1
|
Yin J, Liu Y, He D, Li P, Qiao M, Luo H, Qu X, Mei S, Wu Y, Sun Y, Gan F, Tang B, Tang XF. A TrmBL2-like transcription factor mediates the growth phase-dependent expression of halolysin SptA in a concentration-dependent manner in Natrinema gari J7-2. Appl Environ Microbiol 2024; 90:e0074124. [PMID: 38953660 PMCID: PMC11267917 DOI: 10.1128/aem.00741-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/08/2024] [Indexed: 07/04/2024] Open
Abstract
To cope with a high-salinity environment, haloarchaea generally employ the twin-arginine translocation (Tat) pathway to transport secretory proteins across the cytoplasm membrane in a folded state, including Tat-dependent extracellular subtilases (halolysins) capable of autocatalytic activation. Some halolysins, such as SptA of Natrinema gari J7-2, are produced at late-log phase to prevent premature enzyme activation and proteolytic damage of cellular proteins in haloarchaea; however, the regulation mechanism for growth phase-dependent expression of halolysins remains largely unknown. In this study, a DNA-protein pull-down assay was performed to identify the proteins binding to the 5'-flanking sequence of sptA encoding halolysin SptA in strain J7-2, revealing a TrmBL2-like transcription factor (NgTrmBL2). The ΔtrmBL2 mutant of strain J7-2 showed a sharp decrease in the production of SptA, suggesting that NgTrmBL2 positively regulates sptA expression. The purified recombinant NgTrmBL2 mainly existed as a dimer although monomeric and higher-order oligomeric forms were detected by native-PAGE analysis. The results of electrophoretic mobility shift assays (EMSAs) showed that NgTrmBL2 binds to the 5'-flanking sequence of sptA in a non-specific and concentration-dependent manner and exhibits an increased DNA-binding affinity with the increase in KCl concentration. Moreover, we found that a distal cis-regulatory element embedded in the neighboring upstream gene negatively regulates trmBL2 expression and thus participates in the growth phase-dependent biosynthesis of halolysin SptA. IMPORTANCE Extracellular proteases play important roles in nutrient metabolism, processing of functional proteins, and antagonism of haloarchaea, but no transcription factor involved in regulating the expression of haloaechaeal extracellular protease has been reported yet. Here we report that a TrmBL2-like transcription factor (NgTrmBL2) mediates the growth phase-dependent expression of an extracellular protease, halolysin SptA, of haloarchaeon Natrinema gari J7-2. In contrast to its hyperthermophilic archaeal homologs, which are generally considered to be global transcription repressors, NgTrmBL2 functions as a positive regulator for sptA expression. This study provides new clues about the transcriptional regulation mechanism of extracellular protease in haloarchaea and the functional diversity of archaeal TrmBL2.
Collapse
Affiliation(s)
- Jing Yin
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yang Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Dan He
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ping Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Mengting Qiao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hongyi Luo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaoyi Qu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Sha Mei
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yi Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yiqi Sun
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Fei Gan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Wuhan, China
| | - Bing Tang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Wuhan, China
| | - Xiao-Feng Tang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Wuhan, China
| |
Collapse
|
2
|
Zhang S, Chen F, Ke J, Hao Y, Pan R, Hong T, Dai Y, Chen S. Hly176B, a low-salt tolerant halolysin from the haloarchaeon Haloarchaeobius sp. FL176. World J Microbiol Biotechnol 2023; 39:189. [PMID: 37157004 DOI: 10.1007/s11274-023-03632-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/26/2023] [Indexed: 05/10/2023]
Abstract
Extracellular proteases of haloarchaea can adapt to high concentrations of NaCl and can find useful applications in industrial or biotechnology processes where hypersaline conditions are desired. The diversity of extracellular proteases produced by haloarchaea is largely unknown though the genomes of many species have been sequenced and are publicly available. In this study, a gene encoding the extracellular protease Hly176B from the haloarchaeon Haloarchaeobius sp. FL176 was cloned and expressed in Escherichia coli. A related gene homolog to hly176B, hly176A, from the same strain was also expressed in E.coli, but did not show any proteinase activity after the same renaturation process. Therefore, we focus on the enzymatic properties of the Hly176B. The catalytic triad Asp-His-Ser was confirmed via site-directed mutagenesis, indicating that Hly176B belongs to the class of serine proteases (halolysin). Unlike previously reported extracellular proteases from haloarchaea, the Hly176B remained active for a relatively long time in an almost salt-free solution. In addition, the Hly176B displayed prominent tolerance to some metal ions, surfactants and organic solvents, and exerts its highest enzyme activity at 40 °C, pH 8.0 and 0.5 M NaCl. Therefore, this study enriches our knowledge of extracellular proteases and expands their applications for various industrial uses.
