1
|
Bhowmick A, Recalde A, Bhattacharyya C, Banerjee A, Das J, Rodriguez-Cruz UE, Albers SV, Ghosh A. Role of VapBC4 toxin-antitoxin system of Sulfolobus acidocaldarius in heat stress adaptation. mBio 2024; 15:e0275324. [PMID: 39535218 PMCID: PMC11633383 DOI: 10.1128/mbio.02753-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Toxin-antitoxin (TA) systems are important for stress adaptation in prokaryotes, including persistence, antibiotic resistance, pathogenicity, and biofilm formation. Toxins can cause cell death, reversible growth stasis, and direct inhibition of crucial cellular processes through various mechanisms, while antitoxins neutralize the effects of toxins. In bacteria, these systems have been studied in detail, whereas their function in archaea remains elusive. During heat stress, the thermoacidophilic archaeon Sulfolobus acidocaldarius exhibited an increase in the expression of several bicistronic type II vapBC TA systems, with the highest expression observed in the vapBC4 system. In the current study, we performed a comprehensive biochemical characterization of the VapBC4 TA system, establishing it as a bonafide type II toxin-antitoxin system. The VapC4 toxin is shown to have high-temperature catalyzed RNase activity specific for mRNA and rRNA, while the VapB4 antitoxin inhibits the toxic activity of VapC4 by interacting with it. VapC4 toxin expression led to heat-induced persister-like cell formation, allowing the cell to cope with the stress. Furthermore, this study explored the impact of vapBC4 deletion on biofilm formation, whereby deletion of vapC4 led to increased biofilm formation, suggesting its role in regulating biofilm formation. Thus, during heat stress, the liberated VapC4 toxin in cells could potentially signal a preference for persister cell formation over biofilm growth. Thus, our findings shed light on the diverse roles of the VapC4 toxin in inhibiting translation, inducing persister cell formation, and regulating biofilm formation in S. acidocaldarius, enhancing our understanding of TA systems in archaea. IMPORTANCE This research enhances our knowledge of toxin-antitoxin (TA) systems in archaea, specifically in the thermoacidophilic archaeon Sulfolobus acidocaldarius. TA systems are widespread in both bacterial and archaeal genomes, indicating their evolutionary importance. However, their exact functions in archaeal cellular physiology are still not well understood. This study sheds light on the complex roles of TA systems and their critical involvement in archaeal stress adaptation, including persistence and biofilm formation. By focusing on S. acidocaldarius, which lives in habitats with fluctuating temperatures that can reach up to 90°C, the study reveals the unique challenges and survival mechanisms of this organism. The detailed biochemical analysis of the VapBC4 TA system, and its crucial role during heat stress, provides insights into how extremophiles can survive in harsh conditions. The findings of this study show the various functions of the VapC4 toxin, including inhibiting translation, inducing persister-like cell formation, and regulating biofilm formation. This knowledge improves our understanding of TA systems in thermoacidophiles and has broader implications for understanding how microorganisms adapt to extreme environments.
Collapse
Affiliation(s)
- Arghya Bhowmick
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | - Alejandra Recalde
- Molecular Biology of Archaea, Microbiology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | - Ankita Banerjee
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | - Jagriti Das
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | - Ulises E. Rodriguez-Cruz
- Department of Evolutionary Ecology, Institute of Ecology, National Autonomous University of Mexico, Mexico City, Mexico
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Microbiology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Abhrajyoti Ghosh
- Department of Biological Sciences, Bose Institute, Kolkata, India
| |
Collapse
|
2
|
Shafipour M, Mohammadzadeh A, Mahmoodi P, Dehghanpour M, Ghaemi EA. Distribution of lineages and type II toxin-antitoxin systems among rifampin-resistant Mycobacterium Tuberculosis Isolates. PLoS One 2024; 19:e0309292. [PMID: 39446830 PMCID: PMC11500941 DOI: 10.1371/journal.pone.0309292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/07/2024] [Indexed: 10/26/2024] Open
Abstract
Type II toxin-antitoxin systems such as mazEF3, vapBC3, and relJK play a role in antibiotic resistance and tolerance. Among the different known TA systems, mazEF3, vapBC3, and relJK, which are type II systems, have specific roles in drug resistance. Therefore, the aim of this study was to investigate the mutations in these genes in sensitive and resistant isolates of Mycobacterium tuberculosis. Thirty-two rifampin-resistant and 121 rifampin-sensitive M. tuberculosis isolates were collected from various regions of Iran. Lineage typing was performed using the ASO-PCR method. Mutations in the rpoB gene were analyzed in all isolates by MAS-PCR. Furthermore, mutations in the mazEF3, relJK, and vapBC3 genes of the type II toxin system were assessed through PCR sequencing. These sequences were analyzed using COBALT and SnapGene 2017, and submitted to the GenBank database. Among the 153 M. tuberculosis samples, lineages 4, 3 and 2 were the most common. Lineage 2 had the highest rate of rifampin resistance. Mutations in rpoB531 were the most frequent in resistant isolates. Examination of the toxin-antitoxin system showed that rifampin-resistant isolates belonging to lineage 3 had mutations in either the toxin or antitoxin parts of all three TA systems. A mutation in nucleotide 195 (codon 65) of mazF3 leading to an amino acid change from threonine to isoleucine was detected in all rifampin-resistant isolates. M. tuberculosis isolates belonging to lineage 2 exhibited the highest rifampin resistance in our study. Identifying the mutation in mazF3 in all rifampin-resistant isolates can highlight the significance of this mutation in the development of drug resistance in M. tuberculosis. Expanding the sample size in future studies can help develop a new method for identifying resistant isolates.
Collapse
Affiliation(s)
- Maryam Shafipour
- Department of Pathobiology, Faculty of Veterinary Medicine, Bu-Ali Sina University, Hamedan, Iran
| | - Abdolmajid Mohammadzadeh
- Department of Pathobiology, Faculty of Veterinary Medicine, Bu-Ali Sina University, Hamedan, Iran
| | - Pezhman Mahmoodi
- Department of Pathobiology, Faculty of Veterinary Medicine, Bu-Ali Sina University, Hamedan, Iran
| | - Mahdi Dehghanpour
- Department of Pathobiology, Faculty of Veterinary Medicine, Bu-Ali Sina University, Hamedan, Iran
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Ezzat Allah Ghaemi
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
3
|
Damiano DK, Azevedo BOP, Fernandes GSC, Teixeira AF, Gonçalves VM, Nascimento ALTO, Lopes APY. The Toxin of VapBC-1 Toxin-Antitoxin Module from Leptospira interrogans Is a Ribonuclease That Does Not Arrest Bacterial Growth but Affects Cell Viability. Microorganisms 2024; 12:1660. [PMID: 39203502 PMCID: PMC11356721 DOI: 10.3390/microorganisms12081660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
Bacterial ubiquitous Toxin-Antitoxin (TA) systems are considered to be important survival mechanisms during stress conditions. In regular environmental conditions, the antitoxin blocks the toxin, whereas during imbalanced conditions, the antitoxin concentration decreases, exposing the bacteria cell to a range of toxic events. The most evident consequence of this disequilibrium is cell growth arrest, which is the reason why TAs are generally described as active in the function of bacterial growth kinetics. Virulence-associated proteins B and C (VapBC) are a family of type II TA system, in which VapC is predicted to display the toxic ribonuclease activity while VapB counteracts this activity. Previously, using in silico data, we designated four VapBC TA modules in Leptospira interrogans serovar Copenhageni, the main etiological agent of human leptospirosis in Brazil. The present study aimed to obtain the proteins and functionally characterize the VapBC-1 module. The expression of the toxin gene vapC in E. coli did not decrease the cell growth rate in broth culture, as was expected to happen within active TA modules. However, interestingly, when the expression of the toxin was compared to that of the complexed toxin and antitoxin, cell viability was strongly affected, with a decrease of three orders of magnitude in colony forming unity (CFU). The assumption of the affinity between the toxin and the antitoxin was confirmed in vivo through the observation of their co-purification from cultivation of E. coli co-expressing vapB-vapC genes. RNAse activity assays showed that VapC-1 cleaves MS2 RNA and ribosomal RNA from L. interrogans. Our results indicate that the VapBC-1 module is a potentially functional TA system acting on targets that involve specific functions. It is very important to emphasize that the common attribution of the functionality of TA modules cannot be defined based merely on their ability to inhibit bacterial growth in a liquid medium.
Collapse
Affiliation(s)
- Deborah K. Damiano
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brasil, 1500, São Paulo 05503-900, Brazil; (D.K.D.); (B.O.P.A.); (G.S.C.F.); (A.F.T.); (V.M.G.); (A.L.T.O.N.)
- Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Avenida Prof. Lineu Prestes, 1730, São Paulo 05508-900, Brazil
| | - Bruna O. P. Azevedo
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brasil, 1500, São Paulo 05503-900, Brazil; (D.K.D.); (B.O.P.A.); (G.S.C.F.); (A.F.T.); (V.M.G.); (A.L.T.O.N.)
- Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Avenida Prof. Lineu Prestes, 1730, São Paulo 05508-900, Brazil
| | - George S. C. Fernandes
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brasil, 1500, São Paulo 05503-900, Brazil; (D.K.D.); (B.O.P.A.); (G.S.C.F.); (A.F.T.); (V.M.G.); (A.L.T.O.N.)
- Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Avenida Prof. Lineu Prestes, 1730, São Paulo 05508-900, Brazil
| | - Aline F. Teixeira
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brasil, 1500, São Paulo 05503-900, Brazil; (D.K.D.); (B.O.P.A.); (G.S.C.F.); (A.F.T.); (V.M.G.); (A.L.T.O.N.)
| | - Viviane M. Gonçalves
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brasil, 1500, São Paulo 05503-900, Brazil; (D.K.D.); (B.O.P.A.); (G.S.C.F.); (A.F.T.); (V.M.G.); (A.L.T.O.N.)
| | - Ana L. T. O. Nascimento
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brasil, 1500, São Paulo 05503-900, Brazil; (D.K.D.); (B.O.P.A.); (G.S.C.F.); (A.F.T.); (V.M.G.); (A.L.T.O.N.)
| | - Alexandre P. Y. Lopes
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brasil, 1500, São Paulo 05503-900, Brazil; (D.K.D.); (B.O.P.A.); (G.S.C.F.); (A.F.T.); (V.M.G.); (A.L.T.O.N.)
| |
Collapse
|
4
|
Hou Y, Li Y, Tao N, Kong X, Li Y, Liu Y, Li H, Wang Z. Toxin-antitoxin system gene mutations driving Mycobacterium tuberculosis transmission revealed by whole genome sequencing. Front Microbiol 2024; 15:1398886. [PMID: 39144214 PMCID: PMC11322068 DOI: 10.3389/fmicb.2024.1398886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024] Open
Abstract
Background The toxin-antitoxin (TA) system plays a vital role in the virulence and pathogenicity of Mycobacterium tuberculosis (M. tuberculosis). However, the regulatory mechanisms and the impact of gene mutations on M. tuberculosis transmission remain poorly understood. Objective To investigate the influence of gene mutations in the toxin-antitoxin system on M. tuberculosis transmission dynamics. Method We performed whole-genome sequencing on the analyzed strains of M. tuberculosis. The genes associated with the toxin-antitoxin system were obtained from the National Center for Biotechnology Information (NCBI) Gene database. Mutations correlating with enhanced transmission within the genes were identified by using random forest, gradient boosting decision tree, and generalized linear mixed models. Results A total of 13,518 M. tuberculosis isolates were analyzed, with 42.29% (n = 5,717) found to be part of genomic clusters. Lineage 4 accounted for the majority of isolates (n = 6488, 48%), followed by lineage 2 (n = 5133, 37.97%). 23 single nucleotide polymorphisms (SNPs) showed a positive correlation with clustering, including vapB1 G34A, vapB24 A76C, vapB2 T171C, mazF2 C85T, mazE2 G104A, vapB31 T112C, relB T226A, vapB11 C54T, mazE5 T344C, vapB14 A29G, parE1 (C103T, C88T), and parD1 C134T. Six SNPs, including vapB6 A29C, vapB31 T112C, parD1 C134T, vapB37 G205C, Rv2653c A80C, and vapB22 C167T, were associated with transmission clades across different countries. Notably, our findings highlighted the positive association of vapB6 A29C, vapB31 T112C, parD1 C134T, vapB37 G205C, vapB19 C188T, and Rv2653c A80C with transmission clades across diverse regions. Furthermore, our analysis identified 32 SNPs that exhibited significant associations with clade size. Conclusion Our study presents potential associations between mutations in genes related to the toxin-antitoxin system and the transmission dynamics of M. tuberculosis. However, it is important to acknowledge the presence of confounding factors and limitations in our study. Further research is required to establish causation and assess the functional significance of these mutations. These findings provide a foundation for future investigations and the formulation of strategies aimed at controlling TB transmission.
