1
|
Li Z, Liu X, Ning N, Li T, Wang H. Diversity, Distribution, and Chromosomal Rearrangements of TRIP1 Repeat Sequences in Escherichia coli. Genes (Basel) 2024; 15:236. [PMID: 38397225 PMCID: PMC10888264 DOI: 10.3390/genes15020236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/07/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
The bacterial genome contains numerous repeated sequences that greatly affect its genomic plasticity. The Escherichia coli K-12 genome contains three copies of the TRIP1 repeat sequence (TRIP1a, TRIP1b, and TRIP1c). However, the diversity, distribution, and role of the TRIP1 repeat sequence in the E. coli genome are still unclear. In this study, after screening 6725 E. coli genomes, the TRIP1 repeat was found in the majority of E. coli strains (96%: 6454/6725). The copy number and direction of the TRIP1 repeat sequence varied in each genome. Overall, 2449 genomes (36%: 2449/6725) had three copies of TRIP1 (TRIP1a, TRIP1b, and TRIP1c), which is the same as E. coli K-12. Five types of TRIP1 repeats, including two new types (TRIP1d and TRIP1e), are identified in E. coli genomes, located in 4703, 3529, 5741, 1565, and 232 genomes, respectively. Each type of TRIP1 repeat is localized to a specific locus on the chromosome. TRIP1 repeats can cause intra-chromosomal rearrangements. A total of 156 rearrangement events were identified, of which 88% (137/156) were between TRIP1a and TRIP1c. These findings have important implications for future research on TRIP1 repeats.
Collapse
Affiliation(s)
- Zhan Li
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20 Dongda Street, Fengtai District, Beijing 100071, China; (Z.L.); (N.N.); (T.L.)
| | - Xiong Liu
- Chinese PLA Center for Disease Control and Prevention, Dongda Street 20#, Fengtai District, Beijing 100071, China;
| | - Nianzhi Ning
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20 Dongda Street, Fengtai District, Beijing 100071, China; (Z.L.); (N.N.); (T.L.)
| | - Tao Li
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20 Dongda Street, Fengtai District, Beijing 100071, China; (Z.L.); (N.N.); (T.L.)
| | - Hui Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20 Dongda Street, Fengtai District, Beijing 100071, China; (Z.L.); (N.N.); (T.L.)
| |
Collapse
|
2
|
Liu J, Ou Y, Xu JZ, Rao ZM, Zhang WG. L-lysine production by systems metabolic engineering of an NADPH auto-regulated Corynebacterium glutamicum. BIORESOURCE TECHNOLOGY 2023; 387:129701. [PMID: 37604260 DOI: 10.1016/j.biortech.2023.129701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
Here, the systems metabolic engineering of L-lysine-overproducing Corynebacterium glutamicum is described to create a highly efficient microorganism producer. The key chromosomal mutations associated with L-lysine synthesis were identified based on whole-genome sequencing. The carbon flux was subsequently redirected into the L-lysine synthesis pathway and increased the availability of energy and product transport systems required for L-lysine synthesis. In addition, a promoter library sensitive to intracellular L-lysine concentration was constructed and applied to regulate the NADPH pool dynamically. In the fed-batch fermentation experiment, the L-lysine titer of the final engineered strain was 223.4 ± 6.5 g/L. This study is the first to improve L-lysine production by enhancing ATP supply and NADPH self-regulation to improve the intracellular environment.
Collapse
Affiliation(s)
- Jie Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800(#) Lihu Road, WuXi 214122, People's Republic of China
| | - Ying Ou
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800(#) Lihu Road, WuXi 214122, People's Republic of China
| | - Jian-Zhong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800(#) Lihu Road, WuXi 214122, People's Republic of China
| | - Zhi-Ming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800(#) Lihu Road, WuXi 214122, People's Republic of China; National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, 1800(#) Lihu Road, WuXi 214122, People's Republic of China
| | - Wei-Guo Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800(#) Lihu Road, WuXi 214122, People's Republic of China.
| |
Collapse
|
3
|
Abstract
The metabolism of a bacterial cell stretches beyond its boundaries, often connecting with the metabolism of other cells to form extended metabolic networks that stretch across communities, and even the globe. Among the least intuitive metabolic connections are those involving cross-feeding of canonically intracellular metabolites. How and why are these intracellular metabolites externalized? Are bacteria simply leaky? Here I consider what it means for a bacterium to be leaky, and I review mechanisms of metabolite externalization from the context of cross-feeding. Despite common claims, diffusion of most intracellular metabolites across a membrane is unlikely. Instead, passive and active transporters are likely involved, possibly purging excess metabolites as part of homeostasis. Re-acquisition of metabolites by a producer limits the opportunities for cross-feeding. However, a competitive recipient can stimulate metabolite externalization and initiate a positive-feedback loop of reciprocal cross-feeding.
Collapse
Affiliation(s)
- James B McKinlay
- Department of Biology, Indiana University, Bloomington, Indiana, USA;
| |
Collapse
|
4
|
Parish AJ, Rice DW, Tanquary VM, Tennessen JM, Newton ILG. Honey bee symbiont buffers larvae against nutritional stress and supplements lysine. THE ISME JOURNAL 2022; 16:2160-2168. [PMID: 35726020 PMCID: PMC9381588 DOI: 10.1038/s41396-022-01268-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/17/2022] [Accepted: 06/07/2022] [Indexed: 02/07/2023]
Abstract
Honey bees have suffered dramatic losses in recent years, largely due to multiple stressors underpinned by poor nutrition [1]. Nutritional stress especially harms larvae, who mature into workers unable to meet the needs of their colony [2]. In this study, we characterize the metabolic capabilities of a honey bee larvae-associated bacterium, Bombella apis (formerly Parasaccharibacter apium), and its effects on the nutritional resilience of larvae. We found that B. apis is the only bacterium associated with larvae that can withstand the antimicrobial larval diet. Further, we found that B. apis can synthesize all essential amino acids and significantly alters the amino acid content of synthetic larval diet, largely by supplying the essential amino acid lysine. Analyses of gene gain/loss across the phylogeny suggest that four amino acid transporters were gained in recent B. apis ancestors. In addition, the transporter LysE is conserved across all sequenced strains of B. apis. Finally, we tested the impact of B. apis on developing honey bee larvae subjected to nutritional stress and found that larvae supplemented with B. apis are bolstered against mass reduction despite limited nutrition. Together, these data suggest a novel role of B. apis as a nutritional mutualist of honey bee larvae.
