Extension of Chronological Lifespan by Hexokinase Mutation in Kluyveromyces lactis Involves Increased Level of the Mitochondrial Chaperonin Hsp60.
J Aging Res 2012;
2012:946586. [PMID:
22675632 PMCID:
PMC3362934 DOI:
10.1155/2012/946586]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 02/28/2012] [Accepted: 03/08/2012] [Indexed: 11/17/2022] Open
Abstract
Oxidative damage, mitochondrial dysfunction, genomic instability, and telomere shortening represent all molecular processes proposed as causal factors in aging. Lifespan can be increased by metabolism through an influence on such processes. Glucose reduction extends chronological lifespan (CLS) of Saccharomyces cerevisiae through metabolic adaptation to respiration. To answer the question if the reduced CLS could be ascribed to glucose per se or to glucose repression of respiratory enzymes, we used the Kluyveromyces lactis yeast, where glucose repression does not affect the respiratory function. We identified the unique hexokinase, encoded by RAG5 gene, as an important player in influencing yeast lifespan by modulating mitochondrial functionality and the level of the mitochondrial chaperonin Hsp60. In this context, this hexokinase might have a regulatory role in the influence of CLS, shedding new light on the complex regulation played by hexokinases.
Collapse