1
|
Mak DA, Dunn S, Coombes D, Carere CR, Allison JR, Nock V, Hudson AO, Dobson RCJ. Enzyme Kinetics Analysis: An online tool for analyzing enzyme initial rate data and teaching enzyme kinetics. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 52:348-358. [PMID: 38400827 DOI: 10.1002/bmb.21823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/29/2024] [Indexed: 02/26/2024]
Abstract
Enzymes are nature's catalysts, mediating chemical processes in living systems. The study of enzyme function and mechanism includes defining the maximum catalytic rate and affinity for substrate/s (among other factors), referred to as enzyme kinetics. Enzyme kinetics is a staple of biochemistry curricula and other disciplines, from molecular and cellular biology to pharmacology. However, because enzyme kinetics involves concepts rarely employed in other areas of biology, it can be challenging for students and researchers. Traditional graphical analysis was replaced by computational analysis, requiring another skill not core to many life sciences curricula. Computational analysis can be time-consuming and difficult in free software (e.g., R) or require costly software (e.g., GraphPad Prism). We present Enzyme Kinetics Analysis (EKA), a web-tool to augment teaching and learning and streamline EKA. EKA is an interactive and free tool for analyzing enzyme kinetic data and improving student learning through simulation, built using R and RStudio's ShinyApps. EKA provides kinetic models (Michaelis-Menten, Hill, simple reversible inhibition models, ternary-complex, and ping-pong) for users to fit experimental data, providing graphical results and statistics. Additionally, EKA enables users to input parameters and create data and graphs, to visualize changes to parameters (e.g.,K M or number of measurements). This function is designed for students learning kinetics but also for researchers to design experiments. EKA (enzyme-kinetics.shinyapps.io/enzkinet_webpage/) provides a simple, interactive interface for teachers, students, and researchers to explore enzyme kinetics. It gives researchers the ability to design experiments and analyze data without specific software requirements.
Collapse
Affiliation(s)
- Daniel A Mak
- Biomolecular Interaction Centre, Maurice Wilkins Centre for Molecular Biodiscovery, MacDiarmid Institute for Advanced Materials and Nanotechnology, and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Department of Electrical and Computer Engineering, MacDiarmid Institute for Advanced Materials and Nanotechnology, Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
| | - Sebastian Dunn
- Digital Life Institute, Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, University of Auckland and The Graphics Group and School of Computer Science, University of Auckland, Auckland, New Zealand
| | - David Coombes
- Biomolecular Interaction Centre, Maurice Wilkins Centre for Molecular Biodiscovery, MacDiarmid Institute for Advanced Materials and Nanotechnology, and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Carlo R Carere
- Department of Chemical and Process Engineering, Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
| | - Jane R Allison
- Digital Life Institute, Maurice Wilkins Centre for Molecular Biodiscovery, Biomolecular Interaction Centre, and School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Volker Nock
- Department of Electrical and Computer Engineering, MacDiarmid Institute for Advanced Materials and Nanotechnology, Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
| | - André O Hudson
- The Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology (RIT), Rochester, New York, USA
| | - Renwick C J Dobson
- Biomolecular Interaction Centre, Maurice Wilkins Centre for Molecular Biodiscovery, MacDiarmid Institute for Advanced Materials and Nanotechnology, and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
2
|
Zimmerman L, Alon N, Levin I, Koganitsky A, Shpigel N, Brestel C, Lapidoth GD. Context-dependent design of induced-fit enzymes using deep learning generates well-expressed, thermally stable and active enzymes. Proc Natl Acad Sci U S A 2024; 121:e2313809121. [PMID: 38437538 PMCID: PMC10945820 DOI: 10.1073/pnas.2313809121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 02/09/2024] [Indexed: 03/06/2024] Open
Abstract
The potential of engineered enzymes in industrial applications is often limited by their expression levels, thermal stability, and catalytic diversity. De novo enzyme design faces challenges due to the complexity of enzymatic catalysis. An alternative approach involves expanding natural enzyme capabilities for new substrates and parameters. Here, we introduce CoSaNN (Conformation Sampling using Neural Network), an enzyme design strategy using deep learning for structure prediction and sequence optimization. CoSaNN controls enzyme conformations to expand chemical space beyond simple mutagenesis. It employs a context-dependent approach for generating enzyme designs, considering non-linear relationships in sequence and structure space. We also developed SolvIT, a graph NN predicting protein solubility in Escherichia coli, optimizing enzyme expression selection from larger design sets. Using this method, we engineered enzymes with superior expression levels, with 54% expressed in E. coli, and increased thermal stability, with over 30% having higher Tm than the template, with no high-throughput screening. Our research underscores AI's transformative role in protein design, capturing high-order interactions and preserving allosteric mechanisms in extensively modified enzymes, and notably enhancing expression success rates. This method's ease of use and efficiency streamlines enzyme design, opening broad avenues for biotechnological applications and broadening field accessibility.