Collapse
Affiliation(s)
- Audrey J Parish
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Danny W Rice
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Vicki M Tanquary
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Jason M Tennessen
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Irene L G Newton
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
5
|
Malla S, van der Helm E, Darbani B, Wieschalka S, Förster J, Borodina I, Sommer MOA. A Novel Efficient L-Lysine Exporter Identified by Functional Metagenomics. Front Microbiol 2022; 13:855736. [PMID: 35495724 PMCID: PMC9048822 DOI: 10.3389/fmicb.2022.855736] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/23/2022] [Indexed: 12/14/2022] Open
Abstract
Lack of active export system often limits the industrial bio-based production processes accumulating the intracellular product and hence complexing the purification steps. L-lysine, an essential amino acid, is produced biologically in quantities exceeding two million tons per year; yet, L-lysine production is challenged by efficient export system at high titers during fermentation. To address this issue, new exporter candidates for efficient efflux of L-lysine are needed. Using metagenomic functional selection, we identified 58 genes encoded on 28 unique metagenomic fragments from cow gut microbiome library that improved L-lysine tolerance. These genes include a novel L-lysine transporter, belonging to a previously uncharacterized EamA superfamily, which is further in vivo characterized as L-lysine exporter using Xenopus oocyte expression system as well as Escherichia coli host. This novel exporter improved L-lysine tolerance in E. coli by 40% and enhanced yield, titer, and the specific production of L-lysine in an industrial Corynebacterium glutamicum strain by 7.8%, 9.5%, and 12%, respectively. Our approach allows the sequence-independent discovery of novel exporters and can be deployed to increase titers and productivity of toxicity-limited bioprocesses.
Collapse
|
6
|
Lopez JG, Wingreen NS. Noisy metabolism can promote microbial cross-feeding. eLife 2022; 11:70694. [PMID: 35380535 PMCID: PMC8983042 DOI: 10.7554/elife.70694] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 02/21/2022] [Indexed: 12/21/2022] Open
Abstract
Cross-feeding, the exchange of nutrients between organisms, is ubiquitous in microbial communities. Despite its importance in natural and engineered microbial systems, our understanding of how inter-species cross-feeding arises is incomplete, with existing theories limited to specific scenarios. Here, we introduce a novel theory for the emergence of such cross-feeding, which we term noise-averaging cooperation (NAC). NAC is based on the idea that, due to their small size, bacteria are prone to noisy regulation of metabolism which limits their growth rate. To compensate, related bacteria can share metabolites with each other to ‘average out’ noise and improve their collective growth. According to the Black Queen Hypothesis, this metabolite sharing among kin, a form of ‘leakage’, then allows for the evolution of metabolic interdependencies among species including de novo speciation via gene deletions. We first characterize NAC in a simple ecological model of cell metabolism, showing that metabolite leakage can in principle substantially increase growth rate in a community context. Next, we develop a generalized framework for estimating the potential benefits of NAC among real bacteria. Using single-cell protein abundance data, we predict that bacteria suffer from substantial noise-driven growth inefficiencies, and may therefore benefit from NAC. We then discuss potential evolutionary pathways for the emergence of NAC. Finally, we review existing evidence for NAC and outline potential experimental approaches to detect NAC in microbial communities.
Collapse
Affiliation(s)
- Jaime G Lopez
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, United States
| | - Ned S Wingreen
- Department of Molecular Biology, Princeton University, Princeton, United States
| |
Collapse
|
7
|
Ihara K, Kim S, Ando T, Yoneyama H. Importance of transmembrane helix 4 of l-alanine exporter AlaE in oligomer formation and substrate export activity in Escherichia coli. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35275050 DOI: 10.1099/mic.0.001147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
AlaE is the smallest amino acid exporter identified in Escherichia coli. It exports l-alanine using the proton motive force and plays a pivotal role in maintaining intracellular l-alanine homeostasis by acting as a safety valve. However, our understanding of the molecular mechanisms of substrate export by AlaE is still limited because structural information is lacking. Due to its small size (149 amino acid residues), it has been speculated that AlaE functions by forming an oligomer. In this study, we performed chemical cross-linking and pull-down assays and showed that AlaE indeed generates homo-oligomers as a functional unit. Previous random mutagenesis experiments identified three loss-of-function AlaE point mutations in the predicted transmembrane helix 4 (TM4) region, two of which are present in the GxxxG motif. When alanine-scanning mutagenesis was applied to the TM4 region, the AlaE derivatives that had amino acid substitutions around the GxxxG motif showed low l-alanine export activities, indicating that the GxxxG motif in TM4 plays an important role in substrate export. However, these AlaE variants with low activity could still form oligomers. We therefore concluded that AlaE forms homo-oligomers and that the GxxxG motif in the TM4 region plays an essential role in AlaE activity but is not involved in AlaE oligomer formation.
Collapse
Affiliation(s)
- Kohei Ihara
- Laboratory of Animal Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi, 980-8572, Japan
| | - Seryoung Kim
- Laboratory of Animal Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi, 980-8572, Japan
| | - Tasuke Ando
- Laboratory of Animal Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi, 980-8572, Japan
| | - Hiroshi Yoneyama
- Laboratory of Animal Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi, 980-8572, Japan
| |
Collapse
|
8
|
Xu X, Rao ZM, Xu JZ, Zhang WG. Enhancement of l-Pipecolic Acid Production by Dynamic Control of Substrates and Multiple Copies of the pipA Gene in the Escherichia coli Genome. ACS Synth Biol 2022; 11:760-769. [PMID: 35073050 DOI: 10.1021/acssynbio.1c00467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
l-Pipecolic acid is an important rigid cyclic nonprotein amino acid, which is obtained through the conversion of l-lysine catalyzed by l-lysine cyclodeaminase (LCD). To directly produce l-pipecolic acid from glucose by microbial fermentation, in this study, a recombinant Escherichia coli strain with high efficiency of l-pipecolic acid production was constructed. This study involves the dynamic regulation of the substrate concentration and the expression level of the l-lysine cyclodeaminase-coding gene pipA. In terms of substrate concentration, we adopted the l-lysine riboswitch to dynamically regulate the expression of lysP and lysO genes. As a result, the l-pipecolic acid yield was increased about 1.8-fold as compared with the control. In addition, we used chemically inducible chromosomal evolution (CIChE) to realize the presence of multiple copies of the pipA gene on the genome. The resultant E. coli strain XQ-11-4 produced 61 ± 3.4 g/L l-pipecolic acid with a productivity of 1.02 ± 0.06 g/(L·h) and a glucose conversion efficiency (α) of 29.6% in fermentation. This is the first report that discovered multiple copies of pipA gene expression on the genome that improves the efficiency of l-pipecolic acid production in an l-lysine high-producing strain, and these results give us new insight for constructing the other valuable biochemicals derived from l-lysine.