Collapse
Affiliation(s)
- Shenao Zhang
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Feilong Chen
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
- Anhui Jiaotianxiang Biological Technology Co., Ltd, Xuancheng, 242000, China
| | - Juntao Ke
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Yuling Hao
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Ruru Pan
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Tao Hong
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Yongpei Dai
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Shaoxing Chen
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China.
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 10010, China.
| |
Collapse
|
3
|
De Castro RE, Giménez MI, Cerletti M, Paggi RA, Costa MI. Proteolysis at the Archaeal Membrane: Advances on the Biological Function and Natural Targets of Membrane-Localized Proteases in Haloferax volcanii. Front Microbiol 2022; 13:940865. [PMID: 35814708 PMCID: PMC9263693 DOI: 10.3389/fmicb.2022.940865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/06/2022] [Indexed: 11/23/2022] Open
Abstract
Proteolysis plays a fundamental role in many processes that occur within the cellular membrane including protein quality control, protein export, cell signaling, biogenesis of the cell envelope among others. Archaea are a distinct and physiologically diverse group of prokaryotes found in all kinds of habitats, from the human and plant microbiomes to those with extreme salt concentration, pH and/or temperatures. Thus, these organisms provide an excellent opportunity to extend our current understanding on the biological functions that proteases exert in cell physiology including the adaptation to hostile environments. This revision describes the advances that were made on archaeal membrane proteases with regard to their biological function and potential natural targets focusing on the model haloarchaeon Haloferax volcanii.
Collapse
|
4
|
Sec-Dependent Secretion of Subtilase SptE in Haloarchaea Facilitates Its Proper Folding and Heterocatalytic Processing by Halolysin SptA Extracellularly. Appl Environ Microbiol 2022; 88:e0024622. [PMID: 35348390 DOI: 10.1128/aem.00246-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In response to high-salt conditions, haloarchaea export most secretory proteins through the Tat pathway in folded states; however, it is unclear why some haloarchaeal proteins are still routed to the Sec pathway. SptE is an extracellular subtilase of Natrinema sp. strain J7-2. Here, we found that SptE precursor comprises a Sec signal peptide, an N-terminal propeptide, a catalytic domain, and a long C-terminal extension (CTE) containing seven domains (C1 to C7). SptE is produced extracellularly as a mature form (M180) in strain J7-2 and a proform (ΔS) in the ΔsptA mutant strain, indicating that halolysin SptA mediates the conversion of the secreted proform into M180. The proper folding of ΔS is more efficient in the presence of NaCl than KCl. ΔS requires SptA for cleavage of the N-terminal propeptide and C-terminal C6 and C7 domains to generate M180, accompanied by the appearance of autoprocessing product M120 lacking C5. At lower salinities or elevated temperatures, M180 and M120 could be autoprocessed into M90, which comprises the catalytic and C1 domains and has a higher activity than M180. When produced in Haloferax volcanii, SptE could be secreted as a properly folded proform, but its variant (TSptE) with a Tat signal peptide does not fold properly and suffers from severe proteolysis extracellularly; meanwhile, TSptE is more inclined to aggregate intracellularly than SptE. Systematic domain deletion analysis reveals that the long CTE is an important determinant for secretion of SptE via the Sec rather than Tat pathway to prevent enzyme aggregation before secretion. IMPORTANCE While Tat-dependent haloarchaeal subtilases (halolysins) have been extensively studied, the information about Sec-dependent subtilases of haloarchaea is limited. Our results demonstrate that proper maturation of Sec-dependent subtilase SptE of Natrinema sp. strain J7-2 depends on the action of halolysin SptA from the same strain, yielding multiple hetero- and autocatalytic mature forms. Moreover, we found that the different extra- and intracellular salt types (NaCl versus KCl) of haloarchaea and the long CTE are extrinsic and intrinsic factors crucial for routing SptE to the Sec rather than Tat pathway. This study provides new clues about the secretion and adaptation mechanisms of Sec substrates in haloarchaea.