Collapse
Affiliation(s)
- Yawei Hou
- Institute of Chinese Medical Literature and Culture, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yifan Li
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital of Shandong First Medical University (Affiliated Hospital of Shandong Academy of Medical Sciences), Jinan, Shandong, China
| | - Ningning Tao
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xianglong Kong
- Artificial Intelligence Institute Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Yameng Li
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yao Liu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Huaichen Li
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhenguo Wang
- Institute of Chinese Medical Literature and Culture, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
5
|
Wani SR, Jain V. Deciphering the molecular mechanism and regulation of formaldehyde detoxification in Mycobacterium smegmatis. Appl Environ Microbiol 2024; 90:e0203923. [PMID: 38259108 PMCID: PMC10880627 DOI: 10.1128/aem.02039-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
The build-up of formaldehyde, a highly reactive molecule is cytotoxic and must be eliminated for the organism's survival. Formaldehyde detoxification system is found in nearly all organisms including both pathogenic and non-pathogenic mycobacteria. MscR, a formaldehyde dehydrogenase from Mycobacterium smegmatis (Msm), is an indispensable part of this system and forms a bicistronic operon with its downstream uncharacterized gene, fmh. We here show that Fmh, a putative metallo-beta-lactamase, is essential in tolerating higher amounts of formaldehyde when co-overexpressed with mscR in vivo. Our NMR studies indicate that MscR, along with Fmh, enhances formate production through a mycothiol (MSH)-dependent pathway, emphasizing the importance of Fmh in detoxifying formaldehyde. Although another aldehyde dehydrogenase, MSMEG_1543, induces upon formaldehyde addition, it is not involved in its detoxification. We also show that the expression of the mscR operon is constitutive and remains unchanged upon formaldehyde addition, as displayed by the promoter activity of PmscR and by the transcript and protein levels of MscR. Furthermore, we establish the role of a thiol-responsive sigma factor SigH in formaldehyde detoxification. We show that SigH, and not SigE, is crucial for formaldehyde detoxification, even though it does not directly regulate mscR operon expression. In addition, sensitivity to formaldehyde in sigH-knockout could be alleviated by overexpression of mscR. Taken together, our data demonstrate the importance of MSH-dependent pathways in detoxifying formaldehyde in a mycobacterial system. An absence of such MSH-dependent proteins in eukaryotes and its complete conservation in M. tuberculosis, the causative agent of tuberculosis, further unravel new drug targets for this pathogen.IMPORTANCEExtensive research has been done on formaldehyde detoxification in different bacteria. However, our current understanding of the mechanisms underlying this process in mycobacteria remains exceedingly little. We previously showed that MscR, a formaldehyde dehydrogenase from Mycobacterium smegmatis, plays a pivotal role in this detoxification pathway. Here, we present a potential S-formyl-mycothiol hydrolase named Fmh, thought to be a metallo-beta-lactamase, which functions along with mycothiol (MSH) and MscR to enhance formate production within this detoxification pathway. Co-expression of Fmh with MscR significantly enhances the efficiency of formaldehyde detoxification in M. smegmatis. Our experiments establish that Fmh catalyzes the final step of this detoxification pathway. Although an alternative sigma factor SigH was found to be involved in formaldehyde detoxification, it did not directly regulate the expression of mscR. Since formaldehyde detoxification is essential for bacterial survival, we envisage this process to be a potential drug target for M. tuberculosis eradication.
Collapse
Affiliation(s)
- Saloni Rajesh Wani
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, Madhya Pradesh, India
| | - Vikas Jain
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, Madhya Pradesh, India
| |
Collapse
|
6
|
Khan S, Ahmad F, Ansari MI, Ashfaque M, Islam MH, Khubaib M. Toxin-Antitoxin system of Mycobacterium tuberculosis: Roles beyond stress sensor and growth regulator. Tuberculosis (Edinb) 2023; 143:102395. [PMID: 37722233 DOI: 10.1016/j.tube.2023.102395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/15/2023] [Accepted: 08/10/2023] [Indexed: 09/20/2023]
Abstract
The advent of effective drug regimen and BCG vaccine has significantly decreased the rate of morbidity and mortality of TB. However, lengthy treatment and slower recovery rate, as well as reactivation of the disease with the emergence of multi-drug, extensively-drug, and totally-drug resistance strains, pose a serious concern. The complexities associated are due to the highly evolved and complex nature of the bacterium itself. One of the unique features of Mycobacterium tuberculosis [M.tb] is that it has undergone reductive evolution while maintaining and amplified a few gene families. One of the critical gene family involved in the virulence and pathogenesis is the Toxin-Antitoxin system. These families are believed to harbor virulence signature and are strongly associated with various stress adaptations and pathogenesis. The M.tb TA systems are linked with growth regulation machinery during various environmental stresses. The genes of TA systems are differentially expressed in the host during an active infection, oxidative stress, low pH stress, and starvation, which essentially indicate their role beyond growth regulators. Here in this review, we have discussed different roles of TA gene families in various stresses and their prospective role at the host-pathogen interface, which could be exploited to understand the M.tb associated pathomechanisms better and further designing the new strategies against the pathogen.
Collapse
Affiliation(s)
- Saima Khan
- Department of Biosciences, Integral University, Lucknow, India
| | - Firoz Ahmad
- Department of Biosciences, Integral University, Lucknow, India
| | | | | | | | - Mohd Khubaib
- Department of Biosciences, Integral University, Lucknow, India.
| |
Collapse
|
7
|
Pagani TD, Corrêa PR, Lima C, Gomes LHF, Schwarz MGA, Galvão TC, Degrave WM, Valadares NF, Mendonça-Lima L. Impact of Genomic Deletion RD16 on the Expression of the Mycobacterium bovis BCG Moreau VapBC47 Toxin-Antitoxin System. Curr Issues Mol Biol 2023; 45:6538-6549. [PMID: 37623231 PMCID: PMC10453824 DOI: 10.3390/cimb45080412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 08/26/2023] Open
Abstract
Mycobacterium bovis BCG is the only vaccine against tuberculosis. The variable forms of cultivation throughout the years, before seed-lots were developed, allowed in vitro evolution of the original strain, generating a family of vaccines with different phenotypic and genotypic characteristics. Molecular studies revealed regions of difference (RDs) in the genomes of the various BCG strains. This work aims to characterize the gene pair rv3407-rv3408 (vapB47-vapC47), coding for a toxin-antitoxin system of the VapBC family, and to evaluate possible transcriptional effects due to the adjacent BCG Moreau-specific genomic deletion RD16. We show that these genes are co-transcribed in BCG strains Moreau and Pasteur, and that the inactivation of an upstream transcriptional repressor (Rv3405c) due to RD16 has a polar effect, leading to increased vapBC47 expression. Furthermore, we detect VapB47 DNA binding in vitro, dependent on a 5' vapB47 sequence that contributes to a palindrome, spanning the promoter and coding region. Our data shed light on the regulation of VapBC systems and on the impact of the BCG Moreau RD16 deletion in the expression of adjacent genes, contributing to a better understanding of BCG Moreau physiology.
Collapse
Affiliation(s)
- Talita Duarte Pagani
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil; (T.D.P.); (P.R.C.); (C.L.); (L.H.F.G.); (M.G.A.S.); (W.M.D.)
| | - Paloma Rezende Corrêa
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil; (T.D.P.); (P.R.C.); (C.L.); (L.H.F.G.); (M.G.A.S.); (W.M.D.)
| | - Cristiane Lima
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil; (T.D.P.); (P.R.C.); (C.L.); (L.H.F.G.); (M.G.A.S.); (W.M.D.)
| | - Leonardo Henrique Ferreira Gomes
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil; (T.D.P.); (P.R.C.); (C.L.); (L.H.F.G.); (M.G.A.S.); (W.M.D.)
| | - Marcos Gustavo Araujo Schwarz
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil; (T.D.P.); (P.R.C.); (C.L.); (L.H.F.G.); (M.G.A.S.); (W.M.D.)
| | - Teca Calcagno Galvão
- Laboratório de Bacteriologia, Centro de Referência Prof. Hélio Fraga, Escola Nacional de Saúde Pública Sergio Arouca, Fiocruz, Rio de Janeiro 21041-210, RJ, Brazil;
| | - Wim Maurits Degrave
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil; (T.D.P.); (P.R.C.); (C.L.); (L.H.F.G.); (M.G.A.S.); (W.M.D.)
| | | | - Leila Mendonça-Lima
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil; (T.D.P.); (P.R.C.); (C.L.); (L.H.F.G.); (M.G.A.S.); (W.M.D.)
| |
Collapse
|
8
|
Wani SR, Dubey AA, Jain V. Ms6244 is a novel Mycobacterium smegmatis TetR family transcriptional repressor that regulates cell growth and morphophysiology. FEBS Lett 2023; 597:1428-1440. [PMID: 36694284 DOI: 10.1002/1873-3468.14582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/26/2023]
Abstract
Transcriptional factors such as the TetR family of transcriptional regulators (TFTRs) are widely found amongst bacteria, including mycobacteria, and are accountable for their survival. Here, we characterized a novel TFTR, Ms6244, from Mycobacterium smegmatis that negatively autoregulates its expression and represses its neighbouring gene, Ms6243. We also report the binding of Ms6244 to the inverted repeats in the intergenic region of Ms6244 and Ms6243. Further, an Ms6244-deleted strain shows various morpho-physiological differences compared to the wild type. We further confirmed that the deletion of Ms6244 itself and not the resultant Ms6243 overexpression is the cause of the altered physiology. Our data thus suggest that Ms6244 is an essential regulator, having far-reaching effects on M. smegmatis physiology.
Collapse
Affiliation(s)
- Saloni Rajesh Wani
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, India
| | - Abhishek Anil Dubey
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, India
| | - Vikas Jain
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, India
| |
Collapse
|
9
|
VapC toxin switches M. smegmatis cells into dormancy through 23S rRNA cleavage. Arch Microbiol 2023; 205:28. [DOI: 10.1007/s00203-022-03363-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/18/2022] [Accepted: 12/04/2022] [Indexed: 12/23/2022]
|
10
|
Wang H, Wang X, Wang L, Lu Z. Nutritional stress induced intraspecies competition revealed by transcriptome analysis in Sphingomonas melonis TY. Appl Microbiol Biotechnol 2022; 106:5675-5686. [PMID: 35927333 DOI: 10.1007/s00253-022-12097-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 11/26/2022]
Abstract
Bacteria have developed various mechanisms by which they can compete or cooperate with other bacteria. This study showed that in the cocultures of wild-type Sphingomonas melonis TY and its isogenic mutant TYΔndpD grow with nicotine, the former can outcompete the latter. TYΔndpD undergoes growth arrest after four days when cocultured with wild-type TY, whereas the coculture has just entered a stationary phase and the substrate was nearly depleted, and the interaction between the two related strains was revealed by transcriptomic analysis. Analysis of the differential expression genes indicated that wild-type TY inhibited the growth of TYΔndpD mainly through toxin-antitoxin (TA) systems. The four upregulated antitoxin coding genes belong to type II TA systems in which the bactericidal effect of the cognate toxin was mainly through inhibition of translation or DNA replication, whereas wild-type TY with upregulated antitoxin genes can regenerate cognate immunity protein continuously and thus prevent the lethal action of toxin to itself. In addition, colicin-mediated antibacterial activity against closely related species may also be involved in the competition between wild-type TY and TYΔndpD under nutritional stress. Moreover, upregulation of carbon and nitrogen catabolism related-, stress response related-, DNA repair related-, and DNA replication-related genes in wild-type TY showed that it triggered a series of response mechanisms when facing dual stress of competition from isogenic mutant cells and nutritional limitation. Thus, we proposed that S. melonis TY employed the TA systems and colicin to compete with TYΔndpD under nutritional stress, thereby maximally acquiring and exploiting finite resources. KEY POINTS: • Cross-feeding between isogenic mutants and the wild-type strain. • Nutrition stress caused a shift from cooperation to competition. • TYΔndpD undergo growth arrest by exogenous and endogenous toxins.