Collapse
Affiliation(s)
| | - Noga Alon
- Enzymit Ltd., Ness-Ziona7403626, Israel
| | | | | | | | | | | |
Collapse
|
3
|
Stasiak AC, Gogler K, Borisova M, Fink P, Mayer C, Stehle T, Zocher G. N-acetylmuramic acid recognition by MurK kinase from the MurNAc auxotrophic oral pathogen Tannerella forsythia. J Biol Chem 2023; 299:105076. [PMID: 37481208 PMCID: PMC10465942 DOI: 10.1016/j.jbc.2023.105076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023] Open
Abstract
The bacterial cell wall consists of a three-dimensional peptidoglycan layer, composed of peptides linked to the sugars N-acetylmuramic acid (MurNAc) and GlcNAc. Unlike other bacteria, the pathogenic Tannerella forsythia, a member of the red complex group of bacteria associated with the late stages of periodontitis, lacks biosynthetic pathways for MurNAc production and therefore obtains MurNAc from the environment. Sugar kinases play a crucial role in the MurNAc recycling process, activating the sugar molecules by phosphorylation. In this study, we present the first crystal structures of a MurNAc kinase, called murein sugar kinase (MurK), in its unbound state as well as in complexes with the ATP analog β-γ-methylene adenosine triphosphate (AMP-PCP) and with MurNAc. We also determined the crystal structures of K1058, a paralogous MurNAc kinase of T. forsythia, in its unbound state and in complex with MurNAc. We identified the active site and residues crucial for MurNAc specificity as the less bulky side chains of S133, P134, and L135, which enlarge the binding cavity for the lactyl ether group, unlike the glutamate or histidine residues present in structural homologs. In establishing the apparent kinetic parameters for both enzymes, we showed a comparable affinity for MurNAc (Km 180 μM and 30 μM for MurK and K1058, respectively), with MurK being over two hundred times faster than K1058 (Vmax 80 and 0.34 μmol min-1 mg-1, respectively). These data might support a structure-guided approach to development of inhibitory MurNAc analogs for pathogen MurK enzymes.
Collapse
Affiliation(s)
| | - Karolin Gogler
- Interfaculty Institute of Biochemistry, University of Tuebingen, Tuebingen, Germany
| | - Marina Borisova
- Interfaculty Institute of Microbiology and Infection Medicine, Organismic Interactions/Glycobiology, University of Tuebingen, Tuebingen, Germany
| | - Phillipp Fink
- Interfaculty Institute of Biochemistry, University of Tuebingen, Tuebingen, Germany
| | - Christoph Mayer
- Interfaculty Institute of Microbiology and Infection Medicine, Organismic Interactions/Glycobiology, University of Tuebingen, Tuebingen, Germany
| | - Thilo Stehle
- Interfaculty Institute of Biochemistry, University of Tuebingen, Tuebingen, Germany
| | - Georg Zocher
- Interfaculty Institute of Biochemistry, University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
4
|
Roy S, Vivoli Vega M, Ames JR, Britten N, Kent A, Evans K, Isupov MN, Harmer NJ. The ROK kinase N-acetylglucosamine kinase uses a sequential random enzyme mechanism with successive conformational changes upon each substrate binding. J Biol Chem 2023; 299:103033. [PMID: 36806680 PMCID: PMC10031466 DOI: 10.1016/j.jbc.2023.103033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023] Open
Abstract
N-acetyl-d-glucosamine (GlcNAc) is a major component of bacterial cell walls. Many organisms recycle GlcNAc from the cell wall or metabolize environmental GlcNAc. The first step in GlcNAc metabolism is phosphorylation to GlcNAc-6-phosphate. In bacteria, the ROK family kinase N-acetylglucosamine kinase (NagK) performs this activity. Although ROK kinases have been studied extensively, no ternary complex showing the two substrates has yet been observed. Here, we solved the structure of NagK from the human pathogen Plesiomonas shigelloides in complex with GlcNAc and the ATP analog AMP-PNP. Surprisingly, PsNagK showed distinct conformational changes associated with the binding of each substrate. Consistent with this, the enzyme showed a sequential random enzyme mechanism. This indicates that the enzyme acts as a coordinated unit responding to each interaction. Our molecular dynamics modeling of catalytic ion binding confirmed the location of the essential catalytic metal. Additionally, site-directed mutagenesis confirmed the catalytic base and that the metal-coordinating residue is essential. Together, this study provides the most comprehensive insight into the activity of a ROK kinase.