Collapse
Affiliation(s)
- Xin Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, Wuxi 214122, People’s Republic of China
| | - Zhi-Ming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, Wuxi 214122, People’s Republic of China
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800# Lihu Road, Wuxi 214122, People’s Republic of China
| | - Jian-Zhong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, Wuxi 214122, People’s Republic of China
| | - Wei-Guo Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, Wuxi 214122, People’s Republic of China
| |
Collapse
|
9
|
Dookeran ZA, Nielsen DR. Systematic Engineering of Synechococcus elongatus UTEX 2973 for Photosynthetic Production of l-Lysine, Cadaverine, and Glutarate. ACS Synth Biol 2021; 10:3561-3575. [PMID: 34851612 DOI: 10.1021/acssynbio.1c00492] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amino acids and related targets are typically produced by well-characterized heterotrophs including Corynebacterium glutamicum and Escherichia coli. Cyanobacteria offer an opportunity to supplant these sugar-intensive processes by instead directly utilizing atmospheric CO2 and sunlight. Synechococcus elongatus UTEX 2973 (hereafter UTEX 2973) is a particularly promising photoautotrophic platform due to its fast growth rate. Here, we first engineered UTEX 2973 to overproduce l-lysine (hereafter lysine), after which both cadaverine and glutarate production were achieved through further pathway engineering. To facilitate metabolic engineering, the relative activities of a subset of previously uncharacterized promoters were investigated, in each case, while also comparing the effects of both chromosomal (from neutral site NS3) and episomal (from pAM4788) expressions. Using these parts, lysine overproduction in UTEX 2973 was engineered by introducing a feedback-resistant copy of aspartate kinase (encoded by lysCfbr) and a lysine exporter (encoded by ybjE), both from E. coli. While chromosomal expression resulted in lysine production up to just 325.3 ± 14.8 mg/L after 120 h, this was then increased to 556.3 ± 62.3 mg/L via plasmid-based expression, also surpassing prior reports of photoautotrophic lysine bioproduction. Lastly, additional products of interest were then targeted by modularly extending the lysine pathway to glutarate and cadaverine, two 5-carbon, bioplastic monomers. By this approach, glutarate has so far been produced at final titers reaching 67.5 ± 2.2 mg/L by 96 h, whereas cadaverine has been produced at up to 55.3 ± 6.7 mg/L. Overcoming pathway and/or transport bottlenecks, meanwhile, will be important to improving upon these initial outputs.
Collapse
Affiliation(s)
- Zachary A. Dookeran
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, P.O. Box 876106, Tempe, Arizona 85287-6106, United States
| | - David R. Nielsen
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, P.O. Box 876106, Tempe, Arizona 85287-6106, United States
| |
Collapse
|
10
|
Dubey S, Majumder P, Penmatsa A, Sardesai AA. Topological analyses of the L-lysine exporter LysO reveal a critical role for a conserved pair of intramembrane solvent-exposed acidic residues. J Biol Chem 2021; 297:101168. [PMID: 34487760 PMCID: PMC8498466 DOI: 10.1016/j.jbc.2021.101168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
LysO, a prototypical member of the LysO family, mediates export of L-lysine (Lys) and resistance to the toxic Lys antimetabolite, L-thialysine (Thl) in Escherichia coli. Here, we have addressed unknown aspects of LysO function pertaining to its membrane topology and the mechanism by which it mediates Lys/Thl export. Using substituted cysteine (Cys) accessibility, here we delineated the membrane topology of LysO. Our studies support a model in which both the N- and C-termini of LysO are present at the periplasmic face of the membrane with a transmembrane (TM) domain comprising eight TM segments (TMSs) between them. In addition, a feature of intramembrane solvent exposure in LysO is inferred with the identification of membrane-located solvent-exposed Cys residues. Isosteric substitutions of a pair of conserved acidic residues, one E233, located in the solvent-exposed TMS7 and the other D261, in a solvent-exposed intramembrane segment located between TMS7 and TMS8, abolished LysO function in vivo. Thl, but not Lys, elicited proton release in inside-out membrane vesicles, a process requiring the presence of both E233 and D261. We postulate that Thl may be exported in antiport with H+ and that Lys may be a low-affinity export substrate. Our findings are compatible with a physiological scenario wherein in vivo LysO exports the naturally occurring antimetabolite Thl with higher affinity over the essential cellular metabolite Lys, thus affording protection from Thl toxicity and limiting wasteful export of Lys.
Collapse
Affiliation(s)
- Swati Dubey
- Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India; Graduate Studies, Manipal Academy of Higher Education, Manipal, India
| | - Puja Majumder
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Aravind Penmatsa
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Abhijit A Sardesai
- Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India.
| |
Collapse
|
11
|
Ahmed MS, Lauersen KJ, Ikram S, Li C. Efflux Transporters' Engineering and Their Application in Microbial Production of Heterologous Metabolites. ACS Synth Biol 2021; 10:646-669. [PMID: 33751883 DOI: 10.1021/acssynbio.0c00507] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Metabolic engineering of microbial hosts for the production of heterologous metabolites and biochemicals is an enabling technology to generate meaningful quantities of desired products that may be otherwise difficult to produce by traditional means. Heterologous metabolite production can be restricted by the accumulation of toxic products within the cell. Efflux transport proteins (transporters) provide a potential solution to facilitate the export of these products, mitigate toxic effects, and enhance production. Recent investigations using knockout lines, heterologous expression, and expression profiling of transporters have revealed candidates that can enhance the export of heterologous metabolites from microbial cell systems. Transporter engineering efforts have revealed that some exhibit flexible substrate specificity and may have broader application potentials. In this Review, the major superfamilies of efflux transporters, their mechanistic modes of action, selection of appropriate efflux transporters for desired compounds, and potential transporter engineering strategies are described for potential applications in enhancing engineered microbial metabolite production. Future studies in substrate recognition, heterologous expression, and combinatorial engineering of efflux transporters will assist efforts to enhance heterologous metabolite production in microbial hosts.
Collapse
Affiliation(s)
- Muhammad Saad Ahmed
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology (BIT), Beijing 100081, P. R. China
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Abid Majeed Road, The Mall, Rawalpindi 46000, Pakistan
| | - Kyle J. Lauersen
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Sana Ikram
- Beijing Higher Institution Engineering Research Center for Food Additives and Ingredients, Beijing Technology & Business University (BTBU), Beijing 100048, P. R. China
| | - Chun Li
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology (BIT), Beijing 100081, P. R. China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
12
|
Henderson PJF, Maher C, Elbourne LDH, Eijkelkamp BA, Paulsen IT, Hassan KA. Physiological Functions of Bacterial "Multidrug" Efflux Pumps. Chem Rev 2021; 121:5417-5478. [PMID: 33761243 DOI: 10.1021/acs.chemrev.0c01226] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacterial multidrug efflux pumps have come to prominence in human and veterinary pathogenesis because they help bacteria protect themselves against the antimicrobials used to overcome their infections. However, it is increasingly realized that many, probably most, such pumps have physiological roles that are distinct from protection of bacteria against antimicrobials administered by humans. Here we undertake a broad survey of the proteins involved, allied to detailed examples of their evolution, energetics, structures, chemical recognition, and molecular mechanisms, together with the experimental strategies that enable rapid and economical progress in understanding their true physiological roles. Once these roles are established, the knowledge can be harnessed to design more effective drugs, improve existing microbial production of drugs for clinical practice and of feedstocks for commercial exploitation, and even develop more sustainable biological processes that avoid, for example, utilization of petroleum.