Collapse
Affiliation(s)
- Haixia Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Xiaoyu Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Lvjing Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zhenmei Lu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
11
|
Calcuttawala F, Shaw R, Sarbajna A, Dutta M, Sinha S, K. Das Gupta S. Apoptosis like symptoms associated with abortive infection of Mycobacterium smegmatis by mycobacteriophage D29. PLoS One 2022; 17:e0259480. [PMID: 35580120 PMCID: PMC9113562 DOI: 10.1371/journal.pone.0259480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 04/29/2022] [Indexed: 01/12/2023] Open
Abstract
Mycobacteriophages are phages that infect mycobacteria resulting in their killing. Although lysis is the primary mechanism by which mycobacteriophages cause cell death, others such as abortive infection may also be involved. We took recourse to perform immunofluorescence and electron microscopic studies using mycobacteriophage D29 infected Mycobacterium smegmatis cells to investigate this issue. We could observe the intricate details of the infection process using these techniques such as adsorption, the phage tail penetrating the thick mycolic acid layer, formation of membrane pores, membrane blebbing, and phage release. We observed a significant increase in DNA fragmentation and membrane depolarization using cell-biological techniques symptomatic of programmed cell death (PCD). As Toxin-Antitoxin (TA) systems mediate bacterial PCD, we measured their expression profiles with and without phage infection. Of the three TAs examined, MazEF, VapBC, and phd/doc, we found that in the case of VapBC, a significant decrease in the antitoxin (VapB): toxin (VapC) ratio was observed following phage infection, implying that high VapC may have a role to play in the induction of mycobacterial apoptotic cell death following phage infection. This study indicates that D29 infection causes mycobacteria to undergo morphological and molecular changes that are hallmarks of apoptotic cell death.
Collapse
Affiliation(s)
- Fatema Calcuttawala
- Department of Microbiology, Sister Nivedita University, Kolkata, India
- * E-mail:
| | - Rahul Shaw
- Department of Microbiology, Bose Institute, Kolkata, India
| | - Arpita Sarbajna
- Division of Electron Microscopy, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Moumita Dutta
- Division of Electron Microscopy, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | | | | |
Collapse
|
12
|
Tang J, Du LM, Li M, Yao D, Jiang Y, Waleron M, Waleron K, Daroch M. Characterization of a Novel Hot-Spring Cyanobacterium Leptodesmis sichuanensis sp. Nov. and Genomic Insights of Molecular Adaptations Into Its Habitat. Front Microbiol 2022; 12:739625. [PMID: 35154020 PMCID: PMC8832068 DOI: 10.3389/fmicb.2021.739625] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
The newly described genus Leptodesmis comprises several strains of filamentous cyanobacteria from diverse, primarily cold, habitats. Here, we sequenced the complete genome of a novel hot-spring strain, Leptodesmis sp. PKUAC-SCTA121 (hereafter A121), isolated from Erdaoqiao hot springs (pH 6.32, 40.8°C), China. The analyses of 16S rRNA/16S-23S ITS phylogenies, secondary structures, and morphology strongly support strain A121 as a new species within Leptodesmis, Leptodesmis sichuanensis sp. nov. Notably, strain A121 is the first thermophilic representative of genus Leptodesmis and more broadly the first Leptodesmis sp. to have its genome sequenced. In addition, results of genome-scale phylogenetic analysis and average nucleotide/amino acid identity as well as in silico DNA-DNA hybridization and patristic analysis verify the establishment of genus Leptodesmis previously cryptic to Phormidesmis. Comparative genomic analyses reveal that the Leptodesmis A121 and Thermoleptolyngbya sichuanensis A183 from the same hot-spring biome exhibit different genome structures but similar functional classifications of protein-coding genes. Although the core molecular components of photosynthesis, metabolism, and signal transduction were shared by the two strains, distinct genes associated with photosynthesis and signal transduction were identified, indicating that different strategies might be used by these strains to adapt to that specific niche. Furthermore, the complete genome of strain A121 provides the first insight into the genomic features of genus Leptodesmis and lays the foundation for future global ecogenomic and geogenomic studies.
Collapse
Affiliation(s)
- Jie Tang
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Lian-Ming Du
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Meijin Li
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Dan Yao
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Ying Jiang
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Malgorzata Waleron
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, Gdańsk, Poland
| | - Krzysztof Waleron
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy Medical University of Gdańsk, Gdańsk, Poland
| | - Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
- *Correspondence: Maurycy Daroch,
| |
Collapse
|
13
|
Jeon H, Choi E, Hwang J. Identification and characterization of VapBC toxin-antitoxin system in Bosea sp. PAMC 26642 isolated from Arctic lichens. RNA (NEW YORK, N.Y.) 2021; 27:1374-1389. [PMID: 34429367 PMCID: PMC8522696 DOI: 10.1261/rna.078786.121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Toxin-antitoxin (TA) systems are genetic modules composed of a toxin interfering with cellular processes and its cognate antitoxin, which counteracts the activity of the toxin. TA modules are widespread in bacterial and archaeal genomes. It has been suggested that TA modules participate in the adaptation of prokaryotes to unfavorable conditions. The Bosea sp. PAMC 26642 used in this study was isolated from the Arctic lichen Stereocaulon sp. There are 12 putative type II TA loci in the genome of Bosea sp. PAMC 26642. Of these, nine functional TA systems have been shown to be toxic in Escherichia coli The toxin inhibits growth, but this inhibition is reversed when the cognate antitoxin genes are coexpressed, indicating that these putative TA loci were bona fide TA modules. Only the BoVapC1 (AXW83_01405) toxin, a homolog of VapC, showed growth inhibition specific to low temperatures, which was recovered by the coexpression of BoVapB1 (AXW83_01400). Microscopic observation and growth monitoring revealed that the BoVapC1 toxin had bacteriostatic effects on the growth of E. coli and induced morphological changes. Quantitative real time polymerase chain reaction and northern blotting analyses showed that the BoVapC1 toxin had a ribonuclease activity on the initiator tRNAfMet, implying that degradation of tRNAfMet might trigger growth arrest in E. coli Furthermore, the BoVapBC1 system was found to contribute to survival against prolonged exposure at 4°C. This is the first study to identify the function of TA systems in cold adaptation.
Collapse
Affiliation(s)
- Hyerin Jeon
- Department of Microbiology, Pusan National University, Busan 46241, Republic of Korea
| | - Eunsil Choi
- Department of Microbiology, Pusan National University, Busan 46241, Republic of Korea
- Microbiological Resource Research Institute, Pusan National University, Busan 46241, Republic of Korea
| | - Jihwan Hwang
- Department of Microbiology, Pusan National University, Busan 46241, Republic of Korea
- Microbiological Resource Research Institute, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
14
|
Complete Genome Sequence of SMBL-WEM22, a Halotolerant Strain of Kosakonia cowanii Isolated from Hong Kong Seawater. Microbiol Resour Announc 2021; 10:e0089121. [PMID: 34647797 PMCID: PMC8515891 DOI: 10.1128/mra.00891-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kosakonia cowanii is a Gram-negative, motile, facultative anaerobic enterobacterium that is found in soil, water, and sewage. K. cowanii SMBL-WEM22 is a halotolerant strain that was isolated from seawater in Hong Kong. The complete genome of SMBL-WEM22 (5,037,617 bp, with a GC content of 55.02%) was determined by hybrid assembly of short- and long-read DNA sequences.
Collapse
|
15
|
Chen X, Hu A, Zou Q, Luo S, Wu H, Yan C, Liu T, He D, Li X, Cheng G. The Mesorhizobium huakuii transcriptional regulator AbiEi plays a critical role in nodulation and is important for bacterial stress response. BMC Microbiol 2021; 21:245. [PMID: 34511061 PMCID: PMC8436566 DOI: 10.1186/s12866-021-02304-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/28/2021] [Indexed: 11/16/2022] Open
Abstract
Background Bacterial abortive infection (Abi) systems are type IV toxin–antitoxin (TA) system, which could elicit programmed cell death and constitute a native survival strategy of pathogenic bacteria under various stress conditions. However, no rhizobial AbiE family TA system has been reported so far. Here, a M. huakuii AbiE TA system was identified and characterized. Results A mutation in M. huakuii abiEi gene, encoding an adjacent GntR-type transcriptional regulator, was generated by homologous recombination. The abiEi mutant strain grew less well in rich TY medium, and displayed increased antioxidative capacity and enhanced gentamicin resistance, indicating the abiEi operon was negatively regulated by the antitoxin AbiEi in response to the oxidative stress and a particular antibiotic. The mRNA expression of abiEi gene was significantly up-regulated during Astragalus sinicus nodule development. The abiEi mutant was severely impaired in its competitive ability in rhizosphere colonization, and was defective in nodulation with 97% reduction in nitrogen-fixing capacity. The mutant infected nodule cells contained vacuolation and a small number of abnormal bacteroids with senescence character. RNA-seq experiment revealed it had 5 up-regulated and 111 down-regulated genes relative to wild type. Of these down-regulated genes, 21 are related to symbiosis nitrogen fixation and nitrogen mechanism, 16 are involved in the electron transport chain and antioxidant responses, and 12 belong to type VI secretion system (T6SS). Conclusions M. huakuii AbiEi behaves as a key transcriptional regulator mediating root nodule symbiosis. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02304-0.
Collapse
Affiliation(s)
- Xiaohong Chen
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Aiqi Hu
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Qian Zou
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Sha Luo
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Hetao Wu
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Chunlan Yan
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Tao Liu
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Donglan He
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Xiaohua Li
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Guojun Cheng
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, Hubei, China.
| |
Collapse
|
16
|
Krishnamoorthy G, Kaiser P, Constant P, Abu Abed U, Schmid M, Frese CK, Brinkmann V, Daffé M, Kaufmann SHE. Role of Premycofactocin Synthase in Growth, Microaerophilic Adaptation, and Metabolism of Mycobacterium tuberculosis. mBio 2021; 12:e0166521. [PMID: 34311585 PMCID: PMC8406134 DOI: 10.1128/mbio.01665-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 06/25/2021] [Indexed: 01/14/2023] Open
Abstract
Mycofactocin is a new class of peptide-derived redox cofactors present in a selected group of bacteria including Mycobacterium tuberculosis. Mycofactocin biosynthesis requires at least six genes, including mftD, encoding putative lactate dehydrogenase, which catalyzes the penultimate biosynthetic step. Cellular functions remained unknown until recent reports on the significance of mycofactocin in primary alcohol metabolism. Here, we show that mftD transcript levels were increased in hypoxia-adapted M. tuberculosis; however, mftD functionality was found likely dispensable for l-lactate metabolism. Targeted deletion of mftD reduced the survival of M. tuberculosis in in vitro and in vivo hypoxia models but increased the bacterial growth in glucose-containing broth as well as in the lungs and spleens, albeit modestly, of aerosol-infected C57BL/6J mice. The cause of this growth advantage remains unestablished; however, the mftD-deficient M. tuberculosis strain had reduced NAD(H)/NADP(H) levels and glucose-6-phosphate dehydrogenase activity with no impairment in phthiocerol dimycocerosate lipid synthesis. An ultrastructural examination of parental and mycofactocin biosynthesis gene mutants in M. tuberculosis, M. marinum, and M. smegmatis showed no altered cell morphology and size except the presence of outer membrane-bound fibril-like features only in a mutant subpopulation. A cell surface-protein analysis of M. smegmatis mycofactocin biosynthesis mutants with trypsin revealed differential abundances of a subset of proteins that are known to interact with mycofactocin and their homologs that can enhance protein aggregation or amyloid-like fibrils in riboflavin-starved eukaryotic cells. In sum, phenotypic analyses of the mutant strain implicate the significance of MftD/mycofactocin in M. tuberculosis growth and persistence in its host. IMPORTANCE Characterization of proteins with unknown functions is a critical research priority as the intracellular growth and metabolic state of Mycobacterium tuberculosis, the causative agent of tuberculosis, remain poorly understood. Mycofactocin is a peptide-derived redox cofactor present in almost all mycobacterial species; however, its functional relevance in M. tuberculosis pathogenesis and host survival has never been studied experimentally. In this study, we examine the phenotypes of an M. tuberculosis mutant strain lacking a key mycofactocin biosynthesis gene in in vitro and disease-relevant mouse models. Our results pinpoint the multifaceted role of mycofactocin in M. tuberculosis growth, hypoxia adaptation, glucose metabolism, and redox homeostasis. This evidence strongly implies that mycofactocin could fulfill specialized biochemical functions that increase the survival fitness of mycobacteria within their specific niche.