Collapse
Affiliation(s)
| | | | | | | | - Amy Kent
- Living Systems Institute, Exeter, UK
| | - Kim Evans
- Living Systems Institute, Exeter, UK
| | - Michail N Isupov
- Henry Wellcome Building for Biocatalysis, Biosciences, Exeter, UK
| | | |
Collapse
|
5
|
Shakir NA, Aslam M, Bibi T, Falak S, Rashid N. Functional analyses of a highly thermostable hexokinase from Pyrobaculum calidifontis. Carbohydr Res 2023; 523:108711. [PMID: 36395717 DOI: 10.1016/j.carres.2022.108711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/11/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
The gene encoding a repressor open reading frame sugar kinase (ROK) family protein from hyperthermophilic crenarchaeon Pyrobaculum calidifontis, Pcal-HK, was cloned and expressed in Escherichia coli. The recombinant protein was produced in soluble and highly active form. Purified Pcal-HK was highly thermostable and existed in a monomeric form in solution. The enzyme was specific to ATP as phosphoryl donor but showed broad specificity to phosphoryl acceptors. It catalyzed the phosphorylation of a number of hexoses, including glucose, glucosamine, N-acetyl glucosamine, fructose and mannose, at nearly the same rate and similar affinity. The enzyme was metal ion dependent exhibiting highest activity at 90-95 °C and pH 8.5. Mg2+ was most effective metal ion, which could be partially replaced by Mn2+, Ni2+ or Zn2+. Kinetic parameters were determined at 90 °C and the enzyme showed almost similar catalytic efficiency (kcat/Km) towards the above mentioned hexoses. To the best of our knowledge, Pcal-HK is the most active thermostable ROK family hexokinase characterized to date which catalyzes the phosphorylation of various hexoses with nearly similar affinity.
Collapse
Affiliation(s)
- Nisar Ahmed Shakir
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan
| | - Mehwish Aslam
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan
| | - Tahira Bibi
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan
| | - Samia Falak
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan
| | - Naeem Rashid
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan.
| |
Collapse
|
6
|
Purtov YA, Tishchenko SV, Nikulin AD. Modeling the Interaction of the UxuR–ExuR Heterodimer with the Components of the Metabolic Pathway of Escherichia coli for Hexuronate Utilization. Biophysics (Nagoya-shi) 2021. [DOI: 10.1134/s0006350921050201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
7
|
Song K, Wei M, Guo W, Quan L, Kang Y, Wu JX, Chen L. Structural basis for human TRPC5 channel inhibition by two distinct inhibitors. eLife 2021; 10:63429. [PMID: 33683200 PMCID: PMC7987348 DOI: 10.7554/elife.63429] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 03/05/2021] [Indexed: 02/06/2023] Open
Abstract
TRPC5 channel is a nonselective cation channel that participates in diverse physiological processes. TRPC5 inhibitors show promise in the treatment of anxiety disorder, depression, and kidney disease. However, the binding sites and inhibitory mechanism of TRPC5 inhibitors remain elusive. Here, we present the cryo-EM structures of human TRPC5 in complex with two distinct inhibitors, namely clemizole and HC-070, to the resolution of 2.7 Å. The structures reveal that clemizole binds inside the voltage sensor-like domain of each subunit. In contrast, HC-070 is wedged between adjacent subunits and replaces the glycerol group of a putative diacylglycerol molecule near the extracellular side. Moreover, we found mutations in the inhibitor binding pockets altered the potency of inhibitors. These structures suggest that both clemizole and HC-070 exert the inhibitory functions by stabilizing the ion channel in a nonconductive closed state. These results pave the way for further design and optimization of inhibitors targeting human TRPC5.