Collapse
Affiliation(s)
- Peter J F Henderson
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Claire Maher
- School of Environmental and Life Sciences, University of Newcastle, Callaghan 2308, New South Wales, Australia
| | - Liam D H Elbourne
- Department of Biomolecular Sciences, Macquarie University, Sydney 2109, New South Wales, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney 2019, New South Wales, Australia
| | - Bart A Eijkelkamp
- College of Science and Engineering, Flinders University, Bedford Park 5042, South Australia, Australia
| | - Ian T Paulsen
- Department of Biomolecular Sciences, Macquarie University, Sydney 2109, New South Wales, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney 2019, New South Wales, Australia
| | - Karl A Hassan
- School of Environmental and Life Sciences, University of Newcastle, Callaghan 2308, New South Wales, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney 2019, New South Wales, Australia
| |
Collapse
|
13
|
Onyeabor M, Martinez R, Kurgan G, Wang X. Engineering transport systems for microbial production. ADVANCES IN APPLIED MICROBIOLOGY 2020; 111:33-87. [PMID: 32446412 DOI: 10.1016/bs.aambs.2020.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The rapid development in the field of metabolic engineering has enabled complex modifications of metabolic pathways to generate a diverse product portfolio. Manipulating substrate uptake and product export is an important research area in metabolic engineering. Optimization of transport systems has the potential to enhance microbial production of renewable fuels and chemicals. This chapter comprehensively reviews the transport systems critical for microbial production as well as current genetic engineering strategies to improve transport functions and thus production metrics. In addition, this chapter highlights recent advancements in engineering microbial efflux systems to enhance cellular tolerance to industrially relevant chemical stress. Lastly, future directions to address current technological gaps are discussed.
Collapse
Affiliation(s)
- Moses Onyeabor
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Rodrigo Martinez
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Gavin Kurgan
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Xuan Wang
- School of Life Sciences, Arizona State University, Tempe, AZ, United States.
| |
Collapse
|
14
|
Korshunov S, Imlay KRC, Imlay JA. Cystine import is a valuable but risky process whose hazards Escherichia coli minimizes by inducing a cysteine exporter. Mol Microbiol 2019; 113:22-39. [PMID: 31612555 PMCID: PMC7007315 DOI: 10.1111/mmi.14403] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2019] [Indexed: 12/24/2022]
Abstract
The structure of free cysteine makes it vulnerable to oxidation by molecular oxygen; consequently, organisms that live in oxic habitats have acquired the ability to import cystine as a sulfur source. We show that cystine imported into Escherichia coli can transfer disulfide bonds to cytoplasmic proteins. To minimize this problem, the imported cystine is rapidly reduced. However, this conversion of cystine to cysteine precludes product inhibition of the importer, so cystine import continues into cells that are already sated with cysteine. The burgeoning cysteine pool is itself hazardous, as cysteine promotes the formation of reactive oxygen species, triggers sulfide production and competitively inhibits a key enzyme in the isoleucine biosynthetic pathway. The Lrp transcription factor senses the excess cysteine and induces AlaE, an export protein that pumps cysteine back out of the cell until transcriptional controls succeed in lowering the amount of the importer. While it lasts, the overall phenomenon roughly doubles the NADPH demand of the cell. It comprises another example of the incompatibility of the reduced cytoplasms of microbes with the oxic world in which they dwell. It also reveals one natural source of cytoplasmic disulfide stress and sheds light on a role for broad-spectrum amino acid exporters.
Collapse
Affiliation(s)
- Sergey Korshunov
- Department of Microbiology, University of Illinois, Urbana, IL, 61801, USA
| | | | - James A Imlay
- Department of Microbiology, University of Illinois, Urbana, IL, 61801, USA
| |
Collapse
|
15
|
L-Alanine Exporter, AlaE, of Escherichia coli Functions as a Safety Valve to Enhance Survival under Feast Conditions. Int J Mol Sci 2019; 20:ijms20194942. [PMID: 31591285 PMCID: PMC6801825 DOI: 10.3390/ijms20194942] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 11/17/2022] Open
Abstract
The intracellular level of amino acids is determined by the balance between their anabolic and catabolic pathways. L-alanine is anabolized by three L-alanine synthesizing enzymes and catabolized by two racemases and D-amino acid dehydrogenase (DadA). In addition, its level is regulated by L-alanine movement across the inner membrane. We identified the novel gene alaE, encoding an L-alanine exporter. To elucidate the physiological function of L-Alanine exporter, AlaE, we determined the susceptibility of alaE-, dadA-, and alaE/dadA-deficient mutants, derived from the wild-type strain MG1655, to L-alanyl-L-alanine (Ala-Ala), which shows toxicity to the L-alanine-nonmetabolizing variant lacking alaE. The dadA-deficient mutant has a similar minimum inhibitory concentration (MIC) (>1.25 mg/mL) to that observed in MG1655. However, alaE- and alaE/dadA-deficient mutants had MICs of 0.04 and 0.0025 mg/mL, respectively. The results suggested that the efficacy of AlaE to relieve stress caused by toxic intracellular accumulation of L-alanine was higher than that of DadA. Consistent with this, the intracellular level of alanine in the alaE-mutant was much higher than that in MG1655 and the dadA-mutant. We, therefore, conclude that AlaE functions as a ‘safety-valve’ to prevent the toxic level accumulation of intracellular L-alanine under a peptide-rich environment, such as within the animal intestine.
Collapse
|
16
|
Lempp M, Farke N, Kuntz M, Freibert SA, Lill R, Link H. Systematic identification of metabolites controlling gene expression in E. coli. Nat Commun 2019; 10:4463. [PMID: 31578326 PMCID: PMC6775132 DOI: 10.1038/s41467-019-12474-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 09/11/2019] [Indexed: 01/07/2023] Open
Abstract
Metabolism controls gene expression through allosteric interactions between metabolites and transcription factors. These interactions are usually measured with in vitro assays, but there are no methods to identify them at a genome-scale in vivo. Here we show that dynamic transcriptome and metabolome data identify metabolites that control transcription factors in E. coli. By switching an E. coli culture between starvation and growth, we induce strong metabolite concentration changes and gene expression changes. Using Network Component Analysis we calculate the activities of 209 transcriptional regulators and correlate them with metabolites. This approach captures, for instance, the in vivo kinetics of CRP regulation by cyclic-AMP. By testing correlations between all pairs of transcription factors and metabolites, we predict putative effectors of 71 transcription factors, and validate five interactions in vitro. These results show that combining transcriptomics and metabolomics generates hypotheses about metabolism-transcription interactions that drive transitions between physiological states. Interactions between metabolites and transcription factors are known to control gene expression but analyzing these events at genome-scale is challenging. Here, the authors integrate dynamic metabolome and transcriptome data from E.coli to predict regulatory metabolite-transcription factor interactions.