Collapse
|
5
|
Paggi RA, Giménez MI, De Castro RE. Proteolytic Activity Assays in Haloarchaea. Methods Mol Biol 2022; 2522:319-330. [PMID: 36125759 DOI: 10.1007/978-1-0716-2445-6_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Extreme halophilic archaea (haloarchaea) have adapted their physiology and biomolecules to thrive in saline environments (>2 M NaCl). Many haloarchaea produce extracellular hydrolases (including proteases) with potential biotechnological applications, which require unusual high salt concentrations to attain their function and maintain their stability. These conditions restrict many of the standard methods used to study these enzymes such as activity determination and/or protein purification. Here, we describe basic protocols to detect and measure extracellular proteolytic activity in haloarchaea including casein hydrolysis on agar plates, quantitative proteolytic activity determination by the azocasein assay and gelatin zymography in presence of the compatible solute glycine-betaine.
Collapse
Affiliation(s)
- Roberto Alejandro Paggi
- Instituto de Investigaciones Biológicas, FCEyN, Universidad Nacional de Mar del Plata (UNMDP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata, Argentina
| | - María Inés Giménez
- Instituto de Investigaciones Biológicas, FCEyN, Universidad Nacional de Mar del Plata (UNMDP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata, Argentina
| | - Rosana Esther De Castro
- Instituto de Investigaciones Biológicas, FCEyN, Universidad Nacional de Mar del Plata (UNMDP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata, Argentina.
| |
Collapse
|
6
|
Halolysin R4 of Haloferax mediterranei confers its host antagonistic and defensive activities. Appl Environ Microbiol 2021; 87:AEM.02889-20. [PMID: 33579684 PMCID: PMC8091122 DOI: 10.1128/aem.02889-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Halolysins, which are subtilisin-like serine proteases of haloarchaea, are usually secreted into the extracellular matrix via the twin-arginine translocation pathway. A small number of activated molecules can greatly affect cell growth owing to their proteolytic activity. It is, however, unclear as to whether this proteolysis-based growth inhibition by halolysins conveys antagonistic or defensive effects against other resident abd potentially competitive microorganisms. Here, we report that halolysin R4 (HlyR4), encoded by the hlyR4 gene, is the key enzyme in the initial steps of extracellular protein utilization in Haloferax mediterranei HlyR4 shows significant antagonistic activity against other haloarchaeal strains. Deletion of hlyR4 completely halts the inhibition activity of Hfx. mediterranei towards other haloarchaea, while correspondingly, complementation of hlyR4 almost completely restores the inhibition activity. Furthermore, Hfx. mediterranei strains containing hlyR4 showed a certain amount of resistance to halocins and halolysins in milieu, and this function of hlyR4 is reproducible in Haloarcula hispanica The versatility of HlyR4 enables its host to outcompete other haloarchaea living in the same hypersaline environment. Intriguingly, unlike the growth phase-dependent halolysins SptA and Nep, it is likely that HlyR4 may be secreted independent of growth phase. This study provides a new peptide antibiotics candidate in haloarchaea, as well as new insight towards a better understanding of the ecological roles of halolysins.Importance: This study shows that halolysin R4 from Haloferax mediterranei provides its host antagonistic and defensive activities against other haloarchaea, which expands our knowledge on the traditional function of haloarchaeal extracellular proteases. Haloarchaeal extracellular serine proteases have been previously discussed as growth-phase-dependent proteins, whereas our study reports constitutive expression of halolysin R4. This work also clearly reveals a hidden diversity of extracellular proteases from haloarchaea. Studies on multifunctional halolysins reveal that they play an important ecological role in shaping microbial community composition and provide a new perspective towards understanding the intricate interactions between haloarchaeal cells in hypersaline environments. HlyR4 can lyse competing cells living in the same environment, and the cell debris may probably be utilized as nutrients, which may constitute an important part of nutrient cycling in extremely hypersaline environments.