Collapse
Affiliation(s)
| | - Peggy Kaiser
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Patricia Constant
- Département Tuberculose & Biologie des Infections, Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Ulrike Abu Abed
- Core Facility Microscopy, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Monika Schmid
- Core Facility Proteomics, Max Planck Institute for Infection Biology, Berlin, Germany
| | | | - Volker Brinkmann
- Core Facility Microscopy, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Mamadou Daffé
- Département Tuberculose & Biologie des Infections, Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Stefan H. E. Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
- Hagler Institute for Advanced Study at Texas A&M University, College Station, Texas, USA
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
17
|
Abstract
Mycobacterium tuberculosis (MTB) persists and survives antibiotic treatments by generating phenotypically heterogeneous drug-tolerant subpopulations. The surviving cells, persisters, are a major barrier to the relapse-free treatment of tuberculosis (TB), which is already killing >1.8 million people every year and becoming deadlier with the emergence of multidrug-resistant strains. Mycobacterium tuberculosis (MTB) generates phenotypic diversity to persist and survive the harsh conditions encountered during infection. MTB avoids immune effectors and antibacterial killing by entering into distinct physiological states. The surviving cells, persisters, are a major barrier to the timely and relapse-free treatment of tuberculosis (TB). We present for the first time, PerSort, a method to isolate and characterize persisters in the absence of antibiotic or other pressure. We demonstrate the value of PerSort to isolate translationally dormant cells that preexisted in small numbers within Mycobacterium species cultures growing under optimal conditions but that dramatically increased in proportion under stress conditions. The translationally dormant subpopulation exhibited multidrug tolerance and regrowth properties consistent with those of persister cells. Furthermore, PerSort enabled single-cell transcriptional profiling that provided evidence that the translationally dormant persisters were generated through a variety of mechanisms, including vapC30, mazF, and relA/spoT overexpression. Finally, we demonstrate that notwithstanding the varied mechanisms by which the persister cells were generated, they converge on a similar low-oxygen metabolic state that was reversed through activation of respiration to rapidly eliminate persisters fostered under host-relevant stress conditions. We conclude that PerSort provides a new tool to study MTB persisters, enabling targeted strategies to improve and shorten the treatment of TB. IMPORTANCEMycobacterium tuberculosis (MTB) persists and survives antibiotic treatments by generating phenotypically heterogeneous drug-tolerant subpopulations. The surviving cells, persisters, are a major barrier to the relapse-free treatment of tuberculosis (TB), which is already killing >1.8 million people every year and becoming deadlier with the emergence of multidrug-resistant strains. This study describes PerSort, a cell sorting method to isolate and characterize, without antibiotic treatment, translationally dormant persisters that preexist in small numbers within Mycobacterium cultures. Characterization of this subpopulation has discovered multiple mechanisms by which mycobacterial persisters emerge and unveiled the physiological basis for their dormant and multidrug-tolerant physiological state. This analysis has discovered that activating oxygen respiratory physiology using l-cysteine eliminates preexisting persister subpopulations, potentiating rapid antibiotic killing of mycobacteria under host-relevant stress. PerSort serves as a new tool to study MTB persisters for enabling targeted strategies to improve and shorten the treatment of TB.
Collapse
|
18
|
Patil S, Palande A, Lodhiya T, Pandit A, Mukherjee R. Redefining genetic essentiality in Mycobacterium tuberculosis. Gene 2020; 765:145091. [PMID: 32898604 DOI: 10.1016/j.gene.2020.145091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 11/15/2022]
Abstract
Sequencing transposon mutant libraries have been pivotal in annotating essential and non-essential genes in bacteria. This is particularly very helpful in the case of Mycobacterium tuberculosis with a large part of its genome without known function. It is not known whether there are any variations in the essentiality states as a function of optimal growth in the absence of any selection pressure. We here grow a high-density mutant library of M. tuberculosis through serial cultures and monitor the temporal fluctuations in insertion frequencies across all TA dinucleotides in the genome. Genes that cause morphological and physiological heterogeneity or enable metabolic bypass were found to gradually lose insertions, while genes comprising the toxin-antitoxin systems were found to get enriched with insertions during growth in nutrient replete conditions. High levels of fluctuations were observed in genes involved in cell wall and cell processes, intermediary metabolism, and genes involved in virulence, suggesting new modes of adaptation undertaken by the mutants. We also report the essentiality status of several newly annotated genetic features.
Collapse
Affiliation(s)
- Saniya Patil
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | - Aseem Palande
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | - Tejan Lodhiya
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | - Awadhesh Pandit
- National Center for Biological Sciences, Bengaluru 560065, India
| | - Raju Mukherjee
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India.
| |
Collapse
|
19
|
Novel Toxin-Antitoxin Module SlvT-SlvA Regulates Megaplasmid Stability and Incites Solvent Tolerance in Pseudomonas putida S12. Appl Environ Microbiol 2020; 86:AEM.00686-20. [PMID: 32358012 PMCID: PMC7301842 DOI: 10.1128/aem.00686-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/27/2020] [Indexed: 01/09/2023] Open
Abstract
Sustainable alternatives for high-value chemicals can be achieved by using renewable feedstocks in bacterial biocatalysis. However, during the bioproduction of such chemicals and biopolymers, aromatic compounds that function as products, substrates, or intermediates in the production process may exert toxicity to microbial host cells and limit the production yield. Therefore, solvent tolerance is a highly preferable trait for microbial hosts in the biobased production of aromatic chemicals and biopolymers. In this study, we revisit the essential role of megaplasmid pTTS12 from solvent-tolerant Pseudomonas putida S12 for molecular adaptation to an organic solvent. In addition to the solvent extrusion pump (SrpABC), we identified a novel toxin-antitoxin module (SlvAT) which contributes to short-term tolerance in moderate solvent concentrations, as well as to the stability of pTTS12. These two gene clusters were successfully expressed in non-solvent-tolerant strains of P. putida and Escherichia coli strains to confer and enhance solvent tolerance. Pseudomonas putida S12 is highly tolerant of organic solvents in saturating concentrations, rendering this microorganism suitable for the industrial production of various aromatic compounds. Previous studies revealed that P. putida S12 contains the single-copy 583-kbp megaplasmid pTTS12. pTTS12 carries several important operons and gene clusters facilitating P. putida S12 survival and growth in the presence of toxic compounds or other environmental stresses. We wished to revisit and further scrutinize the role of pTTS12 in conferring solvent tolerance. To this end, we cured the megaplasmid from P. putida S12 and conclusively confirmed that the SrpABC efflux pump is the major determinant of solvent tolerance on the megaplasmid pTTS12. In addition, we identified a novel toxin-antitoxin module (proposed gene names slvT and slvA, respectively) encoded on pTTS12 which contributes to the solvent tolerance phenotype and is important for conferring stability to the megaplasmid. Chromosomal introduction of the srp operon in combination with the slvAT gene pair created a solvent tolerance phenotype in non-solvent-tolerant strains, such as P. putida KT2440, Escherichia coli TG1, and E. coli BL21(DE3). IMPORTANCE Sustainable alternatives for high-value chemicals can be achieved by using renewable feedstocks in bacterial biocatalysis. However, during the bioproduction of such chemicals and biopolymers, aromatic compounds that function as products, substrates, or intermediates in the production process may exert toxicity to microbial host cells and limit the production yield. Therefore, solvent tolerance is a highly preferable trait for microbial hosts in the biobased production of aromatic chemicals and biopolymers. In this study, we revisit the essential role of megaplasmid pTTS12 from solvent-tolerant Pseudomonas putida S12 for molecular adaptation to an organic solvent. In addition to the solvent extrusion pump (SrpABC), we identified a novel toxin-antitoxin module (SlvAT) which contributes to short-term tolerance in moderate solvent concentrations, as well as to the stability of pTTS12. These two gene clusters were successfully expressed in non-solvent-tolerant strains of P. putida and Escherichia coli strains to confer and enhance solvent tolerance.
Collapse
|
20
|
Andrews ESV, Arcus VL. PhoH2 proteins couple RNA helicase and RNAse activities. Protein Sci 2020; 29:883-892. [PMID: 31886915 DOI: 10.1002/pro.3814] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 01/29/2023]
Abstract
PhoH2 proteins are found in a very diverse range of microorganisms that span bacteria and archaea. These proteins are composed of two domains: an N-terminal PIN-domain fused with a C-terminal PhoH domain. Collectively this fusion functions as an RNA helicase and ribonuclease. In other genomic contexts, PINdomains and PhoHdomains are separate but adjacent suggesting association to achieve similar function. Exclusively among the mycobacteria, PhoH2 proteins are encoded in the genome with an upstream gene, phoAT, which is thought to play the role of an antitoxin (in place of the traditional VapB antitoxin that lies upstream of the 47 other PINdomains in the mycobacterial genome). This review examines PhoH2 proteins as a whole and describes the bioinformatics, biochemical, structural, and biological properties of the two domains that make up PhoH2: PIN and PhoH. We review the transcriptional regulators of phoH2 from two mycobacterial species and speculate on the function of PhoH2 proteins in the context of a Type II toxin-antitoxin system which are thought to play a role in the stress response in bacteria.
Collapse
Affiliation(s)
- Emma S V Andrews
- School of Science, Division of Health, Engineering, Computing and Science, University of Waikato, Hamilton, New Zealand
| | - Vickery L Arcus
- School of Science, Division of Health, Engineering, Computing and Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
21
|
Deciphering the Antitoxin-Regulated Bacterial Stress Response via Single-Cell Analysis. ACS Chem Biol 2019; 14:2859-2866. [PMID: 31670944 DOI: 10.1021/acschembio.9b00721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Bacterial toxin-antitoxin (TA) systems, which are diverse and widespread among prokaryotes, are responsible for tolerance to drugs and environmental stresses. However, the low abundance of toxin and antitoxin proteins renders their quantitative measurement in single bacteria challenging. Employing a laboratory-built nano-flow cytometer (nFCM) to monitor a tetracysteine (TC)-tagged TA system labeled with the biarsenical dye FlAsH, we here report the development of a sensitive method that enables the detection of basal-level expression of antitoxin. Using the Escherichia coli MqsR/MqsA as a model TA system, we reveal for the first time that under its native promoter and in the absence of environmental stress, there exist two populations of bacteria with high or low levels of antitoxin MqsA. Under environmental stress, such as bile acid stress, heat shock, and amino acid starvation, the two populations of bacteria responded differently in terms of MqsA degradation and production. Subsequently, resumed production of MqsA after amino acid stress was observed for the first time. Taking advantage of the multiparameter capability of nFCM, bacterial growth rate and MqsA production were analyzed simultaneously. We found that under environmental stress, the response of bacterial growth was consistent with MqsA production but with an approximate 60 min lag. Overall, the results of the present study indicate that stochastic elevation of MqsA level facilitates bacterial survival, and the two populations with distinct phenotypes empower bacteria to deal with fluctuating environments. This analytical method will help researchers gain deeper insight into the heterogeneity and fundamental role of TA systems.
Collapse
|
22
|
Towards Exploring Toxin-Antitoxin Systems in Geobacillus: A Screen for Type II Toxin-Antitoxin System Families in a Thermophilic Genus. Int J Mol Sci 2019; 20:ijms20235869. [PMID: 31771094 PMCID: PMC6929052 DOI: 10.3390/ijms20235869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/12/2019] [Accepted: 11/20/2019] [Indexed: 12/19/2022] Open
Abstract
The toxin-antitoxin (TA) systems have been attracting attention due to their role in regulating stress responses in prokaryotes and their biotechnological potential. Much recognition has been given to type II TA system of mesophiles, while thermophiles have received merely limited attention. Here, we are presenting the putative type II TA families encoded on the genomes of four Geobacillus strains. We employed the TA finder tool to mine for TA-coding genes and manually curated the results using protein domain analysis tools. We also used the NCBI BLAST, Operon Mapper, ProOpDB, and sequence alignment tools to reveal the geobacilli TA features. We identified 28 putative TA pairs, distributed over eight TA families. Among the identified TAs, 15 represent putative novel toxins and antitoxins, belonging to the MazEF, MNT-HEPN, ParDE, RelBE, and XRE-COG2856 TA families. We also identified a potentially new TA composite, AbrB-ParE. Furthermore, we are suggesting the Geobacillus acetyltransferase TA (GacTA) family, which potentially represents one of the unique TA families with a reverse gene order. Moreover, we are proposing a hypothesis on the xre-cog2856 gene expression regulation, which seems to involve the c-di-AMP. This study aims for highlighting the significance of studying TAs in Geobacillus and facilitating future experimental research.