Collapse
Affiliation(s)
- Martin Lempp
- Max Planck Institute for Terrestrial Microbiology, Marburg, 35043, Germany
| | - Niklas Farke
- Max Planck Institute for Terrestrial Microbiology, Marburg, 35043, Germany
| | - Michelle Kuntz
- Max Planck Institute for Terrestrial Microbiology, Marburg, 35043, Germany
| | - Sven Andreas Freibert
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, 35033, Marburg, Germany
| | - Roland Lill
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, 35033, Marburg, Germany.,LOEWE Zentrum für Synthetische Mikrobiologie SYNMIKRO, Philipps-Universität Marburg, 35032, Marburg, Germany
| | - Hannes Link
- Max Planck Institute for Terrestrial Microbiology, Marburg, 35043, Germany. .,LOEWE Zentrum für Synthetische Mikrobiologie SYNMIKRO, Philipps-Universität Marburg, 35032, Marburg, Germany.
| |
Collapse
|
17
|
Regulation of arginine biosynthesis, catabolism and transport in Escherichia coli. Amino Acids 2019; 51:1103-1127. [DOI: 10.1007/s00726-019-02757-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 06/27/2019] [Indexed: 11/26/2022]
|
18
|
Wendisch VF. Metabolic engineering advances and prospects for amino acid production. Metab Eng 2019; 58:17-34. [PMID: 30940506 DOI: 10.1016/j.ymben.2019.03.008] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 11/18/2022]
Abstract
Amino acid fermentation is one of the major pillars of industrial biotechnology. The multi-billion USD amino acid market is rising steadily and is diversifying. Metabolic engineering is no longer focused solely on strain development for the bulk amino acids L-glutamate and L-lysine that are produced at the million-ton scale, but targets specialty amino acids. These demands are met by the development and application of new metabolic engineering tools including CRISPR and biosensor technologies as well as production processes by enabling a flexible feedstock concept, co-production and co-cultivation schemes. Metabolic engineering advances are exemplified for specialty proteinogenic amino acids, cyclic amino acids, omega-amino acids, and amino acids functionalized by hydroxylation, halogenation and N-methylation.
Collapse
Affiliation(s)
- Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
19
|
Isolation of Polygalacturonase-Producing Bacterial Strain from Tomatoes ( Lycopersicon esculentum Mill.). Int J Microbiol 2019; 2019:7505606. [PMID: 30766603 PMCID: PMC6350578 DOI: 10.1155/2019/7505606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 11/14/2018] [Accepted: 11/28/2018] [Indexed: 11/17/2022] Open
Abstract
Background Polygalacturonase (EC 3.2.1.15) enzyme aids in microbial spoilage of fruits and vegetables. It is very important to find economical ways to producing the enzyme so as to achieve maximum yield in industries due to its use at different areas of production process. Methods Isolation of polygalacturonase-producing bacterial strain from tomatoes (Lycopersicon esculentum Mill.) was studied. Polygalacturonase-producing bacterial strains were isolated and screened from tomatoes stored at normal laboratory temperature (25 ± 2°C). They were identified based on their morphological, biochemical, and molecular characteristics. The enzyme produced was partially purified by the ammonium sulphate precipitation method. Molecular weights and optimum conditions for best enzyme activity were obtained by SDS PAGE technique. Results Five bacterial isolates resulted after screening. Bacterial strain code B5 showed highest polygalacturonase activity. Optimum conditions for polygalacturonase PEC B5 were maintained at pH 4.5; temperature 35°C; substrate concentration 0.3 mg/ml, and best activity at less than 5 min of heating. The enzyme PEC B5 was found to weigh 65 kDa and 50 kDa for crude and partially purified aliquots, respectively. The result of 16S rRNA gene sequencing revealed bacterial strain code B5 as Enterobacter tabaci NR146667 having 79% similarity with the NCBI GenBank. Conclusion Microorganisms should be developed for large-scale production of enzymes in developing countries.
Collapse
|
20
|
Kapshikar RM, Gowrishankar J. Direct inhibition of transcription in vitro by the isolated N-terminal domain of the Escherichia coli nucleoid-associated protein H-NS and by its paralogue Hha. MICROBIOLOGY-SGM 2019; 165:463-474. [PMID: 30724731 DOI: 10.1099/mic.0.000780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
H-NS is an abundant nucleoid-associated protein in the enterobacteria that mediates both chromatin compaction and transcriptional silencing of numerous genes, especially those that have been acquired by horizontal transfer or that are involved in virulence functions. With two dimerization domains (N-terminal and central) and a C-terminal DNA-binding domain, the 15 kDa H-NS polypeptide can assemble as long polymeric filaments on DNA, and mutations in any of the three domains confer a dominant-negative phenotype in vivo by a subunit-poisoning mechanism. Here we confirm that several of these mutants [L26P, I119T and a truncation beyond residue 92(Δ93)] are also dominant-negative in vitro, in that they reverse the inhibition imposed by native H-NS in two different transcription assay formats (initiation+elongation, or elongation alone). On the other hand, another dominant-negative truncation mutant Δ64 (which possesses only the protein's N-terminal domain) per se completely and unexpectedly inhibited transcription in both assay formats. The Hha protein, which is a paralogue of H-NS and resembles its isolated N-terminal domain, also behaved like Δ64 as an inhibitor of transcription in vitro. We propose that under certain growth conditions, Escherichia coli RNA polymerase may be the direct inhibitory target of Hha, and that this effect is experimentally mimicked by the isolated N-terminal domain of H-NS.
Collapse
Affiliation(s)
- Rajvardhan M Kapshikar
- 1Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India.,2Graduate Studies, Manipal Academy of Higher Education, Manipal, India
| | - J Gowrishankar
- 1Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| |
Collapse
|
21
|
Expanding lysine industry: industrial biomanufacturing of lysine and its derivatives. ACTA ACUST UNITED AC 2018; 45:719-734. [DOI: 10.1007/s10295-018-2030-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 03/22/2018] [Indexed: 12/12/2022]
Abstract
Abstract
l-Lysine is widely used as a nutrition supplement in feed, food, and beverage industries as well as a chemical intermediate. At present, great efforts are made to further decrease the cost of lysine to make it more competitive in the markets. Furthermore, lysine also shows potential as a feedstock to produce other high-value chemicals for active pharmaceutical ingredients, drugs, or materials. In this review, the current biomanufacturing of lysine is first presented. Second, the production of novel derivatives from lysine is discussed. Some chemicals like l-pipecolic acid, cadaverine, and 5-aminovalerate already have been obtained at a lab scale. Others like 6-aminocaproic acid, valerolactam, and caprolactam could be produced through a biological and chemical coupling pathway or be synthesized by a hypothetical pathway. This review demonstrates an active and expansive lysine industry, and these green biomanufacturing strategies could also be applied to enhance the competitiveness of other amino acid industry.