Collapse
Affiliation(s)
- Kangcheng Song
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| | - Miao Wei
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| | - Wenjun Guo
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| | - Li Quan
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| | - Yunlu Kang
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| | - Jing-Xiang Wu
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Lei Chen
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| |
Collapse
|
8
|
Gangi Setty T, Sarkar A, Coombes D, Dobson RCJ, Subramanian R. Structure and Function of N-Acetylmannosamine Kinases from Pathogenic Bacteria. ACS OMEGA 2020; 5:30923-30936. [PMID: 33324800 PMCID: PMC7726757 DOI: 10.1021/acsomega.0c03699] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 10/20/2020] [Indexed: 06/12/2023]
Abstract
Several pathogenic bacteria import and catabolize sialic acids as a source of carbon and nitrogen. Within the sialic acid catabolic pathway, the enzyme N-acetylmannosamine kinase (NanK) catalyzes the phosphorylation of N-acetylmannosamine to N-acetylmannosamine-6-phosphate. This kinase belongs to the ROK superfamily of enzymes, which generally contain a conserved zinc-finger (ZnF) motif that is important for their structure and function. Previous structural studies have shown that the ZnF motif is absent in NanK of Fusobacterium nucleatum (Fn-NanK), a Gram-negative bacterium that causes the gum disease gingivitis. However, the effect in loss of the ZnF motif on the kinase activity is unknown. Using kinetic and thermodynamic studies, we have studied the functional properties of Fn-NanK to its substrates ManNAc and ATP, compared its activity with other ZnF motif-containing NanK enzymes from closely related Gram-negative pathogenic bacteria Haemophilus influenzae (Hi-NanK), Pasteurella multocida (Pm-NanK), and Vibrio cholerae (Vc-NanK). Our studies show a 10-fold decrease in substrate binding affinity between Fn-NanK (apparent KM ≈ 700 μM) and ZnF motif-containing NanKs (apparent KM ≈ 60 μM). To understand the structural features that combat the loss of the ZnF motif in Fn-NanK, we solved the crystal structures of functionally homologous ZnF motif-containing NanKs from P. multocida and H. influenzae. Here, we report Pm-NanK:unliganded, Pm-NanK:AMPPNP, Pm-NanK:ManNAc, Hi-NanK:ManNAc, and Hi-NanK:ManNAc-6P:ADP crystal structures. Structural comparisons of Fn-NanK with Hi-NanK, Pm-NanK, and hMNK (human N-acetylmannosamine kinase domain of UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase, GNE) show that even though there is less sequence identity, they have high degree of structural similarity. Furthermore, our structural analyses highlight that the ZnF motif of Fn-NanK is substituted by a set of hydrophobic residues, which forms a hydrophobic cluster that helps the proper orientation of ManNac in the active site. In summary, ZnF-containing and ZnF-lacking NanK enzymes from different Gram-negative pathogenic bacteria are functionally very similar but differ in their metal requirement. Our structural studies unveil the structural modifications in Fn-NanK that compensate the loss of the ZnF motif in comparison to other NanK enzymes.
Collapse
Affiliation(s)
- Thanuja Gangi Setty
- Institute for Stem
Cell Science and Regenerative Medicine, GKVK Post, Bangalore, KA 560065, India
- The University of Trans-Disciplinary Health Sciences
& Technology (TDU), Bangalore, KA 560064, India
| | - Arunabha Sarkar
- National Centre for Biological Sciences − TIFR, Bangalore 560065, India
| | - David Coombes
- Biomolecular Interaction Centre and School
of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand
| | - Renwick C. J. Dobson
- Biomolecular Interaction Centre and School
of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand
- Bio21 Molecular Science and Biotechnology
Institute, Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ramaswamy Subramanian
- Institute for Stem
Cell Science and Regenerative Medicine, GKVK Post, Bangalore, KA 560065, India
- Department of Biological
Sciences and Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
9
|
Crotonylation of key metabolic enzymes regulates carbon catabolite repression in Streptomyces roseosporus. Commun Biol 2020; 3:192. [PMID: 32332843 PMCID: PMC7181814 DOI: 10.1038/s42003-020-0924-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 03/31/2020] [Indexed: 12/22/2022] Open
Abstract
Due to the plethora natural products made by Streptomyces, the regulation of its metabolism are of great interest, whereas there is a lack of detailed understanding of the role of posttranslational modifications (PTM) beyond traditional transcriptional regulation. Herein with Streptomyces roseosporus as a model, we showed that crotonylation is widespread on key enzymes for various metabolic pathways, and sufficient crotonylation in primary metabolism and timely elimination in secondary metabolism are required for proper Streptomyces metabolism. Particularly, the glucose kinase Glk, a keyplayer of carbon catabolite repression (CCR) regulating bacterial metabolism, is identified reversibly crotonylated by the decrotonylase CobB and the crotonyl-transferase Kct1 to negatively control its activity. Furthermore, crotonylation positively regulates CCR for Streptomyces metabolism through modulation of the ratio of glucose uptake/Glk activity and utilization of carbon sources. Thus, our results revealed a regulatory mechanism that crotonylation globally regulates Streptomyces metabolism at least through positive modulation of CCR. Chen-Fan Sun et al. show that key enzymes in several metabolic pathways are crotonylated in Streptomyces roseosporus. This study suggests that crotonylation increases carbon catabolite repression by increasing glucose uptake while reducing the activity of glucose kinase.