Collapse
|
23
|
Abstract
Mycofactocin (MFT) belongs to the class of ribosomally synthesized and posttranslationally modified peptides conserved in many Actinobacteria Mycobacterium tuberculosis assimilates cholesterol during chronic infection, and its in vitro growth in the presence of cholesterol requires most of the MFT biosynthesis genes (mftA, mftB, mftC, mftD, mftE, and mftF), although the reasons for this requirement remain unclear. To identify the function of MFT, we characterized MFT biosynthesis mutants constructed in Mycobacterium smegmatis, M. marinum, and M. tuberculosis We found that the growth deficit of mft deletion mutants in medium containing cholesterol-a phenotypic basis for gene essentiality prediction-depends on ethanol, a solvent used to solubilize cholesterol. Furthermore, functionality of MFT was strictly required for growth of free-living mycobacteria in ethanol and other primary alcohols. Among other genes encoding predicted MFT-associated dehydrogenases, MSMEG_6242 was indispensable for M. smegmatis ethanol assimilation, suggesting that it is a candidate catalytic interactor with MFT. Despite being a poor growth substrate, ethanol treatment resulted in a reductive cellular state with NADH accumulation in M. tuberculosis During ethanol treatment, mftC mutant expressed the transcriptional signatures that are characteristic of respirational dysfunction and a redox-imbalanced cellular state. Counterintuitively, there were no differences in cellular bioenergetics and redox parameters in mftC mutant cells treated with ethanol. Therefore, further understanding of the function of MFT in ethanol metabolism is required to identify the cause of growth retardation of MFT mutants in cholesterol. Nevertheless, our results establish the physiological role of MFT and also provide new insights into the specific functions of MFT homologs in other actinobacterial systems.IMPORTANCE Tuberculosis is caused by Mycobacterium tuberculosis, and the increasing emergence of multidrug-resistant strains renders current treatment options ineffective. Although new antimycobacterial drugs are urgently required, their successful development often relies on complete understanding of the metabolic pathways-e.g., cholesterol assimilation-that are critical for persistence and for pathogenesis of M. tuberculosis In this regard, mycofactocin (MFT) function appears to be important because its biosynthesis genes are predicted to be essential for M. tuberculosis in vitro growth in cholesterol. In determining the metabolic basis of this genetic requirement, our results unexpectedly revealed the essential function of MFT in ethanol metabolism. The metabolic dysfunction thereof was found to affect the mycobacterial growth in cholesterol which is solubilized by ethanol. This knowledge is fundamental in recognizing the bona fide function of MFT, which likely resembles the pyrroloquinoline quinone-dependent ethanol oxidation in acetic acid bacteria exploited for industrial production of vinegar.
Collapse
|
24
|
Tandon H, Sharma A, Wadhwa S, Varadarajan R, Singh R, Srinivasan N, Sandhya S. Bioinformatic and mutational studies of related toxin-antitoxin pairs in Mycobacterium tuberculosis predict and identify key functional residues. J Biol Chem 2019; 294:9048-9063. [PMID: 31018964 DOI: 10.1074/jbc.ra118.006814] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 04/23/2019] [Indexed: 12/17/2022] Open
Abstract
Mycobacterium tuberculosis possesses an unusually large representation of type II toxin-antitoxin (TA) systems, whose functions and targets are mostly unknown. To better understand the basis of their unique expansion and to probe putative functional similarities among these systems, here we computationally and experimentally investigated their sequence relationships. Bioinformatic and phylogenetic investigations revealed that 51 sequences of the VapBC toxin family group into paralogous sub-clusters. On the basis of conserved sequence fingerprints within paralogues, we predicted functional residues and residues at the putative TA interface that are useful to evaluate TA interactions. Substitution of these likely functional residues abolished the toxin's growth-inhibitory activity. Furthermore, conducting similarity searches in 101 mycobacterial and ∼4500 other prokaryotic genomes, we assessed the relative conservation of the M. tuberculosis TA systems and found that most TA orthologues are well-conserved among the members of the M. tuberculosis complex, which cause tuberculosis in animal hosts. We found that soil-inhabiting, free-living Actinobacteria also harbor as many as 12 TA pairs. Finally, we identified five novel putative TA modules in M. tuberculosis. For one of them, we demonstrate that overexpression of the putative toxin, Rv2514c, induces bacteriostasis and that co-expression of the cognate antitoxin Rv2515c restores bacterial growth. Taken together, our findings reveal that toxin sequences are more closely related than antitoxin sequences in M. tuberculosis Furthermore, the identification of additional TA systems reported here expands the known repertoire of TA systems in M. tuberculosis.
Collapse
Affiliation(s)
- Himani Tandon
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore-560012 and
| | - Arun Sharma
- the Tuberculosis Research Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, P. O. Box 4, Faridabad, Haryana-121001, India
| | - Saruchi Wadhwa
- the Tuberculosis Research Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, P. O. Box 4, Faridabad, Haryana-121001, India
| | - Raghavan Varadarajan
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore-560012 and
| | - Ramandeep Singh
- the Tuberculosis Research Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, P. O. Box 4, Faridabad, Haryana-121001, India
| | | | - Sankaran Sandhya
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore-560012 and
| |
Collapse
|
25
|
Li M, Müller C, Fröhlich K, Gorka O, Zhang L, Groß O, Schilling O, Einsle O, Jessen-Trefzer C. Detection and Characterization of a Mycobacterial L-Arabinofuranose ABC Transporter Identified with a Rapid Lipoproteomics Protocol. Cell Chem Biol 2019; 26:852-862.e6. [PMID: 31006617 DOI: 10.1016/j.chembiol.2019.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/23/2018] [Accepted: 03/01/2019] [Indexed: 02/06/2023]
Abstract
Nutrient uptake is essential for survival of organisms, and carbohydrates serve as a crucial carbon and energy source for most microorganisms. Given the importance of mycobacteria as human pathogens a detailed knowledge of carbohydrate uptake transporters is highly desirable, but currently available information is severely limited and mainly based on in silico analyses. Moreover, there is only very little data available on the in vitro characterization of carbohydrate transporters from mycobacterial species. To overcome these significant limitations there is a strong demand for innovative approaches to experimentally match substrates to ATP-binding cassette (ABC) transporters in a straightforward manner. Our study focuses on the model organism Mycobacterium smegmatis and identifies a mycobacterial ABC transport system based on a rapid label-free mass spectrometry lipoproteomics assay with broad applicability. Further validation and X-ray structure analyses reveal a highly selective mycobacterial L-arabinose uptake system.
Collapse
Affiliation(s)
- Miaomiao Li
- Department of Pharmaceutical Biology and Biotechnology, Faculty of Chemistry and Pharmacy, University of Freiburg, Stefan-Meier-Straße 19, 79104 Freiburg, Germany
| | - Christoph Müller
- Institute of Biochemistry, Faculty of Chemistry and Pharmacy, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| | - Klemens Fröhlich
- Institute of Surgical Pathology, Faculty of Medicine, University of Freiburg, Breisacher Straße 115A, 79106 Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University Freiburg, Albertstraße 19A, 79104 Freiburg, Germany
| | - Oliver Gorka
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Breisacher Straße 66, 79106 Freiburg, Germany
| | - Lin Zhang
- Institute of Biochemistry, Faculty of Chemistry and Pharmacy, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| | - Olaf Groß
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Breisacher Straße 66, 79106 Freiburg, Germany
| | - Oliver Schilling
- Institute of Surgical Pathology, Faculty of Medicine, University of Freiburg, Breisacher Straße 115A, 79106 Freiburg, Germany
| | - Oliver Einsle
- Institute of Biochemistry, Faculty of Chemistry and Pharmacy, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany; BIOSS Centre for Biological Signaling Studies, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Claudia Jessen-Trefzer
- Department of Pharmaceutical Biology and Biotechnology, Faculty of Chemistry and Pharmacy, University of Freiburg, Stefan-Meier-Straße 19, 79104 Freiburg, Germany.
| |
Collapse
|
26
|
Cintrón M, Zeng JM, Barth VC, Cruz JW, Husson RN, Woychik NA. Accurate target identification for Mycobacterium tuberculosis endoribonuclease toxins requires expression in their native host. Sci Rep 2019; 9:5949. [PMID: 30976025 PMCID: PMC6459853 DOI: 10.1038/s41598-019-41548-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/01/2019] [Indexed: 01/18/2023] Open
Abstract
The Mycobacterium tuberculosis genome harbors an unusually high number of toxin-antitoxin (TA) systems. These TA systems have been implicated in establishing the nonreplicating persistent state of this pathogen during latent tuberculosis infection. More than half of the M. tuberculosis TA systems belong to the VapBC (virulence associated protein) family. In this work, we first identified the RNA targets for the M. tuberculosis VapC-mt11 (VapC11, Rv1561) toxin in vitro to learn more about the general function of this family of toxins. Recombinant VapC-mt11 cleaved 15 of the 45 M. tuberculosis tRNAs at a single site within their anticodon stem loop (ASL) to generate tRNA halves. Cleavage was dependent on the presence of a GG consensus sequence immediately before the cut site and a structurally intact ASL. However, in striking contrast to the broad enzyme activity exhibited in vitro, we used a specialized RNA-seq method to demonstrate that tRNA cleavage was highly specific in vivo. Expression of VapC-mt11 in M. tuberculosis resulted in cleavage of only two tRNA isoacceptors containing the GG consensus sequence, tRNAGln32-CUG and tRNALeu3-CAG. Therefore, our results indicate that although in vitro studies are useful for identification of the class of RNA cleaved and consensus sequences required for accurate substrate recognition by endoribonuclease toxins, definitive RNA target identification requires toxin expression in their native host. The restricted in vivo specificity of VapC-mt11 suggests that it may be enlisted to surgically manipulate pathogen physiology in response to stress.
Collapse
Affiliation(s)
- Melvilí Cintrón
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Ju-Mei Zeng
- Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, MA, 02115, USA
| | - Valdir C Barth
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Jonathan W Cruz
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Robert N Husson
- Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, MA, 02115, USA
| | - Nancy A Woychik
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA. .,Member, Rutgers Cancer Institute of New Jersey, Piscataway, 08854, USA.
| |
Collapse
|
27
|
VapC proteins from Mycobacterium tuberculosis share ribonuclease sequence specificity but differ in regulation and toxicity. PLoS One 2018; 13:e0203412. [PMID: 30169502 PMCID: PMC6118392 DOI: 10.1371/journal.pone.0203412] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/20/2018] [Indexed: 12/17/2022] Open
Abstract
The chromosome of Mycobacterium tuberculosis (Mtb) contains a large number of Type II toxin-antitoxin (TA) systems. The majority of these belong to the VapBC TA family, characterised by the VapC protein consisting of a PIN domain with four conserved acidic residues, and proposed ribonuclease activity. Characterisation of five VapC (VapC1, 19, 27, 29 and 39) proteins from various regions of the Mtb chromosome using a combination of pentaprobe RNA sequences and mass spectrometry revealed a shared ribonuclease sequence-specificity with a preference for UAGG sequences. The TA complex VapBC29 is auto-regulatory and interacts with inverted repeat sequences in the vapBC29 promoter, whereas complexes VapBC1 and VapBC27 display no auto-regulatory properties. The difference in regulation could be due to the different properties of the VapB proteins, all of which belong to different VapB protein families. Regulation of the vapBC29 operon is specific, no cross-talk among Type II TA systems was observed. VapC29 is bacteriostatic when expressed in Mycobacterium smegmatis, whereas VapC1 and VapC27 displayed no toxicity upon expression in M. smegmatis. The shared sequence specificity of the five VapC proteins characterised is intriguing, we propose that the differences observed in regulation and toxicity is the key to understanding the role of these TA systems in the growth and persistence of Mtb.
Collapse
|
28
|
Zaychikova MV, Mikheecheva NE, Belay YO, Alekseeva MG, Melerzanov AV, Danilenko VN. Single nucleotide polymorphisms of Beijing lineage Mycobacterium tuberculosis toxin-antitoxin system genes: Their role in the changes of protein activity and evolution. Tuberculosis (Edinb) 2018; 112:11-19. [PMID: 30205962 DOI: 10.1016/j.tube.2018.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 06/07/2018] [Accepted: 06/09/2018] [Indexed: 11/26/2022]
Abstract
The article investigates SNP in genes of toxin-antitoxin systems type II in Mycobacterium tuberculosis Beijing lineage strains and their possible role in the development and formation of new sublineages. We established the catalog of SNPs in 142 TA systems genes in 1349 sequenced genomes of the M. tuberculosis Beijing lineage. Based on the catalog, 15 new sublineages were identified as part of Beijing lineages by non-synonymous SNP in 21 genes of TA systems. We discovered three toxin genes with mutations specific for epidemiologically dangerous sublineages Beijing-modern (vapC37 A46G, vapC38 T143C) and Beijing-B0/W148 (vapC12 A95G). We proved the functional significance of these polymorphisms by cloning these genes wild-type and with marker mutations for the Beijing lineage vapC12 (A95G), vapC37 (A46G), vapC38 (T143C). In vitro study of their activities revealed effect of mutations on the RNase activity of toxin proteins. Mutations in vapC37 and vapC38 decreased toxin activity, and mutation in the vapC12 increased it. We cloned the toxin vapC37 gene of Mycobacterium smegmatis mc2 155 in both allelic variants: without mutation and with A46G mutation, specific for the Beijing-modern lineage. It was shown that this mutation leads to a loss of toxicity.
