collapse
Affiliation(s)
- Yuriy Rebets
- Pharmazeutische Biotechnologie, Universität des Saarlandes, Saarbrücken, Germany
| | | | | | - Joachim Koepff
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | | | - Tobias Busche
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Arne Bleidt
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Liliya Horbal
- Pharmazeutische Biotechnologie, Universität des Saarlandes, Saarbrücken, Germany
| | - Maksym Myronovskyi
- Pharmazeutische Biotechnologie, Universität des Saarlandes, Saarbrücken, Germany
| | - Yousra Ahmed
- Pharmazeutische Biotechnologie, Universität des Saarlandes, Saarbrücken, Germany
| | - Wolfgang Wiechert
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | | | - Mohamed B. Hamed
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
- Department of Molecular Biology, National Research Centre, Giza, Egypt
| | - Bohdan Bilyk
- Pharmazeutische Biotechnologie, Universität des Saarlandes, Saarbrücken, Germany
| | - Jozef Anné
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | | | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Marco Oldiges
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Anastassios Economou
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Andriy Luzhetskyy
- Pharmazeutische Biotechnologie, Universität des Saarlandes, Saarbrücken, Germany
- Actinobacteria Metabolic Engineering Group, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Germany
| |
Collapse
|
18
|
Streptomyces Differentiation in Liquid Cultures as a Trigger of Secondary Metabolism. Antibiotics (Basel) 2018; 7:antibiotics7020041. [PMID: 29757948 PMCID: PMC6022995 DOI: 10.3390/antibiotics7020041] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/09/2018] [Accepted: 05/09/2018] [Indexed: 02/08/2023] Open
Abstract
Streptomyces is a diverse group of gram-positive microorganisms characterised by a complex developmental cycle. Streptomycetes produce a number of antibiotics and other bioactive compounds used in the clinic. Most screening campaigns looking for new bioactive molecules from actinomycetes have been performed empirically, e.g., without considering whether the bacteria are growing under the best developmental conditions for secondary metabolite production. These screening campaigns were extremely productive and discovered a number of new bioactive compounds during the so-called “golden age of antibiotics” (until the 1980s). However, at present, there is a worrying bottleneck in drug discovery, and new experimental approaches are needed to improve the screening of natural actinomycetes. Streptomycetes are still the most important natural source of antibiotics and other bioactive compounds. They harbour many cryptic secondary metabolite pathways not expressed under classical laboratory cultures. Here, we review the new strategies that are being explored to overcome current challenges in drug discovery. In particular, we focus on those aimed at improving the differentiation of the antibiotic-producing mycelium stage in the laboratory.
Collapse
|
19
|
Bobek J, Šmídová K, Čihák M. A Waking Review: Old and Novel Insights into the Spore Germination in Streptomyces. Front Microbiol 2017; 8:2205. [PMID: 29180988 PMCID: PMC5693915 DOI: 10.3389/fmicb.2017.02205] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 10/26/2017] [Indexed: 01/02/2023] Open
Abstract
The complex development undergone by Streptomyces encompasses transitions from vegetative mycelial forms to reproductive aerial hyphae that differentiate into chains of single-celled spores. Whereas their mycelial life – connected with spore formation and antibiotic production – is deeply investigated, spore germination as the counterpoint in their life cycle has received much less attention. Still, germination represents a system of transformation from metabolic zero point to a new living lap. There are several aspects of germination that may attract our attention: (1) Dormant spores are strikingly well-prepared for the future metabolic restart; they possess stable transcriptome, hydrolytic enzymes, chaperones, and other required macromolecules stabilized in a trehalose milieu; (2) Germination itself is a specific sequence of events leading to a complete morphological remodeling that include spore swelling, cell wall reconstruction, and eventually germ tube emergences; (3) Still not fully unveiled are the strategies that enable the process, including a single cell’s signal transduction and gene expression control, as well as intercellular communication and the probability of germination across the whole population. This review summarizes our current knowledge about the germination process in Streptomyces, while focusing on the aforementioned points.