Collapse
|
10
|
Coombes D, Davies JS, Newton-Vesty MC, Horne CR, Setty TG, Subramanian R, Moir JWB, Friemann R, Panjikar S, Griffin MDW, North RA, Dobson RCJ. The basis for non-canonical ROK family function in the N-acetylmannosamine kinase from the pathogen Staphylococcus aureus. J Biol Chem 2020; 295:3301-3315. [PMID: 31949045 DOI: 10.1074/jbc.ra119.010526] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/31/2019] [Indexed: 12/31/2022] Open
Abstract
In environments where glucose is limited, some pathogenic bacteria metabolize host-derived sialic acid as a nutrient source. N-Acetylmannosamine kinase (NanK) is the second enzyme of the bacterial sialic acid import and degradation pathway and adds phosphate to N-acetylmannosamine using ATP to prime the molecule for future pathway reactions. Sequence alignments reveal that Gram-positive NanK enzymes belong to the Repressor, ORF, Kinase (ROK) family, but many lack the canonical Zn-binding motif expected for this function, and the sugar-binding EXGH motif is altered to EXGY. As a result, it is unclear how they perform this important reaction. Here, we study the Staphylococcus aureus NanK (SaNanK), which is the first characterization of a Gram-positive NanK. We report the kinetic activity of SaNanK along with the ligand-free, N-acetylmannosamine-bound and substrate analog GlcNAc-bound crystal structures (2.33, 2.20, and 2.20 Å resolution, respectively). These demonstrate, in combination with small-angle X-ray scattering, that SaNanK is a dimer that adopts a closed conformation upon substrate binding. Analysis of the EXGY motif reveals that the tyrosine binds to the N-acetyl group to select for the "boat" conformation of N-acetylmannosamine. Moreover, SaNanK has a stacked arginine pair coordinated by negative residues critical for thermal stability and catalysis. These combined elements serve to constrain the active site and orient the substrate in lieu of Zn binding, representing a significant departure from canonical NanK binding. This characterization provides insight into differences in the ROK family and highlights a novel area for antimicrobial discovery to fight Gram-positive and S. aureus infections.
Collapse
Affiliation(s)
- David Coombes
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand
| | - James S Davies
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand
| | - Michael C Newton-Vesty
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand
| | - Christopher R Horne
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand
| | - Thanuja G Setty
- Institute for Stem Cell Biology and Regenerative Medicine, NCBS, GKVK Campus, Bellary Road, Bangalore, Karnataka 560 065, India; The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bangalore, KA 560064, India
| | - Ramaswamy Subramanian
- Institute for Stem Cell Biology and Regenerative Medicine, NCBS, GKVK Campus, Bellary Road, Bangalore, Karnataka 560 065, India
| | - James W B Moir
- Department of Biology, University of York, Helsington, York YO10 5DD, United Kingdom
| | - Rosmarie Friemann
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Guldhedsgatan 10A, 413 46 Gothenburg, Sweden; Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, 40530 Gothenburg, Sweden
| | - Santosh Panjikar
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; Australian Synchrotron, ANSTO, Victoria 3168, Australia
| | - Michael D W Griffin
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Rachel A North
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand.
| | - Renwick C J Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
11
|
Abstract
Carbohydrate kinases activate a wide variety of monosaccharides by adding a phosphate group, usually from ATP. This modification is fundamental to saccharide utilization, and it is likely a very ancient reaction. Modern organisms contain carbohydrate kinases from at least five main protein families. These range from the highly specialized inositol kinases, to the ribokinases and galactokinases, which belong to families that phosphorylate a wide range of substrates. The carbohydrate kinases utilize a common strategy to drive the reaction between the sugar hydroxyl and the donor phosphate. Each sugar is held in position by a network of hydrogen bonds to the non-reactive hydroxyls (and other functional groups). The reactive hydroxyl is deprotonated, usually by an aspartic acid side chain acting as a catalytic base. The deprotonated hydroxyl then attacks the donor phosphate. The resulting pentacoordinate transition state is stabilized by an adjacent divalent cation, and sometimes by a positively charged protein side chain or the presence of an anion hole. Many carbohydrate kinases are allosterically regulated using a wide variety of strategies, due to their roles at critical control points in carbohydrate metabolism. The evolution of a similar mechanism in several folds highlights the elegance and simplicity of the catalytic scheme.