Collapse
Affiliation(s)
- M V Zaychikova
- Vavilov Institute of General Genetics, Gubkina Str. 3, Moscow, 119333, Russian Federation.
| | - N E Mikheecheva
- Vavilov Institute of General Genetics, Gubkina Str. 3, Moscow, 119333, Russian Federation; Moscow Institute of Physics and Technology, 9 Institutskiy per, Dolgoprudny, Moscow Region, 141701, Russian Federation.
| | - Y O Belay
- Vavilov Institute of General Genetics, Gubkina Str. 3, Moscow, 119333, Russian Federation.
| | - M G Alekseeva
- Vavilov Institute of General Genetics, Gubkina Str. 3, Moscow, 119333, Russian Federation.
| | - A V Melerzanov
- Moscow Institute of Physics and Technology, 9 Institutskiy per, Dolgoprudny, Moscow Region, 141701, Russian Federation.
| | - V N Danilenko
- Vavilov Institute of General Genetics, Gubkina Str. 3, Moscow, 119333, Russian Federation.
| |
Collapse
|
29
|
Deep A, Kaundal S, Agarwal S, Singh R, Thakur KG. Crystal structure of Mycobacterium tuberculosis
VapC20 toxin and its interactions with cognate antitoxin, VapB20, suggest a model for toxin-antitoxin assembly. FEBS J 2017; 284:4066-4082. [DOI: 10.1111/febs.14289] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 09/19/2017] [Accepted: 10/03/2017] [Indexed: 11/27/2022]
Affiliation(s)
- Amar Deep
- Structural Biology Laboratory; G. N. Ramachandran Protein Centre; Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH); Chandigarh India
| | - Soni Kaundal
- Structural Biology Laboratory; G. N. Ramachandran Protein Centre; Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH); Chandigarh India
| | - Sakshi Agarwal
- Vaccine and Infectious Disease Research Centre; Translational Health Science and Technology Institute; NCR-Biotech Science Cluster; Faridabad India
| | - Ramandeep Singh
- Vaccine and Infectious Disease Research Centre; Translational Health Science and Technology Institute; NCR-Biotech Science Cluster; Faridabad India
| | - Krishan Gopal Thakur
- Structural Biology Laboratory; G. N. Ramachandran Protein Centre; Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH); Chandigarh India
| |
Collapse
|
30
|
Thakur Z, Saini V, Arya P, Kumar A, Mehta PK. Computational insights into promoter architecture of toxin-antitoxin systems of Mycobacterium tuberculosis. Gene 2017; 641:161-171. [PMID: 29066303 DOI: 10.1016/j.gene.2017.10.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/27/2017] [Accepted: 10/16/2017] [Indexed: 12/16/2022]
Abstract
Toxin-antitoxin (TA) systems are two component genetic modules widespread in many bacterial genomes, including Mycobacterium tuberculosis (Mtb). The TA systems play a significant role in biofilm formation, antibiotic tolerance and persistence of pathogen inside the host cells. Deciphering regulatory motifs of Mtb TA systems is the first essential step to understand their transcriptional regulation. In this study, in silico approaches, that is, the knowledge based motif discovery and de novo motif discovery were used to identify the regulatory motifs of 79 Mtb TA systems. The knowledge based motif discovery approach was used to design a Perl based bio-tool Mtb-sig-miner available at (https://github.com/zoozeal/Mtb-sig-miner), which could successfully detect sigma (σ) factor specific regulatory motifs in the promoter region of Mtb TA modules. The manual curation of Mtb-sig-miner output hits revealed that the majority of them possessed σB regulatory motif in their promoter region. On the other hand, de novo approach resulted in the identification of a novel conserved motif [(T/A)(G/T)NTA(G/C)(C/A)AT(C/A)] within the promoter region of 14 Mtb TA systems. The identified conserved motif was also validated for its activity as conserved core region of operator sequence of corresponding TA system by molecular docking studies. The strong binding of respective antitoxin/toxin with the identified novel conserved motif reflected the validation of identified motif as the core region of operator sequence of respective TA systems. These findings provide computational insight to understand the transcriptional regulation of Mtb TA systems.
Collapse
Affiliation(s)
- Zoozeal Thakur
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Vandana Saini
- Toxicology & Computational Biology Group, Centre for Bioinformatics, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Preeti Arya
- National Agri-Food Biotechnology Institute, Sector 81, S.A.S Nagar, Mohali, Punjab 140306, India
| | - Ajit Kumar
- Toxicology & Computational Biology Group, Centre for Bioinformatics, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| | - Promod K Mehta
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|
31
|
Matelska D, Steczkiewicz K, Ginalski K. Comprehensive classification of the PIN domain-like superfamily. Nucleic Acids Res 2017; 45:6995-7020. [PMID: 28575517 PMCID: PMC5499597 DOI: 10.1093/nar/gkx494] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 05/24/2017] [Indexed: 12/21/2022] Open
Abstract
PIN-like domains constitute a widespread superfamily of nucleases, diverse in terms of the reaction mechanism, substrate specificity, biological function and taxonomic distribution. Proteins with PIN-like domains are involved in central cellular processes, such as DNA replication and repair, mRNA degradation, transcription regulation and ncRNA maturation. In this work, we identify and classify the most complete set of PIN-like domains to provide the first comprehensive analysis of sequence–structure–function relationships within the whole PIN domain-like superfamily. Transitive sequence searches using highly sensitive methods for remote homology detection led to the identification of several new families, including representatives of Pfam (DUF1308, DUF4935) and CDD (COG2454), and 23 other families not classified in the public domain databases. Further sequence clustering revealed relationships between individual sequence clusters and showed heterogeneity within some families, suggesting a possible functional divergence. With five structural groups, 70 defined clusters, over 100,000 proteins, and broad biological functions, the PIN domain-like superfamily constitutes one of the largest and most diverse nuclease superfamilies. Detailed analyses of sequences and structures, domain architectures, and genomic contexts allowed us to predict biological function of several new families, including new toxin-antitoxin components, proteins involved in tRNA/rRNA maturation and transcription/translation regulation.
Collapse
Affiliation(s)
- Dorota Matelska
- University of Warsaw, CeNT, Laboratory of Bioinformatics and Systems Biology, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Kamil Steczkiewicz
- University of Warsaw, CeNT, Laboratory of Bioinformatics and Systems Biology, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Krzysztof Ginalski
- University of Warsaw, CeNT, Laboratory of Bioinformatics and Systems Biology, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| |
Collapse
|
32
|
Klimina KM, Poluektova EU, Danilenko VN. Bacterial toxin–antitoxin systems: Properties, functional significance, and possibility of use (Review). APPL BIOCHEM MICRO+ 2017. [DOI: 10.1134/s0003683817050076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Abstract
The interaction between the host and the pathogen is extremely complex and is affected by anatomical, physiological, and immunological diversity in the microenvironments, leading to phenotypic diversity of the pathogen. Phenotypic heterogeneity, defined as nongenetic variation observed in individual members of a clonal population, can have beneficial consequences especially in fluctuating stressful environmental conditions. This is all the more relevant in infections caused by Mycobacterium tuberculosis wherein the pathogen is able to survive and often establish a lifelong persistent infection in the host. Recent studies in tuberculosis patients and in animal models have documented the heterogeneous and diverging trajectories of individual lesions within a single host. Since the fate of the individual lesions appears to be determined by the local tissue environment rather than systemic response of the host, studying this heterogeneity is very relevant to ensure better control and complete eradication of the pathogen from individual lesions. The heterogeneous microenvironments greatly enhance M. tuberculosis heterogeneity influencing the growth rates, metabolic potential, stress responses, drug susceptibility, and eventual lesion resolution. Single-cell approaches such as time-lapse microscopy using microfluidic devices allow us to address cell-to-cell variations that are often lost in population-average measurements. In this review, we focus on some of the factors that could be considered as drivers of phenotypic heterogeneity in M. tuberculosis as well as highlight some of the techniques that are useful in addressing this issue.
Collapse
|
34
|
Gupta A, Venkataraman B, Vasudevan M, Gopinath Bankar K. Co-expression network analysis of toxin-antitoxin loci in Mycobacterium tuberculosis reveals key modulators of cellular stress. Sci Rep 2017; 7:5868. [PMID: 28724903 PMCID: PMC5517426 DOI: 10.1038/s41598-017-06003-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 06/07/2017] [Indexed: 11/09/2022] Open
Abstract
Research on toxin-antitoxin loci (TA loci) is gaining impetus due to their ubiquitous presence in bacterial genomes and their observed roles in stress survival, persistence and drug tolerance. The present study investigates the expression profile of all the seventy-nine TA loci found in Mycobacterium tuberculosis. The bacterium was subjected to multiple stress conditions to identify key players of cellular stress response and elucidate a TA-coexpression network. This study provides direct experimental evidence for transcriptional activation of each of the seventy-nine TA loci following mycobacterial exposure to growth-limiting environments clearly establishing TA loci as stress-responsive modules in M. tuberculosis. TA locus activation was found to be stress-specific with multiple loci activated in a duration-based response to a particular stress. Conditions resulting in arrest of cellular translation led to greater up-regulation of TA genes suggesting that TA loci have a primary role in arresting translation in the cell. Our study identifed higBA2 and vapBC46 as key loci that were activated in all the conditions tested. Besides, relBE1, higBA3, vapBC35, vapBC22 and higBA1 were also upregulated in multpile stresses. Certain TA modules exhibited co-activation across multiple conditions suggestive of a common regulatory mechanism.
Collapse
Affiliation(s)
- Amita Gupta
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India. .,Department of Biochemistry and Centre for Innovation in Infectious Diseases Research, Education and Training (CIIDRET), University of Delhi South Campus, New Delhi, 110021, India.
| | - Balaji Venkataraman
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Madavan Vasudevan
- Genome Informatics Research Group, Bionivid Technology Pvt Ltd, Bengaluru, 560043, India
| | - Kiran Gopinath Bankar
- Genome Informatics Research Group, Bionivid Technology Pvt Ltd, Bengaluru, 560043, India
| |
Collapse
|
35
|
Mukherjee A, Wheaton GH, Counts JA, Ijeomah B, Desai J, Kelly RM. VapC toxins drive cellular dormancy under uranium stress for the extreme thermoacidophile Metallosphaera prunae. Environ Microbiol 2017; 19:2831-2842. [PMID: 28585353 DOI: 10.1111/1462-2920.13808] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/29/2017] [Indexed: 11/28/2022]
Abstract
When abruptly exposed to toxic levels of hexavalent uranium, the extremely thermoacidophilic archaeon Metallosphaera prunae, originally isolated from an abandoned uranium mine, ceased to grow, and concomitantly exhibited heightened levels of cytosolic ribonuclease activity that corresponded to substantial degradation of cellular RNA. The M. prunae transcriptome during 'uranium-shock' implicated VapC toxins as possible causative agents of the observed RNA degradation. Identifiable VapC toxins and PIN-domain proteins encoded in the M. prunae genome were produced and characterized, three of which (VapC4, VapC7, VapC8) substantially degraded M. prunae rRNA in vitro. RNA cleavage specificity for these VapCs mapped to motifs within M. prunae rRNA. Furthermore, based on frequency of cleavage sequences, putative target mRNAs for these VapCs were identified; these were closely associated with translation, transcription, and replication. It is interesting to note that Metallosphaera sedula, a member of the same genus and which has a nearly identical genome sequence but not isolated from a uranium-rich biotope, showed no evidence of dormancy when exposed to this metal. M. prunae utilizes VapC toxins for post-transcriptional regulation under uranium stress to enter a cellular dormant state, thereby providing an adaptive response to what would otherwise be a deleterious environmental perturbation.