Collapse
Affiliation(s)
- Jan Bobek
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czechia.,Chemistry Department, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Ústí nad Labem, Czechia.,Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Klára Šmídová
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czechia.,Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Matouš Čihák
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
20
|
Abstract
Non-coding regulatory RNAs fine-tune gene expression post-transcriptionally. In the streptomycetes, rpfA - encoding a muralytic enzyme required for establishing and exiting dormancy - is flanked by non-coding regulatory RNA elements both upstream (riboswitch) and downstream [antisense small RNA (sRNA)]. In Streptomyces coelicolor, the upstream riboswitch decreases rpfA transcript abundance in response to the second messenger cyclic di-AMP, itself involved in cell wall metabolism and dormancy. There is, however, no obvious expression platform associated with this riboswitch and consequently, its mechanism of action is entirely unknown. Using in vitro transcription assays, we discovered that the rpfA riboswitch promoted premature transcription termination in response to cyclic di-AMP. Through an extensive mutational analysis, we determined that attenuation required ligand binding and involved an unusual extended stem-loop region unique to a subset of rpfA riboswitches in the actinobacteria. At the other end of the rpfA gene, an antisense sRNA, termed Scr3097, is expressed opposite the predicted rpfA terminator. Using northern blotting, we found that Scr3097 accumulation mirrored that of the rpfA mRNA. In liquid culture, we detected Scr3097 exclusively in exponential-phase cells, and in plate-grown culture, we observed the sRNA primarily in differentiating cultures. Using mutational analyses, we found that the sRNA increased rpfA mRNA abundance in cells. Taken together, our work revealed multiple regulatory RNAs controlling rpfA expression in the streptomycetes.
Collapse
Affiliation(s)
- Renée J St-Onge
- a Department of Biology and Michael G. DeGroote Institute for Infectious Disease Research , McMaster University , Hamilton , Ontario , Canada
| | - Marie A Elliot
- a Department of Biology and Michael G. DeGroote Institute for Infectious Disease Research , McMaster University , Hamilton , Ontario , Canada
| |
Collapse
|
21
|
Dik DA, Marous DR, Fisher JF, Mobashery S. Lytic transglycosylases: concinnity in concision of the bacterial cell wall. Crit Rev Biochem Mol Biol 2017. [PMID: 28644060 DOI: 10.1080/10409238.2017.1337705] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The lytic transglycosylases (LTs) are bacterial enzymes that catalyze the non-hydrolytic cleavage of the peptidoglycan structures of the bacterial cell wall. They are not catalysts of glycan synthesis as might be surmised from their name. Notwithstanding the seemingly mundane reaction catalyzed by the LTs, their lytic reactions serve bacteria for a series of astonishingly diverse purposes. These purposes include cell-wall synthesis, remodeling, and degradation; for the detection of cell-wall-acting antibiotics; for the expression of the mechanism of cell-wall-acting antibiotics; for the insertion of secretion systems and flagellar assemblies into the cell wall; as a virulence mechanism during infection by certain Gram-negative bacteria; and in the sporulation and germination of Gram-positive spores. Significant advances in the mechanistic understanding of each of these processes have coincided with the successive discovery of new LTs structures. In this review, we provide a systematic perspective on what is known on the structure-function correlations for the LTs, while simultaneously identifying numerous opportunities for the future study of these enigmatic enzymes.