Collapse
|
12
|
Bekiesch P, Forchhammer K, Apel AK. Characterization of DNA Binding Sites of RokB, a ROK-Family Regulator from Streptomyces coelicolor Reveals the RokB Regulon. PLoS One 2016; 11:e0153249. [PMID: 27145180 PMCID: PMC4856308 DOI: 10.1371/journal.pone.0153249] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/27/2016] [Indexed: 12/27/2022] Open
Abstract
ROK-family proteins have been described to act either as sugar kinases or as transcriptional regulators. Few ROK-family regulators have been characterized so far and most of them are involved in carbon catabolite repression. RokB (Sco6115) has originally been identified in a DNA-affinity capturing approach as a possible regulator of the heterologously expressed novobiocin biosynthetic gene cluster in Streptomyces coelicolor M512. Interestingly, both, the rokB deletion mutants as well as its overexpressing mutants showed significantly reduced novobiocin production in the host strain S.coelicolor M512. We identified the DNA-binding site for RokB in the promoter region of the novobiocin biosynthetic genes novH-novW. It overlaps with the novH start codon which may explain the reduction of novobiocin production caused by overexpression of rokB. Bioinformatic screening coupled with surface plasmon resonance based interaction studies resulted in the discovery of five RokB binding sites within the genome of S. coelicolor. Using the genomic binding sites, a consensus motif for RokB was calculated, which differs slightly from previously determined binding motifs for ROK-family regulators. The annotations of the possible members of the so defined RokB regulon gave hints that RokB might be involved in amino acid metabolism and transport. This hypothesis was supported by feeding experiments with casamino acids and L-tyrosine, which could also explain the reduced novobiocin production in the deletion mutants.
Collapse
Affiliation(s)
- Paulina Bekiesch
- Pharmaceutical Biology, Pharmaceutical Institute, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
- German Centre for Infection Research (DZIF), Partner site Tübingen, 72076, Tübingen, Germany
| | - Karl Forchhammer
- Microbiology/Department of Organismic Interactions, Interfaculty Institute of Microbiology and Infection, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Alexander Kristian Apel
- Pharmaceutical Biology, Pharmaceutical Institute, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
- German Centre for Infection Research (DZIF), Partner site Tübingen, 72076, Tübingen, Germany
- * E-mail:
| |
Collapse
|
13
|
Bréchemier-Baey D, Pennetier C, Plumbridge J. Dual inducer signal recognition by an Mlc homologue. Microbiology (Reading) 2015; 161:1694-1706. [DOI: 10.1099/mic.0.000126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Dominique Bréchemier-Baey
- Université Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 13 rue P. et M. Curie, 75005 Paris, France
| | - Carole Pennetier
- Université Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 13 rue P. et M. Curie, 75005 Paris, France
| | - Jacqueline Plumbridge
- Université Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 13 rue P. et M. Curie, 75005 Paris, France
| |
Collapse
|
14
|
Biochemistry and regulatory functions of bacterial glucose kinases. Arch Biochem Biophys 2015; 577-578:1-10. [DOI: 10.1016/j.abb.2015.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 04/30/2015] [Accepted: 05/02/2015] [Indexed: 11/19/2022]
|
15
|
Romero-Rodríguez A, Robledo-Casados I, Sánchez S. An overview on transcriptional regulators in Streptomyces. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1017-39. [PMID: 26093238 DOI: 10.1016/j.bbagrm.2015.06.007] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 06/09/2015] [Accepted: 06/12/2015] [Indexed: 12/19/2022]
Abstract
Streptomyces are Gram-positive microorganisms able to adapt and respond to different environmental conditions. It is the largest genus of Actinobacteria comprising over 900 species. During their lifetime, these microorganisms are able to differentiate, produce aerial mycelia and secondary metabolites. All of these processes are controlled by subtle and precise regulatory systems. Regulation at the transcriptional initiation level is probably the most common for metabolic adaptation in bacteria. In this mechanism, the major players are proteins named transcription factors (TFs), capable of binding DNA in order to repress or activate the transcription of specific genes. Some of the TFs exert their action just like activators or repressors, whereas others can function in both manners, depending on the target promoter. Generally, TFs achieve their effects by using one- or two-component systems, linking a specific type of environmental stimulus to a transcriptional response. After DNA sequencing, many streptomycetes have been found to have chromosomes ranging between 6 and 12Mb in size, with high GC content (around 70%). They encode for approximately 7000 to 10,000 genes, 50 to 100 pseudogenes and a large set (around 12% of the total chromosome) of regulatory genes, organized in networks, controlling gene expression in these bacteria. Among the sequenced streptomycetes reported up to now, the number of transcription factors ranges from 471 to 1101. Among these, 315 to 691 correspond to transcriptional regulators and 31 to 76 are sigma factors. The aim of this work is to give a state of the art overview on transcription factors in the genus Streptomyces.