Collapse
|
7
|
Hou J, Yin XM, Li Y, Han D, Lü B, Zhang JY, Cui HL. Biochemical characterization of a low salt-adapted extracellular protease from the extremely halophilic archaeon Halococcus salifodinae. Int J Biol Macromol 2021; 176:253-259. [PMID: 33592265 DOI: 10.1016/j.ijbiomac.2021.02.081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 12/30/2022]
Abstract
Extracellular proteases from haloarchaea can expand the application fields of proteases. Exploring novel robust proteases is of great importance. An extracellular protease HlyA from Halococcus salifodinae was obtained by heterologous expression, affinity chromatography, in vitro refolding and gel filtration chromatography. Its activity was optimal at 45 °C, pH 9.0 and 1.5-2 M NaCl. Interestingly, although HlyA was from an extremely halophilic archaeon, it retained >75% of maximal activity in a broad NaCl concentration of 0.5-4 M. It displayed relatively stable activities over a wide range of temperature, pH and salinity. Thus, HlyA exhibited good temperature, pH and especially, salinity tolerance. Ca2+, Mg2+ and Sr2+ significantly enhanced the protease activity. HlyA activity was completely inhibited by phenylmethanesulfonyl fluoride (PMSF), suggesting it is a serine protease. HlyA showed good tolerance to some surfactants and organic solvents. The Km and Vmax values of HlyA for azocasein were calculated to be 0.72 mM and 21.98 U/μg, respectively. HlyA was able to effectively degrade several protein substrates, including bovine hemoglobin, casein and azocasein. Generally, HlyA from the extremely halophilic archaeon Hcc. salifodinae is an alkaliphilic and low salt-adapted halolysin with high activity, thus representing an attractive candidate for various industrial uses.
Collapse
Affiliation(s)
- Jing Hou
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Xue-Meng Yin
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Yang Li
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Dong Han
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Bu Lü
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Jia-Yi Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Heng-Lin Cui
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang 212013, Jiangsu, People's Republic of China.
| |
Collapse
|
8
|
Hou J, Han D, Zhou Y, Li Y, Cui HL. Identification and characterization of the gene encoding an extracellular protease from haloarchaeon Halococcus salifodinae. Microbiol Res 2020; 236:126468. [DOI: 10.1016/j.micres.2020.126468] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/10/2020] [Accepted: 03/15/2020] [Indexed: 10/24/2022]
|
9
|
Proteolytic systems of archaea: slicing, dicing, and mincing in the extreme. Emerg Top Life Sci 2018; 2:561-580. [PMID: 32953999 DOI: 10.1042/etls20180025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Archaea are phylogenetically distinct from bacteria, and some of their proteolytic systems reflect this distinction. Here, the current knowledge of archaeal proteolysis is reviewed as it relates to protein metabolism, protein homeostasis, and cellular regulation including targeted proteolysis by proteasomes associated with AAA-ATPase networks and ubiquitin-like modification. Proteases and peptidases that facilitate the recycling of peptides to amino acids as well as membrane-associated and integral membrane proteases are also reviewed.