Collapse
|
22
|
Yousuf S, Angara RK, Roy A, Gupta SK, Misra R, Ranjan A. Mce2R/Rv0586 of Mycobacterium tuberculosis is the functional homologue of FadR E. coli. MICROBIOLOGY-SGM 2018; 164:1133-1145. [PMID: 29993358 DOI: 10.1099/mic.0.000686] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lipid metabolism is critical to Mycobacterium tuberculosis survival and infection. Unlike Escherichia coli, which has a single FadR, the M. tuberculosis genome encodes five proteins of the FadR sub-family. While the role of E. coli FadR as a regulator of fatty acid metabolism is well known, the definitive functions of M. tuberculosis FadR proteins are still under investigation. An interesting question about the M. tuberculosis FadRs remains open: which one of these proteins is the functional homologue of E. coli FadR? To address this, we have applied two different approaches. The first one was the bioinformatics approach and the second one was the classical molecular genetic approach involving complementation studies. Surprisingly, the results of these two approaches did not agree. Among the five M. tuberculosis FadRs, Rv0494 shared the highest sequence similarity with FadRE. coli and Rv0586 was the second best match. However, only Rv0586, but not Rv0494, could complement E. coli ∆fadR, indicating that Rv0586 is the M. tuberculosis functional homologue of FadRE. coli. Further studies showed that both regulators, Rv0494 and Rv0586, show similar responsiveness to LCFA, and have conserved critical residues for DNA binding. However, analysis of the operator site indicated that the inter-palindromic distance required for DNA binding differs for the two regulators. The differences in the binding site selection helped in the success of Rv0586 binding to fadB upstream over Rv0494 and may have played a critical role in complementing E. coli ∆fadR. Further, for the first time, we report the lipid-responsive nature of Rv0586.
Collapse
Affiliation(s)
- Suhail Yousuf
- 1Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, 500039, India
- 2Graduate studies, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Rajendra Kumar Angara
- 1Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, 500039, India
- 2Graduate studies, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ajit Roy
- 1Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, 500039, India
- 2Graduate studies, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shailesh Kumar Gupta
- 1Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, 500039, India
- 2Graduate studies, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Rohan Misra
- 1Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, 500039, India
- 2Graduate studies, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Akash Ranjan
- 1Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, 500039, India
| |
Collapse
|
23
|
Morandi GD, Wiseman SB, Guan M, Zhang XW, Martin JW, Giesy JP. Elucidating mechanisms of toxic action of dissolved organic chemicals in oil sands process-affected water (OSPW). CHEMOSPHERE 2017; 186:893-900. [PMID: 28830063 DOI: 10.1016/j.chemosphere.2017.08.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/13/2017] [Accepted: 08/06/2017] [Indexed: 06/07/2023]
Abstract
Oil sands process-affected water (OSPW) is generated during extraction of bitumen in the surface-mining oil sands industry in Alberta, Canada, and is acutely and chronically toxic to aquatic organisms. It is known that dissolved organic compounds in OSPW are responsible for most toxic effects, but knowledge of the specific mechanism(s) of toxicity, is limited. Using bioassay-based effects-directed analysis, the dissolved organic fraction of OSPW has previously been fractionated, ultimately producing refined samples of dissolved organic chemicals in OSPW, each with distinct chemical profiles. Using the Escherichia coli K-12 strain MG1655 gene reporter live cell array, the present study investigated relationships between toxic potencies of each fraction, expression of genes and characterization of chemicals in each of five acutely toxic and one non-toxic extract of OSPW derived by use of effects-directed analysis. Effects on expressions of genes related to response to oxidative stress, protein stress and DNA damage were indicative of exposure to acutely toxic extracts of OSPW. Additionally, six genes were uniquely responsive to acutely toxic extracts of OSPW. Evidence presented supports a role for sulphur- and nitrogen-containing chemical classes in the toxicity of extracts of OSPW.
Collapse
Affiliation(s)
- Garrett D Morandi
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada
| | - Steve B Wiseman
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada; Department of Biological Sciences and Water Institute for Sustainable Environments (WISE), University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Miao Guan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xiaowei W Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Jonathan W Martin
- Division of Analytical and Environmental Toxicology, University of Alberta, Edmonton, AB T6G 2G3, Canada; Department of Environmental Sciences and Analytical Chemistry, Stockholm University, Stockholm, 114 18, Sweden
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada; Zoology Department, Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA; School of Biological Sciences, University of Hong Kong, 999077, Hong Kong Special Administrative Region.
| |
Collapse
|
24
|
Keseler IM, Mackie A, Santos-Zavaleta A, Billington R, Bonavides-Martínez C, Caspi R, Fulcher C, Gama-Castro S, Kothari A, Krummenacker M, Latendresse M, Muñiz-Rascado L, Ong Q, Paley S, Peralta-Gil M, Subhraveti P, Velázquez-Ramírez DA, Weaver D, Collado-Vides J, Paulsen I, Karp PD. The EcoCyc database: reflecting new knowledge about Escherichia coli K-12. Nucleic Acids Res 2016; 45:D543-D550. [PMID: 27899573 PMCID: PMC5210515 DOI: 10.1093/nar/gkw1003] [Citation(s) in RCA: 389] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/07/2016] [Indexed: 12/16/2022] Open
Abstract
EcoCyc (EcoCyc.org) is a freely accessible, comprehensive database that collects and summarizes experimental data for Escherichia coli K-12, the best-studied bacterial model organism. New experimental discoveries about gene products, their function and regulation, new metabolic pathways, enzymes and cofactors are regularly added to EcoCyc. New SmartTable tools allow users to browse collections of related EcoCyc content. SmartTables can also serve as repositories for user- or curator-generated lists. EcoCyc now supports running and modifying E. coli metabolic models directly on the EcoCyc website.
Collapse
Affiliation(s)
- Ingrid M Keseler
- SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, USA
| | - Amanda Mackie
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Alberto Santos-Zavaleta
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, A.P. 565-A, Cuernavaca, Morelos 62100, Mexico
| | | | - César Bonavides-Martínez
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, A.P. 565-A, Cuernavaca, Morelos 62100, Mexico
| | - Ron Caspi
- SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, USA
| | - Carol Fulcher
- SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, USA
| | - Socorro Gama-Castro
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, A.P. 565-A, Cuernavaca, Morelos 62100, Mexico
| | - Anamika Kothari
- SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, USA
| | | | | | - Luis Muñiz-Rascado
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, A.P. 565-A, Cuernavaca, Morelos 62100, Mexico
| | - Quang Ong
- SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, USA
| | - Suzanne Paley
- SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, USA
| | - Martin Peralta-Gil
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, A.P. 565-A, Cuernavaca, Morelos 62100, Mexico
| | | | - David A Velázquez-Ramírez
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, A.P. 565-A, Cuernavaca, Morelos 62100, Mexico
| | - Daniel Weaver
- SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, USA
| | - Julio Collado-Vides
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, A.P. 565-A, Cuernavaca, Morelos 62100, Mexico
| | - Ian Paulsen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Peter D Karp
- SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, USA
| |
Collapse
|
25
|
The Topology of the l-Arginine Exporter ArgO Conforms to an Nin-Cout Configuration in Escherichia coli: Requirement for the Cytoplasmic N-Terminal Domain, Functional Helical Interactions, and an Aspartate Pair for ArgO Function. J Bacteriol 2016; 198:3186-3199. [PMID: 27645388 DOI: 10.1128/jb.00423-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 09/10/2016] [Indexed: 02/04/2023] Open
Abstract
ArgO and LysE are members of the LysE family of exporter proteins and ordinarily mediate the export of l-arginine (Arg) in Escherichia coli and l-lysine (Lys) and Arg in Corynebacterium glutamicum, respectively. Under certain conditions, ArgO also mediates Lys export. To delineate the arrangement of ArgO in the cytoplasmic membrane of E. coli, we have employed a combination of cysteine accessibility in situ, alkaline phosphatase fusion reporters, and protein modeling to arrive at a topological model of ArgO. Our studies indicate that ArgO assumes an Nin-Cout configuration, potentially forming a five-transmembrane helix bundle flanked by a cytoplasmic N-terminal domain (NTD) comprising roughly its first 38 to 43 amino acyl residues and a short periplasmic C-terminal region (CTR). Mutagenesis studies indicate that the CTR, but not the NTD, is dispensable for ArgO function in vivo and that a pair of conserved aspartate residues, located near the opposing edges of the cytoplasmic membrane, may play a pivotal role in facilitating transmembrane Arg flux. Additional studies on amino acid substitutions that impair ArgO function in vivo and their derivatives bearing compensatory amino acid alterations indicate a role for intramolecular interactions in the Arg export mechanism, and some interactions are corroborated by normal-mode analyses. Lastly, our studies suggest that ArgO may exist as a monomer in vivo, thus highlighting the requirement for intramolecular interactions in ArgO, as opposed to interactions across multiple ArgO monomers, in the formation of an Arg-translocating conduit. IMPORTANCE The orthologous proteins LysE of C. glutamicum and ArgO of E. coli function as exporters of the basic amino acids l-arginine and l-lysine and the basic amino acid l-arginine, respectively, and LysE can functionally substitute for ArgO when expressed in E. coli Notwithstanding this functional equivalence, studies reported here show that ArgO possesses a membrane topology that is distinct from that reported for LysE, with substantial variation in the topological arrangement of the proximal one-third portions of the two exporters. Additional genetic and in silico studies reveal the importance of (i) the cytoplasmic N-terminal domain, (ii) a pair of conserved aspartate residues, and (iii) potential intramolecular interactions in ArgO function and indicate that an Arg-translocating conduit is formed by a monomer of ArgO.