Collapse
Affiliation(s)
- Alba Romero-Rodríguez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, D.F. 04510, Mexico
| | - Ivonne Robledo-Casados
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, D.F. 04510, Mexico
| | - Sergio Sánchez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, D.F. 04510, Mexico.
| |
Collapse
|
16
|
Carbohydrate metabolism in Archaea: current insights into unusual enzymes and pathways and their regulation. Microbiol Mol Biol Rev 2014; 78:89-175. [PMID: 24600042 DOI: 10.1128/mmbr.00041-13] [Citation(s) in RCA: 200] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The metabolism of Archaea, the third domain of life, resembles in its complexity those of Bacteria and lower Eukarya. However, this metabolic complexity in Archaea is accompanied by the absence of many "classical" pathways, particularly in central carbohydrate metabolism. Instead, Archaea are characterized by the presence of unique, modified variants of classical pathways such as the Embden-Meyerhof-Parnas (EMP) pathway and the Entner-Doudoroff (ED) pathway. The pentose phosphate pathway is only partly present (if at all), and pentose degradation also significantly differs from that known for bacterial model organisms. These modifications are accompanied by the invention of "new," unusual enzymes which cause fundamental consequences for the underlying regulatory principles, and classical allosteric regulation sites well established in Bacteria and Eukarya are lost. The aim of this review is to present the current understanding of central carbohydrate metabolic pathways and their regulation in Archaea. In order to give an overview of their complexity, pathway modifications are discussed with respect to unusual archaeal biocatalysts, their structural and mechanistic characteristics, and their regulatory properties in comparison to their classic counterparts from Bacteria and Eukarya. Furthermore, an overview focusing on hexose metabolic, i.e., glycolytic as well as gluconeogenic, pathways identified in archaeal model organisms is given. Their energy gain is discussed, and new insights into different levels of regulation that have been observed so far, including the transcript and protein levels (e.g., gene regulation, known transcription regulators, and posttranslational modification via reversible protein phosphorylation), are presented.
Collapse
|
17
|
Characterization of Polyphosphate Glucokinase SCO5059 fromStreptomyces coelicolorA3(2). Biosci Biotechnol Biochem 2014; 77:2322-4. [DOI: 10.1271/bbb.130498] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Glucose kinases from Streptomyces peucetius var. caesius. Appl Microbiol Biotechnol 2014; 98:6061-71. [DOI: 10.1007/s00253-014-5662-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/03/2014] [Accepted: 03/04/2014] [Indexed: 11/26/2022]
|
19
|
The ROK family regulator Rok7B7 pleiotropically affects xylose utilization, carbon catabolite repression, and antibiotic production in streptomyces coelicolor. J Bacteriol 2013; 195:1236-48. [PMID: 23292782 DOI: 10.1128/jb.02191-12] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Members of the ROK family of proteins are mostly transcriptional regulators and kinases that generally relate to the control of primary metabolism, whereby its member glucose kinase acts as the central control protein in carbon control in Streptomyces. Here, we show that deletion of SCO6008 (rok7B7) strongly affects carbon catabolite repression (CCR), growth, and antibiotic production in Streptomyces coelicolor. Deletion of SCO7543 also affected antibiotic production, while no major changes were observed after deletion of the rok family genes SCO0794, SCO1060, SCO2846, SCO6566, or SCO6600. Global expression profiling of the rok7B7 mutant by proteomics and microarray analysis revealed strong upregulation of the xylose transporter operon xylFGH, which lies immediately downstream of rok7B7, consistent with the improved growth and delayed development of the mutant on xylose. The enhanced CCR, which was especially obvious on rich or xylose-containing media, correlated with elevated expression of glucose kinase and of the glucose transporter GlcP. In liquid-grown cultures, expression of the biosynthetic enzymes for production of prodigionines, siderophores, and calcium-dependent antibiotic (CDA) was enhanced in the mutant, and overproduction of prodigionines was corroborated by matrix-assisted laser desorption ionization-time-of-flight analysis. These data present Rok7B7 as a pleiotropic regulator of growth, CCR, and antibiotic production in Streptomyces.