Collapse
Affiliation(s)
- David A Dik
- a Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , IN , USA
| | - Daniel R Marous
- a Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , IN , USA
| | - Jed F Fisher
- a Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , IN , USA
| | - Shahriar Mobashery
- a Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , IN , USA
| |
Collapse
|
22
|
Xu Y, Vetsigian K. Phenotypic variability and community interactions of germinating Streptomyces spores. Sci Rep 2017; 7:699. [PMID: 28386097 PMCID: PMC5429633 DOI: 10.1038/s41598-017-00792-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/13/2017] [Indexed: 11/17/2022] Open
Abstract
A case can be made for stochastic germination and interactions among germinating spores as beneficial germination strategies in uncertain environments. However, there is little data on how widespread, species-specific or diverse such phenomena are. Focusing on Streptomycetes, a platform was developed for quantification of germination and early growth within communities of spores. We found that the germination process is stochastic at three levels: spores vary in their germination times, mycelium networks grow at different rates, and a fraction of germlings stall their growth shortly after germination. Furthermore, by monitoring how these stochastic properties are affected by spore density and chemicals released from spores, germination interactions were quantified for four species. Stochastically germinating spores were frequently promoted or inhibited by compounds released by spores from the same or different species, and all species had distinct interaction profiles. The spatial distribution patterns were important with clusters of spores behaving differently than individual spores. Aged spores exhibited higher dormancy but could efficiently geminate in the presence of chemicals released during germination. All interactions were specific to germination and only weakly affected growth rates. This work suggests that stochastic germination is commonly affected by the community context and species have adapted diverse germination strategies.
Collapse
Affiliation(s)
- Ye Xu
- Department of Bacteriology and Wisconsin Institute for Discovery, University of Wisconsin-Madison, Wisconsin, 53715, USA
| | - Kalin Vetsigian
- Department of Bacteriology and Wisconsin Institute for Discovery, University of Wisconsin-Madison, Wisconsin, 53715, USA.
| |
Collapse
|
23
|
Abstract
About 2,500 papers dated 2014–2016 were recovered by searching the PubMed database for
Streptomyces, which are the richest known source of antibiotics. This review integrates around 100 of these papers in sections dealing with evolution, ecology, pathogenicity, growth and development, stress responses and secondary metabolism, gene expression, and technical advances. Genomic approaches have greatly accelerated progress. For example, it has been definitively shown that interspecies recombination of conserved genes has occurred during evolution, in addition to exchanges of some of the tens of thousands of non-conserved accessory genes. The closeness of the association of
Streptomyces with plants, fungi, and insects has become clear and is reflected in the importance of regulators of cellulose and chitin utilisation in overall
Streptomyces biology. Interestingly, endogenous cellulose-like glycans are also proving important in hyphal growth and in the clumping that affects industrial fermentations. Nucleotide secondary messengers, including cyclic di-GMP, have been shown to provide key input into developmental processes such as germination and reproductive growth, while late morphological changes during sporulation involve control by phosphorylation. The discovery that nitric oxide is produced endogenously puts a new face on speculative models in which regulatory Wbl proteins (peculiar to actinobacteria) respond to nitric oxide produced in stressful physiological transitions. Some dramatic insights have come from a new model system for
Streptomyces developmental biology,
Streptomyces venezuelae, including molecular evidence of very close interplay in each of two pairs of regulatory proteins. An extra dimension has been added to the many complexities of the regulation of secondary metabolism by findings of regulatory crosstalk within and between pathways, and even between species, mediated by end products. Among many outcomes from the application of chromosome immunoprecipitation sequencing (ChIP-seq) analysis and other methods based on “next-generation sequencing” has been the finding that 21% of
Streptomyces mRNA species lack leader sequences and conventional ribosome binding sites. Further technical advances now emerging should lead to continued acceleration of knowledge, and more effective exploitation, of these astonishing and critically important organisms.