Collapse
|
26
|
Sugiyama Y, Nakamura A, Matsumoto M, Kanbe A, Sakanaka M, Higashi K, Igarashi K, Katayama T, Suzuki H, Kurihara S. A Novel Putrescine Exporter SapBCDF of Escherichia coli. J Biol Chem 2016; 291:26343-26351. [PMID: 27803167 DOI: 10.1074/jbc.m116.762450] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 10/24/2016] [Indexed: 11/06/2022] Open
Abstract
Recent research has suggested that polyamines (putrescine, spermidine, and spermine) in the intestinal tract impact the health of animals either negatively or positively. The concentration of polyamines in the intestinal tract results from the balance of uptake and export of the intestinal bacteria. However, the mechanism of polyamine export from bacterial cells to the intestinal lumen is still unclear. In Escherichia coli, PotE was previously identified as a transporter responsible for putrescine excretion in an acidic growth environment. We observed putrescine concentration in the culture supernatant was increased from 0 to 50 μm during growth of E. coli under neutral conditions. Screening for the unidentified putrescine exporter was performed using a gene knock-out collection of E. coli, and deletion of sapBCDF significantly decreased putrescine levels in the culture supernatant. Complementation of the deletion mutant with the sapBCDF genes restored putrescine levels in the culture supernatant. Additionally, the ΔsapBCDF strain did not facilitate uptake of putrescine from the culture supernatant. Quantification of stable isotope-labeled putrescine derived from stable isotope-labeled arginine supplemented in the medium revealed that SapBCDF exported putrescine from E. coli cells to the culture supernatant. It was previously reported that SapABCDF of Salmonella enterica sv. typhimurium and Haemophilus influenzae conferred resistance toantimicrobial peptides; however, the E. coli ΔsapBCDF strain did not affect resistance to antimicrobial peptide LL-37. These results strongly suggest that the natural function of the SapBCDF proteins is the export of putrescine.
Collapse
Affiliation(s)
- Yuta Sugiyama
- From the Division of Applied Life Science, Graduate School of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi, Ishikawa 921-8836
| | - Atsuo Nakamura
- the Dairy Science and Technology Institute, Kyodo Milk Industry Co. Ltd., Tokyo 190-0182
| | - Mitsuharu Matsumoto
- the Dairy Science and Technology Institute, Kyodo Milk Industry Co. Ltd., Tokyo 190-0182
| | - Ayaka Kanbe
- the Division of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585
| | - Mikiyasu Sakanaka
- From the Division of Applied Life Science, Graduate School of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi, Ishikawa 921-8836
| | - Kyohei Higashi
- the Division of Biopharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675
| | - Kazuei Igarashi
- the Amine Pharma Research Institute, Innovation Plaza at Chiba University, Chiba 260-0856, and
| | - Takane Katayama
- From the Division of Applied Life Science, Graduate School of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi, Ishikawa 921-8836.,the Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hideyuki Suzuki
- the Division of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585
| | - Shin Kurihara
- From the Division of Applied Life Science, Graduate School of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi, Ishikawa 921-8836,
| |
Collapse
|
27
|
Growth Inhibition by External Potassium of Escherichia coli Lacking PtsN (EIIANtr) Is Caused by Potassium Limitation Mediated by YcgO. J Bacteriol 2016; 198:1868-1882. [PMID: 27137496 DOI: 10.1128/jb.01029-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/25/2016] [Indexed: 01/25/2023] Open
Abstract
UNLABELLED The absence of PtsN, the terminal phosphoacceptor of the phosphotransferase system comprising PtsP-PtsO-PtsN, in Escherichia coli confers a potassium-sensitive (K(s)) phenotype as the external K(+) concentration ([K(+)]e) is increased above 5 mM. A growth-inhibitory increase in intracellular K(+) content, resulting from hyperactivated Trk-mediated K(+) uptake, is thought to cause this K(s) We provide evidence that the K(s) of the ΔptsN mutant is associated with K(+) limitation. Accordingly, the moderate K(s) displayed by the ΔptsN mutant was exacerbated in the absence of the Trk and Kup K(+) uptake transporters and was associated with reduced cellular K(+) content. Conversely, overproduction of multiple K(+) uptake proteins suppressed the K(s) Expression of PtsN variants bearing the H73A, H73D, and H73E substitutions of the phosphorylation site histidine of PtsN complemented the K(s) Absence of the predicted inner membrane protein YcgO (also called CvrA) suppressed the K(s), which was correlated with elevated cellular K(+) content in the ΔptsN mutant, but the ΔptsN mutation did not alter YcgO levels. Heterologous overexpression of ycgO also led to K(s) that was associated with reduced cellular K(+) content, exacerbated by the absence of Trk and Kup and alleviated by overproduction of Kup. Our findings are compatible with a model that postulates that K(s) in the ΔptsN mutant occurs due to K(+) limitation resulting from activation of K(+) efflux mediated by YcgO, which may be additionally stimulated by [K(+)]e, implicating a role for PtsN (possibly its dephosphorylated form) as an inhibitor of YcgO activity. IMPORTANCE This study examines the physiological link between the phosphotransferase system comprising PtsP-PtsO-PtsN and K(+) ion metabolism in E. coli Studies on the physiological defect that renders an E. coli mutant lacking PtsN to be growth inhibited by external K(+) indicate that growth impairment results from cellular K(+) limitation that is mediated by YcgO, a predicted inner membrane protein. Additional observations suggest that dephospho-PtsN may inhibit and external K(+) may stimulate K(+) limitation mediated by YcgO. It is speculated that YcgO-mediated K(+) limitation may be an output of a response to certain stresses, which by modulating the phosphotransfer capacity of the PtsP-PtsO-PtsN phosphorelay leads to growth cessation and stress tolerance.