Collapse
Affiliation(s)
- Arpan Mukherjee
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Garrett H Wheaton
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | - James A Counts
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Brenda Ijeomah
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Jigar Desai
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| |
Collapse
|
36
|
Monitoring global protein thiol-oxidation and protein S-mycothiolation in Mycobacterium smegmatis under hypochlorite stress. Sci Rep 2017; 7:1195. [PMID: 28446771 PMCID: PMC5430705 DOI: 10.1038/s41598-017-01179-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/24/2017] [Indexed: 11/16/2022] Open
Abstract
Mycothiol (MSH) is the major low molecular weight (LMW) thiol in Actinomycetes. Here, we used shotgun proteomics, OxICAT and RNA-seq transcriptomics to analyse protein S-mycothiolation, reversible thiol-oxidations and their impact on gene expression in Mycobacterium smegmatis under hypochlorite stress. In total, 58 S-mycothiolated proteins were identified under NaOCl stress that are involved in energy metabolism, fatty acid and mycolic acid biosynthesis, protein translation, redox regulation and detoxification. Protein S-mycothiolation was accompanied by MSH depletion in the thiol-metabolome. Quantification of the redox state of 1098 Cys residues using OxICAT revealed that 381 Cys residues (33.6%) showed >10% increased oxidations under NaOCl stress, which overlapped with 40 S-mycothiolated Cys-peptides. The absence of MSH resulted in a higher basal oxidation level of 338 Cys residues (41.1%). The RseA and RshA anti-sigma factors and the Zur and NrdR repressors were identified as NaOCl-sensitive proteins and their oxidation resulted in an up-regulation of the SigH, SigE, Zur and NrdR regulons in the RNA-seq transcriptome. In conclusion, we show here that NaOCl stress causes widespread thiol-oxidation including protein S-mycothiolation resulting in induction of antioxidant defense mechanisms in M. smegmatis. Our results further reveal that MSH is important to maintain the reduced state of protein thiols.
Collapse
|
37
|
Masuda H, Inouye M. Toxins of Prokaryotic Toxin-Antitoxin Systems with Sequence-Specific Endoribonuclease Activity. Toxins (Basel) 2017; 9:toxins9040140. [PMID: 28420090 PMCID: PMC5408214 DOI: 10.3390/toxins9040140] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/09/2017] [Accepted: 04/10/2017] [Indexed: 01/21/2023] Open
Abstract
Protein translation is the most common target of toxin-antitoxin system (TA) toxins. Sequence-specific endoribonucleases digest RNA in a sequence-specific manner, thereby blocking translation. While past studies mainly focused on the digestion of mRNA, recent analysis revealed that toxins can also digest tRNA, rRNA and tmRNA. Purified toxins can digest single-stranded portions of RNA containing recognition sequences in the absence of ribosome in vitro. However, increasing evidence suggests that in vivo digestion may occur in association with ribosomes. Despite the prevalence of recognition sequences in many mRNA, preferential digestion seems to occur at specific positions within mRNA and also in certain reading frames. In this review, a variety of tools utilized to study the nuclease activities of toxins over the past 15 years will be reviewed. A recent adaptation of an RNA-seq-based technique to analyze entire sets of cellular RNA will be introduced with an emphasis on its strength in identifying novel targets and redefining recognition sequences. The differences in biochemical properties and postulated physiological roles will also be discussed.
Collapse
Affiliation(s)
- Hisako Masuda
- School of Sciences, Indiana University Kokomo, Kokomo, IN 46902, USA.
| | - Masayori Inouye
- Department of Biochemistry, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08854, USA.
| |
Collapse
|
38
|
Coray DS, Wheeler NE, Heinemann JA, Gardner PP. Why so narrow: Distribution of anti-sense regulated, type I toxin-antitoxin systems compared with type II and type III systems. RNA Biol 2017; 14:275-280. [PMID: 28067598 PMCID: PMC5367252 DOI: 10.1080/15476286.2016.1272747] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Toxin-antitoxin (TA) systems are gene modules that appear to be horizontally mobile across a wide range of prokaryotes. It has been proposed that type I TA systems, with an antisense RNA-antitoxin, are less mobile than other TAs that rely on direct toxin-antitoxin binding but no direct comparisons have been made. We searched for type I, II and III toxin families using iterative searches with profile hidden Markov models across phyla and replicons. The distribution of type I toxin families were comparatively narrow, but these patterns weakened with recently discovered families. We discuss how the function and phenotypes of TA systems as well as biases in our search methods may account for differences in their distribution.
Collapse
Affiliation(s)
- Dorien S Coray
- a School of Biological Sciences, University of Canterbury, Canterbury , Christchurch , New Zealand
| | - Nicole E Wheeler
- a School of Biological Sciences, University of Canterbury, Canterbury , Christchurch , New Zealand
| | - Jack A Heinemann
- a School of Biological Sciences, University of Canterbury, Canterbury , Christchurch , New Zealand.,b Centre for Integrative Ecology, University of Canterbury, Canterbury , Christchurch , New Zealand
| | - Paul P Gardner
- a School of Biological Sciences, University of Canterbury, Canterbury , Christchurch , New Zealand.,c Biomolecular Interaction Centre, University of Canterbury, Canterbury , Christchurch , New Zealand
| |
Collapse
|
39
|
Kim Y, Choi E, Hwang J. Functional Studies of Five Toxin-Antitoxin Modules in Mycobacterium tuberculosis H37Rv. Front Microbiol 2016; 7:2071. [PMID: 28066388 PMCID: PMC5175181 DOI: 10.3389/fmicb.2016.02071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 12/07/2016] [Indexed: 11/25/2022] Open
Abstract
Toxin–antitoxin (TA) systems, which consist of an intracellular toxin and its antidote (antitoxin), are encoded by ubiquitous genetic modules in prokaryotes. Commonly, the activity of a toxin is inhibited by its antitoxin under normal growth conditions. However, antitoxins are degraded in response to environmental stress, and toxins liberated from antitoxins consequently induce cell death or growth arrest. In free-living prokaryotes, TA systems are often present in large numbers and are considered to be associated with the adaptation of pathogenic bacteria or extremophiles to various unfavorable environments by shifting cells to a slow growth rate. Genomic analysis of the human pathogen Mycobacterium tuberculosis H37Rv (Mtb) revealed the presence of a large number of TA systems. Accordingly, we investigated five uncharacterized TA systems (Rv2019-Rv2018, Rv3697c-Rv3697A, Rv3180c-Rv3181c, Rv0299-Rv0298, and Rv3749c-Rv3750c) of Mtb. Among these, the expression of the Rv2019 toxin inhibited the growth of Escherichia coli, and M. smegmatis and this growth defect was recovered by the expression of the Rv2018 antitoxin. Interestingly, Rv3180c was toxic only in M. smegmatis, whose toxicity was neutralized by Rv3181c antitoxin. In vivo and in vitro assays revealed the ribosomal RNA (rRNA) cleavage activity of the Rv2019 toxin. Moreover, mRNAs appeared to be substrates of Rv2019. Therefore, we concluded that the ribonuclease activity of the Rv2019 toxin triggers the growth defect in E. coli and that the Rv2018 antitoxin inhibits the ribonuclease activity of the Rv2019 toxin.
Collapse
Affiliation(s)
- Yoonji Kim
- Department of Microbiology, Pusan National University Busan, Republic of Korea
| | - Eunsil Choi
- Department of Microbiology, Pusan National University Busan, Republic of Korea
| | - Jihwan Hwang
- Department of Microbiology, Pusan National University Busan, Republic of Korea
| |
Collapse
|
40
|
Demidenok OI, Shumkov MS, Goncharenko AV. VapC toxin inhibition as a method for prevention of the formation of resting forms of mycobacteria. APPL BIOCHEM MICRO+ 2016. [DOI: 10.1134/s0003683816060041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
41
|
Lobato-Márquez D, Díaz-Orejas R, García-Del Portillo F. Toxin-antitoxins and bacterial virulence. FEMS Microbiol Rev 2016; 40:592-609. [PMID: 27476076 DOI: 10.1093/femsre/fuw022] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2016] [Indexed: 12/25/2022] Open
Abstract
Bacterial virulence relies on a delicate balance of signals interchanged between the invading microbe and the host. This communication has been extensively perceived as a battle involving harmful molecules produced by the pathogen and host defenses. In this review, we focus on a largely unexplored element of this dialogue, as are toxin-antitoxin (TA) systems of the pathogen. TA systems are reported to respond to stresses that are also found in the host and, as a consequence, could modulate the physiology of the intruder microbe. This view is consistent with recent studies that demonstrate a contribution of distinct TA systems to virulence since their absence alters the course of the infection. TA loci are stress response modules that, therefore, could readjust pathogen metabolism to favor the generation of slow-growing or quiescent cells 'before' host defenses irreversibly block essential pathogen activities. Some toxins of these TA modules have been proposed as potential weapons used by the pathogen to act on host targets. We discuss all these aspects based on studies that support some TA modules as important regulators in the pathogen-host interface.
Collapse
Affiliation(s)
- Damián Lobato-Márquez
- Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Darwin 3, 28049 Madrid, Spain Centro de Investigaciones Biológicas-CSIC (CIB-CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Ramón Díaz-Orejas
- Centro de Investigaciones Biológicas-CSIC (CIB-CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Francisco García-Del Portillo
- Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| |
Collapse
|
42
|
Characterization of the Deep-Sea Streptomyces sp. SCSIO 02999 Derived VapC/VapB Toxin-Antitoxin System in Escherichia coli. Toxins (Basel) 2016; 8:toxins8070195. [PMID: 27376329 PMCID: PMC4963828 DOI: 10.3390/toxins8070195] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 06/13/2016] [Accepted: 06/20/2016] [Indexed: 11/16/2022] Open
Abstract
Toxin-antitoxin (TA) systems are small genetic elements that are ubiquitous in prokaryotes. Most studies on TA systems have focused on commensal and pathogenic bacteria; yet very few studies have focused on TAs in marine bacteria, especially those isolated from a deep sea environment. Here, we characterized a type II VapC/VapB TA system from the deep-sea derived Streptomyces sp. SCSIO 02999. The VapC (virulence-associated protein) protein belongs to the PIN (PilT N-terminal) superfamily. Overproduction of VapC strongly inhibited cell growth and resulted in a bleb-containing morphology in E. coli. The toxicity of VapC was neutralized through direct protein-protein interaction by a small protein antitoxin VapB encoded by a neighboring gene. Antitoxin VapB alone or the VapB/VapC complex negatively regulated the vapBC promoter activity. We further revealed that three conserved Asp residues in the PIN domain were essential for the toxic effect of VapC. Additionally, the VapC/VapB TA system stabilized plasmid in E. coli. Furthermore, VapC cross-activated transcription of several TA operons via a partially Lon-dependent mechanism in E. coli, and the activated toxins accumulated more preferentially than their antitoxin partners. Collectively, we identified and characterized a new deep sea TA system in the deep sea Streptomyces sp. and demonstrated that the VapC toxin in this system can cross-activate TA operons in E. coli.
Collapse
|
43
|
Lu Z, Wang H, Zhang A, Tan Y. The VapBC1 toxin-antitoxin complex from Mycobacterium tuberculosis: purification, crystallization and X-ray diffraction analysis. Acta Crystallogr F Struct Biol Commun 2016; 72:485-9. [PMID: 27303903 PMCID: PMC4909250 DOI: 10.1107/s2053230x16007603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/06/2016] [Indexed: 11/11/2022] Open
Abstract
Mycobacterium tuberculosis, a major human pathogen, encodes at least 88 toxin-antitoxin (TA) systems. Remarkably, more than half of these modules belong to the VapBC family. Under normal growth conditions, the toxicity of the toxin VapC is neutralized by the protein antitoxin VapB. When bacteria face an unfavourable environment, the antitoxin is degraded and the free toxin VapC targets important cellular processes in order to inhibit cell growth. TA systems function in many biological processes, such as in the stringent response, in biofilm formation and in drug tolerance. To explore the structure of the VapBC1 complex, the toxin VapC1 and the antitoxin VapB1 were separately cloned, co-expressed and crystallized. The best crystal was obtained using a crystallization solution consisting of optimized solution with commercial sparse-matrix screen solutions as additives. The crystal diffracted to a resolution of 2.7 Å and belonged to space group P21, with unit-cell parameters a = 59.3, b = 106.7, c = 250.0 Å, β = 93.75°.
Collapse
Affiliation(s)
- Zuokun Lu
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin City 300071, People’s Republic of China
| | - Han Wang
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin City 300071, People’s Republic of China
| | - Aili Zhang
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin City 300071, People’s Republic of China
| | - Yusheng Tan
- School of Life Sciences, Tianjin University, Tianjin City, People’s Republic of China
| |
Collapse
|
44
|
Coussens NP, Daines DA. Wake me when it's over - Bacterial toxin-antitoxin proteins and induced dormancy. Exp Biol Med (Maywood) 2016; 241:1332-42. [PMID: 27216598 DOI: 10.1177/1535370216651938] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Toxin-antitoxin systems are encoded by bacteria and archaea to enable an immediate response to environmental stresses, including antibiotics and the host immune response. During normal conditions, the antitoxin components prevent toxins from interfering with metabolism and arresting growth; however, toxin activation enables microbes to remain dormant through unfavorable conditions that might continue over millions of years. Intense investigations have revealed a multitude of mechanisms for both regulation and activation of toxin-antitoxin systems, which are abundant in pathogenic microorganisms. This minireview provides an overview of the current knowledge regarding type II toxin-antitoxin systems along with their clinical and environmental implications.