Collapse
Affiliation(s)
- Keith F Chater
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK
| |
Collapse
|
24
|
Ruggiero A, Squeglia F, Romano M, Vitagliano L, De Simone A, Berisio R. Structure and dynamics of the multi-domain resuscitation promoting factor RpfB from Mycobacterium tuberculosis. J Biomol Struct Dyn 2016; 35:1322-1330. [PMID: 27420638 DOI: 10.1080/07391102.2016.1182947] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
RpfB is multidomain protein that is crucial for Mycobacterium tuberculosis resuscitation from dormancy. This protein cleaves cell wall peptidoglycan, an essential bacterial cell wall polymer formed by glycan chains of β-(1-4)-linked-N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc) cross-linked by short peptide stems. RpfB is structurally complex being composed of five distinct domains, namely a catalytic, a G5 and three DUF348 domains. Here, we have undertaken a combined experimental and computation structural investigations on the entire protein to gain insights into its structure-function relationships. CD spectroscopy and light scattering experiments have provided insights into the protein fold stability and into its oligomeric state. Using the available structure information, we modeled the entire protein structure, which includes the two DUF348 domains whose structure is experimentally unknown, and we analyzed the dynamic behavior of RpfB using molecular dynamics simulations. Present results highlight an intricate mutual influence of the dynamics of the different protein domains. These data provide interesting clues on the functional role of non-catalytic domains of RpfB and on the mechanism of peptidoglycan degradation necessary to resuscitation of M. tuberculosis.
Collapse
Affiliation(s)
- Alessia Ruggiero
- a Institute of Biostructures and Bioimaging , CNR , Naples , Italy
| | - Flavia Squeglia
- a Institute of Biostructures and Bioimaging , CNR , Naples , Italy
| | - Maria Romano
- a Institute of Biostructures and Bioimaging , CNR , Naples , Italy
| | - Luigi Vitagliano
- a Institute of Biostructures and Bioimaging , CNR , Naples , Italy
| | - Alfonso De Simone
- b Division of Molecular Biosciences , Imperial College London , London , UK
| | - Rita Berisio
- a Institute of Biostructures and Bioimaging , CNR , Naples , Italy
| |
Collapse
|
25
|
Kell D, Potgieter M, Pretorius E. Individuality, phenotypic differentiation, dormancy and 'persistence' in culturable bacterial systems: commonalities shared by environmental, laboratory, and clinical microbiology. F1000Res 2015; 4:179. [PMID: 26629334 PMCID: PMC4642849 DOI: 10.12688/f1000research.6709.2] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/04/2015] [Indexed: 01/28/2023] Open
Abstract
For bacteria, replication mainly involves growth by binary fission. However, in a very great many natural environments there are examples of phenotypically dormant, non-growing cells that do not replicate immediately and that are phenotypically 'nonculturable' on media that normally admit their growth. They thereby evade detection by conventional culture-based methods. Such dormant cells may also be observed in laboratory cultures and in clinical microbiology. They are usually more tolerant to stresses such as antibiotics, and in clinical microbiology they are typically referred to as 'persisters'. Bacterial cultures necessarily share a great deal of relatedness, and inclusive fitness theory implies that there are conceptual evolutionary advantages in trading a variation in growth rate against its mean, equivalent to hedging one's bets. There is much evidence that bacteria exploit this strategy widely. We here bring together data that show the commonality of these phenomena across environmental, laboratory and clinical microbiology. Considerable evidence, using methods similar to those common in environmental microbiology, now suggests that many supposedly non-communicable, chronic and inflammatory diseases are exacerbated (if not indeed largely caused) by the presence of dormant or persistent bacteria (the ability of whose components to cause inflammation is well known). This dormancy (and resuscitation therefrom) often reflects the extent of the availability of free iron. Together, these phenomena can provide a ready explanation for the continuing inflammation common to such chronic diseases and its correlation with iron dysregulation. This implies that measures designed to assess and to inhibit or remove such organisms (or their access to iron) might be of much therapeutic benefit.