Collapse
|
20
|
Kazanov MD, Li X, Gelfand MS, Osterman AL, Rodionov DA. Functional diversification of ROK-family transcriptional regulators of sugar catabolism in the Thermotogae phylum. Nucleic Acids Res 2012. [PMID: 23209028 PMCID: PMC3553997 DOI: 10.1093/nar/gks1184] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Large and functionally heterogeneous families of transcription factors have complex evolutionary histories. What shapes specificities toward effectors and DNA sites in paralogous regulators is a fundamental question in biology. Bacteria from the deep-branching lineage Thermotogae possess multiple paralogs of the repressor, open reading frame, kinase (ROK) family regulators that are characterized by carbohydrate-sensing domains shared with sugar kinases. We applied an integrated genomic approach to study functions and specificities of regulators from this family. A comparative analysis of 11 Thermotogae genomes revealed novel mechanisms of transcriptional regulation of the sugar utilization networks, DNA-binding motifs and specific functions. Reconstructed regulons for seven groups of ROK regulators were validated by DNA-binding assays using purified recombinant proteins from the model bacterium Thermotoga maritima. All tested regulators demonstrated specific binding to their predicted cognate DNA sites, and this binding was inhibited by specific effectors, mono- or disaccharides from their respective sugar catabolic pathways. By comparing ligand-binding domains of regulators with structurally characterized kinases from the ROK family, we elucidated signature amino acid residues determining sugar-ligand regulator specificity. Observed correlations between signature residues and the sugar-ligand specificities provide the framework for structure functional classification of the entire ROK family.
Collapse
Affiliation(s)
- Marat D Kazanov
- Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
21
|
Gubbens J, Janus MM, Florea BI, Overkleeft HS, van Wezel GP. Identification of glucose kinase-dependent and -independent pathways for carbon control of primary metabolism, development and antibiotic production in Streptomyces coelicolor by quantitative proteomics. Mol Microbiol 2012; 86:1490-507. [PMID: 23078239 DOI: 10.1111/mmi.12072] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2012] [Indexed: 11/30/2022]
Abstract
Members of the soil-dwelling prokaryotic genus Streptomyces are indispensable for the recycling of complex polysaccharides, and produce a wide range of natural products. Nutrient availability is a major determinant for the switch to development and antibiotic production in streptomycetes. Carbon catabolite repression (CCR), a main signalling pathway underlying this phenomenon, was so far considered fully dependent on the glycolytic enzyme glucose kinase (Glk). Here we provide evidence of a novel Glk-independent pathway in Streptomyces coelicolor, using advanced proteomics that allowed the comparison of the expression of some 2000 proteins, including virtually all enzymes for central metabolism. While CCR and inducer exclusion of enzymes for primary and secondary metabolism and precursor supply for natural products is mostly mediated via Glk, enzymes for the urea cycle, as well as for biosynthesis of the γ-butyrolactone Scb1 and the responsive cryptic polyketide Cpk are subject to Glk-independent CCR. Deletion of glkA led to strong downregulation of biosynthetic proteins for prodigionins and calcium-dependent antibiotic (CDA) in mannitol-grown cultures. Repression of bldB, bldN, and its target bldM may explain the poor development of S. coelicolor on solid-grown cultures containing glucose. A new model for carbon catabolite repression in streptomycetes is presented.
Collapse
Affiliation(s)
- Jacob Gubbens
- Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300RA, Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
22
|
Characterization and crystal structure of the thermophilic ROK hexokinase from Thermus thermophilus. J Biosci Bioeng 2012; 114:150-4. [DOI: 10.1016/j.jbiosc.2012.03.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 03/22/2012] [Accepted: 03/26/2012] [Indexed: 11/22/2022]
|