Collapse
|
10
|
Li M, Yin J, Mei S, Wang X, Tang XF, Tang B. Halolysin SptA, a Serine Protease, Contributes to Growth-Phase Transition of Haloarchaeon Natrinema sp. J7-2, and Its Expression Involves Cooperative Action of Multiple Cis-Regulatory Elements. Front Microbiol 2018; 9:1799. [PMID: 30123209 PMCID: PMC6085418 DOI: 10.3389/fmicb.2018.01799] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/17/2018] [Indexed: 12/18/2022] Open
Abstract
Many haloarchaea produce extracellular subtilisin-like proteases (halolysins) during late log phase; however, the physiological function and regulatory mechanism of growth phase-dependent production of halolysins are unknown. Halolysin SptA, the major extracellular protease of Natrinema sp. J7-2, is capable of intracellular self-activation to affect haloarchaeal growth. Here, we report that deletion of sptA leads to loss of extracellular and intracellular protease activities against azocasein and/or suc-AAPF-pNA, as well as a change in growth-phase transition of the haloarchaeon. Our results suggest that SptA is important for strain J7-2 to enter the stationary and death phases. Deletion and mutational analyses of the 5'-flanking region of sptA revealed two partially overlapping, semi-palindromic sequences upstream of the TATA box act as positive and negative cis-regulatory elements, respectively, to mediate sptA expression in late log phase. Additionally, a negative cis-regulatory element covering WW motif and a distant enhancer contribute to the modulation of sptA expression. Our results demonstrate that SptA functions both extracellularly and intracellularly, and that sptA expression relies on the cooperative action of multiple cis-regulatory elements, allowing SptA to exert its function properly at different growth stages in strain J7-2.
Collapse
Affiliation(s)
- Moran Li
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jing Yin
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Sha Mei
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xuhong Wang
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiao-Feng Tang
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Wuhan, China
| | - Bing Tang
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Wuhan, China
| |
Collapse
|
11
|
Cerletti M, Giménez MI, Tröetschel C, D' Alessandro C, Poetsch A, De Castro RE, Paggi RA. Proteomic Study of the Exponential-Stationary Growth Phase Transition in the Haloarchaea Natrialba magadii and Haloferax volcanii. Proteomics 2018; 18:e1800116. [PMID: 29888524 DOI: 10.1002/pmic.201800116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/09/2018] [Indexed: 11/12/2022]
Abstract
The dynamic changes that take place along the phases of microbial growth (lag, exponential, stationary, and death) have been widely studied in bacteria at the molecular and cellular levels, but little is known for archaea. In this study, a high-throughput approach was used to analyze and compare the proteomes of two haloarchaea during exponential and stationary growth: the neutrophilic Haloferax volcanii and the alkaliphilic Natrialba magadii. Almost 2000 proteins were identified in each species (≈50% of the predicted proteome). Among them, 532 and 432 were found to be differential between growth phases in H. volcanii and N. magadii, respectively. Changes upon entrance into stationary phase included an overall increase in proteins involved in the transport of small molecules and ions, stress response, and fatty acid catabolism. Proteins related to genetic processes and cell division showed a notorious decrease in amount. The data reported in this study not only contributes to our understanding of the exponential-stationary growth phase transition in extremophilic archaea but also provides the first comprehensive analysis of the proteome composition of N. magadii. The MS proteomics data have been deposited in the ProteomeXchange Consortium with the dataset identifier JPST000395.