Collapse
Affiliation(s)
- Douglas Kell
- School of Chemistry and The Manchester Institute of Biotechnology, The University of Manchester, Manchester, Lancashire, M1 7DN, UK
| | - Marnie Potgieter
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, 0007, South Africa
| | - Etheresia Pretorius
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, 0007, South Africa
| |
Collapse
|
26
|
Kell D, Potgieter M, Pretorius E. Individuality, phenotypic differentiation, dormancy and 'persistence' in culturable bacterial systems: commonalities shared by environmental, laboratory, and clinical microbiology. F1000Res 2015; 4:179. [PMID: 26629334 DOI: 10.12688/f1000research.6709.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/29/2015] [Indexed: 01/28/2023] Open
Abstract
For bacteria, replication mainly involves growth by binary fission. However, in a very great many natural environments there are examples of phenotypically dormant, non-growing cells that do not replicate immediately and that are phenotypically 'nonculturable' on media that normally admit their growth. They thereby evade detection by conventional culture-based methods. Such dormant cells may also be observed in laboratory cultures and in clinical microbiology. They are usually more tolerant to stresses such as antibiotics, and in clinical microbiology they are typically referred to as 'persisters'. Bacterial cultures necessarily share a great deal of relatedness, and inclusive fitness theory implies that there are conceptual evolutionary advantages in trading a variation in growth rate against its mean, equivalent to hedging one's bets. There is much evidence that bacteria exploit this strategy widely. We here bring together data that show the commonality of these phenomena across environmental, laboratory and clinical microbiology. Considerable evidence, using methods similar to those common in environmental microbiology, now suggests that many supposedly non-communicable, chronic and inflammatory diseases are exacerbated (if not indeed largely caused) by the presence of dormant or persistent bacteria (the ability of whose components to cause inflammation is well known). This dormancy (and resuscitation therefrom) often reflects the extent of the availability of free iron. Together, these phenomena can provide a ready explanation for the continuing inflammation common to such chronic diseases and its correlation with iron dysregulation. This implies that measures designed to assess and to inhibit or remove such organisms (or their access to iron) might be of much therapeutic benefit.
Collapse
Affiliation(s)
- Douglas Kell
- School of Chemistry and The Manchester Institute of Biotechnology, The University of Manchester, Manchester, Lancashire, M1 7DN, UK
| | - Marnie Potgieter
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, 0007, South Africa
| | - Etheresia Pretorius
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, 0007, South Africa
| |
Collapse
|
27
|
St-Onge RJ, Haiser HJ, Yousef MR, Sherwood E, Tschowri N, Al-Bassam M, Elliot MA. Nucleotide second messenger-mediated regulation of a muralytic enzyme in Streptomyces. Mol Microbiol 2015; 96:779-95. [PMID: 25682701 DOI: 10.1111/mmi.12971] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2015] [Indexed: 11/29/2022]
Abstract
Peptidoglycan degradative enzymes have important roles at many stages during the bacterial life cycle, and it is critical that these enzymes be stringently regulated to avoid compromising the integrity of the cell wall. How this regulation is exerted is of considerable interest: promoter-based control and protein-protein interactions are known to be employed; however, other regulatory mechanisms are almost certainly involved. In the actinobacteria, a class of muralytic enzymes - the 'resuscitation-promoting factors' (Rpfs) - orchestrates the resuscitation of dormant cells. In this study, we have taken a holistic approach to exploring the mechanisms governing RpfA function using the model bacterium Streptomyces coelicolor and have uncovered unprecedented multilevel regulation that is coordinated by three second messengers. Our studies show that RpfA is subject to transcriptional control by the cyclic AMP receptor protein, riboswitch-mediated transcription attenuation in response to cyclic di-AMP, and growth stage-dependent proteolysis in response to ppGpp accumulation. Furthermore, our results suggest that these control mechanisms are likely applicable to cell wall lytic enzymes in other bacteria.
Collapse
Affiliation(s)
- Renée J St-Onge
- Department of Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Henry J Haiser
- Department of Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Mary R Yousef
- Department of Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Emma Sherwood
- Department of Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Natalia Tschowri
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK
| | - Mahmoud Al-Bassam
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK
| | - Marie A Elliot
- Department of Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|