Collapse
Affiliation(s)
- Nathan P Coussens
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Dayle A Daines
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA
| |
Collapse
|
45
|
Nguyen L. Antibiotic resistance mechanisms in M. tuberculosis: an update. Arch Toxicol 2016; 90:1585-604. [PMID: 27161440 DOI: 10.1007/s00204-016-1727-6] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 04/27/2016] [Indexed: 12/16/2022]
Abstract
Treatment of tuberculosis (TB) has been a therapeutic challenge because of not only the naturally high resistance level of Mycobacterium tuberculosis to antibiotics but also the newly acquired mutations that confer further resistance. Currently standardized regimens require patients to daily ingest up to four drugs under direct observation of a healthcare worker for a period of 6-9 months. Although they are quite effective in treating drug susceptible TB, these lengthy treatments often lead to patient non-adherence, which catalyzes for the emergence of M. tuberculosis strains that are increasingly resistant to the few available anti-TB drugs. The rapid evolution of M. tuberculosis, from mono-drug-resistant to multiple drug-resistant, extensively drug-resistant and most recently totally drug-resistant strains, is threatening to make TB once again an untreatable disease if new therapeutic options do not soon become available. Here, I discuss the molecular mechanisms by which M. tuberculosis confers its profound resistance to antibiotics. This knowledge may help in developing novel strategies for weakening drug resistance, thus enhancing the potency of available antibiotics against both drug susceptible and resistant M. tuberculosis strains.
Collapse
Affiliation(s)
- Liem Nguyen
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.
| |
Collapse
|
46
|
Flood BE, Fliss P, Jones DS, Dick GJ, Jain S, Kaster AK, Winkel M, Mußmann M, Bailey J. Single-Cell (Meta-)Genomics of a Dimorphic Candidatus Thiomargarita nelsonii Reveals Genomic Plasticity. Front Microbiol 2016; 7:603. [PMID: 27199933 PMCID: PMC4853749 DOI: 10.3389/fmicb.2016.00603] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/11/2016] [Indexed: 11/23/2022] Open
Abstract
The genus Thiomargarita includes the world's largest bacteria. But as uncultured organisms, their physiology, metabolism, and basis for their gigantism are not well understood. Thus, a genomics approach, applied to a single Candidatus Thiomargarita nelsonii cell was employed to explore the genetic potential of one of these enigmatic giant bacteria. The Thiomargarita cell was obtained from an assemblage of budding Ca. T. nelsonii attached to a provannid gastropod shell from Hydrate Ridge, a methane seep offshore of Oregon, USA. Here we present a manually curated genome of Bud S10 resulting from a hybrid assembly of long Pacific Biosciences and short Illumina sequencing reads. With respect to inorganic carbon fixation and sulfur oxidation pathways, the Ca. T. nelsonii Hydrate Ridge Bud S10 genome was similar to marine sister taxa within the family Beggiatoaceae. However, the Bud S10 genome contains genes suggestive of the genetic potential for lithotrophic growth on arsenite and perhaps hydrogen. The genome also revealed that Bud S10 likely respires nitrate via two pathways: a complete denitrification pathway and a dissimilatory nitrate reduction to ammonia pathway. Both pathways have been predicted, but not previously fully elucidated, in the genomes of other large, vacuolated, sulfur-oxidizing bacteria. Surprisingly, the genome also had a high number of unusual features for a bacterium to include the largest number of metacaspases and introns ever reported in a bacterium. Also present, are a large number of other mobile genetic elements, such as insertion sequence (IS) transposable elements and miniature inverted-repeat transposable elements (MITEs). In some cases, mobile genetic elements disrupted key genes in metabolic pathways. For example, a MITE interrupts hupL, which encodes the large subunit of the hydrogenase in hydrogen oxidation. Moreover, we detected a group I intron in one of the most critical genes in the sulfur oxidation pathway, dsrA. The dsrA group I intron also carried a MITE sequence that, like the hupL MITE family, occurs broadly across the genome. The presence of a high degree of mobile elements in genes central to Thiomargarita's core metabolism has not been previously reported in free-living bacteria and suggests a highly mutable genome.
Collapse
Affiliation(s)
- Beverly E Flood
- Department of Earth Sciences, University of Minnesota Minneapolis, MN, USA
| | - Palmer Fliss
- Department of Earth Sciences, University of Minnesota Minneapolis, MN, USA
| | - Daniel S Jones
- Department of Earth Sciences, University of MinnesotaMinneapolis, MN, USA; Biotechnology Institute, University of MinnesotaSt. Paul, MN, USA
| | - Gregory J Dick
- Department of Earth and Environmental Sciences, University of Michigan Ann Arbor, MI, USA
| | - Sunit Jain
- Department of Earth and Environmental Sciences, University of Michigan Ann Arbor, MI, USA
| | - Anne-Kristin Kaster
- German Collection of Microorganisms and Cell Cultures, Leibniz Institute DSMZ Braunschweig, Germany
| | - Matthias Winkel
- Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences Potsdam, Germany
| | - Marc Mußmann
- Max Planck Institute for Marine Microbiology Bremen, Germany
| | - Jake Bailey
- Department of Earth Sciences, University of Minnesota Minneapolis, MN, USA
| |
Collapse
|
47
|
Das S, Pettersson BMF, Behra PRK, Ramesh M, Dasgupta S, Bhattacharya A, Kirsebom LA. The Mycobacterium phlei Genome: Expectations and Surprises. Genome Biol Evol 2016; 8:975-85. [PMID: 26941228 PMCID: PMC4860684 DOI: 10.1093/gbe/evw049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2016] [Indexed: 11/15/2022] Open
Abstract
Mycobacterium phlei, a nontuberculosis mycobacterial species, was first described in 1898-1899. We present the complete genome sequence for theM. phlei CCUG21000(T)type strain and the draft genomes for four additional strains. The genome size for all five is 5.3 Mb with 69.4% Guanine-Cytosine content. This is ≈0.35 Mbp smaller than the previously reported M. phlei RIVM draft genome. The size difference is attributed partly to large bacteriophage sequence fragments in theM. phlei RIVM genome. Comparative analysis revealed the following: 1) A CRISPR system similar to Type 1E (cas3) in M. phlei RIVM; 2) genes involved in polyamine metabolism and transport (potAD,potF) that are absent in other mycobacteria, and 3) strain-specific variations in the number of σ-factor genes. Moreover,M. phlei has as many as 82 mce(mammalian cell entry) homologs and many of the horizontally acquired genes in M. phlei are present in other environmental bacteria including mycobacteria that share similar habitat. Phylogenetic analysis based on 693 Mycobacterium core genes present in all complete mycobacterial genomes suggested that its closest neighbor is Mycobacterium smegmatis JS623 and Mycobacterium rhodesiae NBB3, while it is more distant toM. smegmatis mc2 155.
Collapse
Affiliation(s)
- Sarbashis Das
- Department of Cell and Molecular Biology, Box 596, Biomedical Centre, Uppsala, Sweden
| | | | | | - Malavika Ramesh
- Department of Cell and Molecular Biology, Box 596, Biomedical Centre, Uppsala, Sweden
| | - Santanu Dasgupta
- Department of Cell and Molecular Biology, Box 596, Biomedical Centre, Uppsala, Sweden
| | - Alok Bhattacharya
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Leif A Kirsebom
- Department of Cell and Molecular Biology, Box 596, Biomedical Centre, Uppsala, Sweden
| |
Collapse
|
48
|
Shavit R, Lebendiker M, Pasternak Z, Burdman S, Helman Y. The vapB-vapC Operon of Acidovorax citrulli Functions as a Bona-fide Toxin-Antitoxin Module. Front Microbiol 2016; 6:1499. [PMID: 26779154 PMCID: PMC4701950 DOI: 10.3389/fmicb.2015.01499] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 12/11/2015] [Indexed: 01/01/2023] Open
Abstract
Toxin-antitoxin systems are commonly found on plasmids and chromosomes of bacteria and archaea. These systems appear as biscystronic genes encoding a stable toxin and a labile antitoxin, which protects the cells from the toxin's activity. Under specific, mostly stressful conditions, the unstable antitoxin is degraded, the toxin becomes active and growth is arrested. Using genome analysis we identified a putative toxin-antitoxin encoding system in the genome of the plant pathogen Acidovorax citrulli. The system is homologous to vapB-vapC systems from other bacterial species. PCR and phylogenetic analyses suggested that this locus is unique to group II strains of A. citrulli. Using biochemical and molecular analyses we show that A. citrulli VapBC module is a bona-fide toxin-antitoxin module in which VapC is a toxin with ribonuclease activity that can be counteracted by its cognate VapB antitoxin. We further show that transcription of the A. citrulli vapBC locus is induced by amino acid starvation, chloramphenicol and during plant infection. Due to the possible role of TA systems in both virulence and dormancy of human pathogenic bacteria, studies of these systems are gaining a lot of attention. Conversely, studies characterizing toxin-antitoxin systems in plant pathogenic bacteria are lacking. The study presented here validates the activity of VapB and VapC proteins in A. citrulli and suggests their involvement in stress response and host-pathogen interactions.
Collapse
Affiliation(s)
- Reut Shavit
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of JerusalemRehovot, Israel
| | - Mario Lebendiker
- Protein Purification Facility, Wolfson Centre for Applied Structural Biology, Edmund J. Safra Campus, The Hebrew University of JerusalemJerusalem, Israel
| | - Zohar Pasternak
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of JerusalemRehovot, Israel
| | - Saul Burdman
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of JerusalemRehovot, Israel
| | - Yael Helman
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of JerusalemRehovot, Israel
| |
Collapse
|
49
|
Abstract
Most bacterial toxins derived from chromosomally encoded toxin-antitoxin (TA) systems that have been studied to date appear to protect cells from relatively short pulses of stress by triggering a reversible state of growth arrest. In contrast to many bacterial toxins that are produced as defense mechanisms and secreted from their hosts, TA toxins exert their protective effect from within the cell that produces them. TA toxin-mediated growth arrest is most frequently achieved through their ability to selectively cleave RNA species that participate in protein synthesis. Until very recently, it was thought that the primary conduit for toxin-mediated translation inhibition was cleavage of a single class of RNA, mRNA, thus depleting transcripts and precluding production of essential proteins. This minireview focuses on how the development and implementation of a specialized RNA-seq method to study Mycobacterium tuberculosis TA systems enabled the identification of unexpected RNA targets for toxins, i.e. a handful of tRNAs that are cleaved into tRNA halves. Our result brings to light a new perspective on how these toxins may act in this pathogen and uncovers a striking parallel to signature features of the eukaryotic stress response.
Collapse
Affiliation(s)
- Jonathan W Cruz
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Nancy A Woychik
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| |
Collapse
|
50
|
Growth-regulating Mycobacterium tuberculosis VapC-mt4 toxin is an isoacceptor-specific tRNase. Nat Commun 2015; 6:7480. [PMID: 26158745 DOI: 10.1038/ncomms8480] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 05/13/2015] [Indexed: 11/09/2022] Open
Abstract
Toxin-antitoxin (TA) systems are implicated in the downregulation of bacterial cell growth associated with stress survival and latent tuberculosis infection, yet the activities and intracellular targets of these TA toxins are largely uncharacterized. Here, we use a specialized RNA-seq approach to identify targets of a Mycobacterium tuberculosis VapC TA toxin, VapC-mt4 (also known as VapC4), which have eluded detection using conventional approaches. Distinct from the one other characterized VapC toxin in M. tuberculosis that cuts 23S rRNA at the sarcin-ricin loop, VapC-mt4 selectively targets three of the 45 M. tuberculosis tRNAs (tRNA(Ala2), tRNA(Ser26) and tRNA(Ser24)) for cleavage at, or adjacent to, their anticodons, resulting in the generation of tRNA halves. While tRNA cleavage is sometimes enlisted as a bacterial host defense mechanism, VapC-mt4 instead alters specific tRNAs to inhibit translation and modulate growth. This stress-linked activity of VapC-mt4 mirrors basic features of eukaryotic tRNases that also generate tRNA halves and inhibit translation in response to stress.
Collapse
|