Collapse
Affiliation(s)
- Micaela Cerletti
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Mar del Plata, 7600, Argentina
| | - María Ines Giménez
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Mar del Plata, 7600, Argentina
| | | | - Celeste D' Alessandro
- Laboratório de Patologia e Controle Microbiano de Insetos, ESALQ-USP, Piracicaba-SP, 13418-900, Brazil
| | - Ansgar Poetsch
- Plant Biochemistry, Ruhr University Bochum, Bochum, 44801, Germany.,School of Biomedical and Healthcare Sciences, Plymouth University, Plymouth, PL4 8AA, United Kingdom
| | - Rosana Ester De Castro
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Mar del Plata, 7600, Argentina
| | - Roberto A Paggi
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Mar del Plata, 7600, Argentina
| |
Collapse
|
12
|
Salwan R, Sharma V, Pal M, Kasana RC, Yadav SK, Gulati A. Heterologous expression and structure-function relationship of low-temperature and alkaline active protease from Acinetobacter sp. IHB B 5011(MN12). Int J Biol Macromol 2017; 107:567-574. [PMID: 28916383 DOI: 10.1016/j.ijbiomac.2017.09.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 09/11/2017] [Accepted: 09/11/2017] [Indexed: 10/18/2022]
Abstract
The gene encoding protease from Acinetobacter sp. IHB B 5011(MN12) was cloned and expressed in Escherichia coli BL21(DE3). The nucleotide sequence revealed 1323bp ORF encoding 441 amino acids protein with molecular weight 47.2kDa. The phylogenetic analysis showed clustering of Alp protease with subtilisin-like serine proteases of S8 family. The amino acid sequence was comprised of N-terminal signal peptide 1-21 amino acids, pre-peptide 22-143 amino acids, peptidase S8 domain 144-434 amino acids, and pro-peptide 435-441 amino acids at C-terminus. Three constructs with signal peptide pET-Alp, without signal peptide pET-Alp1 and peptidase S8 domain pET-Alp2 were prepared for expression in E. coli BL21(DE3). The recombinant proteins Alp1 and Alp2 expressed as inclusion bodies showed ∼50kDa and ∼40kDa bands, respectively. The pre-propeptide ∼11kDa removed from Alp1 resulted in mature protein of ∼35kDa with 1738Umg-1 specific activity. The recombinant protease was optimally active at 40°C and pH 9, and stable over 10-70°C and 6-12pH. The activity at low-temperature and alkaline pH was supported by high R/(R+K) ratio, more glycine, less proline, negatively charged amino acids, less salt bridges and longer loops. These properties suggested the suitability of Alp as additive in the laundry.
Collapse
Affiliation(s)
- Richa Salwan
- Academy of Scientific and Innovative Research, New Delhi, India; CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India
| | - Vivek Sharma
- CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India
| | - Mohinder Pal
- CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India
| | | | - Sudesh Kumar Yadav
- CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India
| | - Arvind Gulati
- Academy of Scientific and Innovative Research, New Delhi, India; CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India.
| |
Collapse
|
13
|
Du X, Li M, Tang W, Zhang Y, Zhang L, Wang J, Li T, Tang B, Tang XF. Secretion of Tat-dependent halolysin SptA capable of autocatalytic activation and its relation to haloarchaeal growth. Mol Microbiol 2015; 96:548-65. [DOI: 10.1111/mmi.12955] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Xin Du
- State Key Laboratory of Virology, College of Life Sciences; Wuhan University; Wuhan China
| | - Moran Li
- State Key Laboratory of Virology, College of Life Sciences; Wuhan University; Wuhan China
| | - Wei Tang
- State Key Laboratory of Virology, College of Life Sciences; Wuhan University; Wuhan China
| | - Yaoxin Zhang
- State Key Laboratory of Virology, College of Life Sciences; Wuhan University; Wuhan China
| | - Li Zhang
- State Key Laboratory of Virology, College of Life Sciences; Wuhan University; Wuhan China
| | - Jian Wang
- State Key Laboratory of Virology, College of Life Sciences; Wuhan University; Wuhan China
| | - Tingting Li
- State Key Laboratory of Virology, College of Life Sciences; Wuhan University; Wuhan China
| | - Bing Tang
- State Key Laboratory of Virology, College of Life Sciences; Wuhan University; Wuhan China
- Hubei Provincial Cooperative Innovation Center of Industrial Fermentation; Wuhan China
| | - Xiao-Feng Tang
- State Key Laboratory of Virology, College of Life Sciences; Wuhan University; Wuhan China
- Hubei Provincial Cooperative Innovation Center of Industrial Fermentation; Wuhan China