Collapse
|
28
|
Madhuri Indurthi S, Chou HT, Lu CD. Molecular characterization of lysR-lysXE, gcdR-gcdHG and amaR-amaAB operons for lysine export and catabolism: a comprehensive lysine catabolic network in Pseudomonas aeruginosa PAO1. MICROBIOLOGY-SGM 2016; 162:876-888. [PMID: 26967762 DOI: 10.1099/mic.0.000277] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Among multiple interconnected pathways for l-Lysine catabolism in pseudomonads, it has been reported that Pseudomonas aeruginosa PAO1 employs the decarboxylase and the transaminase pathways. However, up until now, knowledge of several genes involved in operation and regulation of these pathways was still missing. Transcriptome analyses coupled with promoter activity measurements and growth phenotype analyses led us to identify new members in l-Lys and d-Lys catabolism and regulation, including gcdR-gcdHG for glutarate utilization, dpkA, amaR-amaAB and PA2035 for d-Lys catabolism, lysR-lysXE for putative l-Lys efflux and lysP for putative l-Lys uptake. The gcdHG operon encodes an acyl-CoA transferase (gcdG) and glutaryl-CoA dehydrogenase (gcdH) and is under the control of the transcriptional activator GcdR. Growth on l-Lys was enhanced in the mutants of lysX and lysE, supporting the operation of l-Lys efflux. The transcriptional activator LysR is responsible for l-Lys specific induction of lysXE and the PA4181-82 operon of unknown function. The putative operator sites of GcdR and LysR were deduced from serial deletions and comparative genomic sequence analyses, and the formation of nucleoprotein complexes was demonstrated with purified His-tagged GcdR and LysR. The amaAB operon encodes two enzymes to convert pipecolate to 2-aminoadipate. Induction of the amaAB operon by l-Lys, d-Lys and pipecolate requires a functional AmaR, supporting convergence of Lys catabolic pathways to pipecolate. Growth on pipecolate was retarded in the gcdG and gcdH mutants, suggesting the importance of glutarate in pipecolate and 2-aminoadipate utilization. Furthermore, this study indicated links in the control of interconnected networks of lysine and arginine catabolism in P. aeruginosa.
Collapse
Affiliation(s)
| | - Han-Ting Chou
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Chung-Dar Lu
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
- Department of Clinical Laboratory and Nutritional Sciences, UMass Lowell, Lowell, MA 01854, USA
| |
Collapse
|
29
|
Roy A, Ranjan A. HosA, a MarR Family Transcriptional Regulator, Represses Nonoxidative Hydroxyarylic Acid Decarboxylase Operon and Is Modulated by 4-Hydroxybenzoic Acid. Biochemistry 2016; 55:1120-34. [PMID: 26818787 DOI: 10.1021/acs.biochem.5b01163] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Members of the Multiple antibiotic resistance Regulator (MarR) family of DNA binding proteins regulate transcription of a wide array of genes required for virulence and pathogenicity of bacteria. The present study reports the molecular characterization of HosA (Homologue of SlyA), a MarR protein, with respect to its target gene, DNA recognition motif, and nature of its ligand. Through a comparative genomics approach, we demonstrate that hosA is in synteny with nonoxidative hydroxyarylic acid decarboxylase (HAD) operon and is present exclusively within the mutS-rpoS polymorphic region in nine different genera of Enterobacteriaceae family. Using molecular biology and biochemical approach, we demonstrate that HosA binds to a palindromic sequence downstream to the transcription start site of divergently transcribed nonoxidative HAD operon and represses its expression. Furthermore, in silico analysis showed that the recognition motif for HosA is highly conserved in the upstream region of divergently transcribed operon in different genera of Enterobacteriaceae family. A systematic chemical search for the physiological ligand revealed that 4-hydroxybenzoic acid (4-HBA) interacts with HosA and derepresses HosA mediated repression of the nonoxidative HAD operon. Based on our study, we propose a model for molecular mechanism underlying the regulation of nonoxidative HAD operon by HosA in Enterobacteriaceae family.
Collapse
Affiliation(s)
- Ajit Roy
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana 500001, India.,Graduate studies, Manipal University , Manipal 576104, India
| | - Akash Ranjan
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana 500001, India
| |
Collapse
|
30
|
Lysine Fermentation: History and Genome Breeding. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2016; 159:73-102. [DOI: 10.1007/10_2016_27] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
31
|
Exporters for Production of Amino Acids and Other Small Molecules. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2016; 159:199-225. [PMID: 27832297 DOI: 10.1007/10_2016_32] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Microbes are talented catalysts to synthesize valuable small molecules in their cytosol. However, to make full use of their skills - and that of metabolic engineers - the export of intracellularly synthesized molecules to the culture medium has to be considered. This step is as essential as is each step for the synthesis of the favorite molecule of the metabolic engineer, but is frequently not taken into account. To export small molecules via the microbial cell envelope, a range of different types of carrier proteins is recognized to be involved, which are primary active carriers, secondary active carriers, or proteins increasing diffusion. Relevant export may require just one carrier as is the case with L-lysine export by Corynebacterium glutamicum or involve up to four carriers as known for L-cysteine excretion by Escherichia coli. Meanwhile carriers for a number of small molecules of biotechnological interest are recognized, like for production of peptides, nucleosides, diamines, organic acids, or biofuels. In addition to carriers involved in amino acid excretion, such carriers and their impact on product formation are described, as well as the relatedness of export carriers which may serve as a hint to identify further carriers required to improve product formation by engineering export.
Collapse
|
32
|
Efflux systems in bacteria and their metabolic engineering applications. Appl Microbiol Biotechnol 2015; 99:9381-93. [PMID: 26363557 DOI: 10.1007/s00253-015-6963-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/20/2015] [Accepted: 08/22/2015] [Indexed: 10/23/2022]
Abstract
The production of valuable chemicals from metabolically engineered microbes can be limited by excretion from the cell. Efflux is often overlooked as a bottleneck in metabolic pathways, despite its impact on alleviating feedback inhibition and product toxicity. In the past, it has been assumed that endogenous efflux pumps and membrane porins can accommodate product efflux rates; however, there are an increasing number of examples wherein overexpressing efflux systems is required to improve metabolite production. In this review, we highlight specific examples from the literature where metabolite export has been studied to identify unknown transporters, increase tolerance to metabolites, and improve the production capabilities of engineered bacteria. The review focuses on the export of a broad spectrum of valuable chemicals including amino acids, sugars, flavins, biofuels, and solvents. The combined set of examples supports the hypothesis that efflux systems can be identified and engineered to confer export capabilities on industrially relevant microbes.
Collapse
|