| |
Collapse
|
14
|
Chitin accelerates activation of a novel haloarchaeal serine protease that deproteinizes chitin-containing biomass. Appl Environ Microbiol 2014; 80:5698-708. [PMID: 25002433 DOI: 10.1128/aem.01196-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The haloarchaeon Natrinema sp. strain J7-2 has the ability to degrade chitin, and its genome harbors a chitin metabolism-related gene cluster that contains a halolysin gene, sptC. The sptC gene encodes a precursor composed of a signal peptide, an N-terminal propeptide consisting of a core domain (N*) and a linker peptide, a subtilisin-like catalytic domain, a polycystic kidney disease domain (PkdD), and a chitin-binding domain (ChBD). Here we report that the autocatalytic maturation of SptC is initiated by cis-processing of N* to yield an autoprocessed complex (N*-I(WT)), followed by trans-processing/degradation of the linker peptide, the ChBD, and N*. The resulting mature form (M(WT)) containing the catalytic domain and the PkdD showed optimum azocaseinolytic activity at 3 to 3.5 M NaCl, demonstrating salt-dependent stability. Deletion analysis revealed that the PkdD did not confer extra stability on the enzyme but did contribute to enzymatic activity. The ChBD exhibited salt-dependent chitin-binding capacity and mediated the binding of N*-I(WT) to chitin. ChBD-mediated chitin binding enhances SptC maturation by promoting activation of the autoprocessed complex. Our results also demonstrate that SptC is capable of removing proteins from shrimp shell powder (SSP) at high salt concentrations. Interestingly, N*-I(WT) released soluble peptides from SSP faster than did M(WT). Most likely, ChBD-mediated binding of the autoprocessed complex to chitin in SSP not only accelerates enzyme activation but also facilitates the deproteinization process by increasing the local protease concentration around the substrate. By virtue of these properties, SptC is highly attractive for use in preparation of chitin from chitin-containing biomass.
Collapse
|
15
|
Feng J, Wang J, Zhang Y, Du X, Xu Z, Wu Y, Tang W, Li M, Tang B, Tang XF. Proteomic analysis of the secretome of haloarchaeon Natrinema sp. J7-2. J Proteome Res 2014; 13:1248-58. [PMID: 24512091 DOI: 10.1021/pr400728x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although in silico predictions have revealed that haloarchaea can be distinguished from other organisms in that the Tat pathway is used more extensively than the Sec pathway for haloarchaeal protein secretion, only a few haloarchaeal-secreted proteins have been experimentally confirmed. Here, the culture supernatant and membrane fraction of the haloarchaeon Natrinema sp. J7-2 grown at 23% salt concentration were subjected to RPLC-ESI-MS/MS analysis. In total, 46 predicted Tat substrates, 14 predicted Sec substrates, and 3 class III signal peptide-bearing proteins were detected. Approximately 65% of the detected Tat substrates contain lipoboxes, emphasizing the role of the Tat pathway in haloarchaeal lipoprotein secretion. Most of the detected Tat substrates are extracellular substrate (solute)-binding proteins and redox proteins. Despite the small number of Sec substrates, two of them, a cell surface glycoprotein and a putative lipoprotein carrier protein, were identified to be high-abundance secreted proteins. While limited proteins were detected in the culture supernatant, most of the secreted proteins were found in the membrane fraction. The anchoring of secreted proteins to the cell surface via a lipobox or a PGF-CTERM seems to be an adaptation strategy of haloarchaea to handle the harsh extracellular environment. Additionally, ∼15% of the integral membrane proteins (IMPs) detected in the membrane fraction possess putative Sec signal peptides or signal anchors, implying that the Sec pathway is important for membrane insertion of IMPs. This is the first report to describe the experimental secretome of haloarchaea and provide new information for better understanding of haloarchaeal protein secretion patterns.
Collapse
Affiliation(s)
- Jie Feng
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University , Wuhan 430072, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Cloning, over expression and functional attributes of serine proteases from Oceanobacillus iheyensis O.M.A18 and Haloalkaliphilic bacterium O.M.E12. Process Biochem 2014. [DOI: 10.1016/j.procbio.2013.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|