1
|
Abstract
Lysyl-tRNA synthetase catalyses the formation of lysyl-transfer RNA, Lys-tRNA(Lys), which then is ready to insert lysine into proteins. Lysine is important for proteins since it is one of only two proteinogenic amino acids carrying an alkaline functional group. Seven genes of lysyl-tRNA synthetases have been localized in five organisms, and the nucleotide and the amino acid sequences have been established. The lysyl-tRNA synthetase molecules are of average chain lengths among the aminoacyl-tRNA synthetases, which range from about 300 to 1100 amino acids. Lysyl-tRNA synthetases act as dimers; in eukaryotes they can be localized in multienzyme complexes and can contain carbohydrates or lipids. Lysine tRNA is recognized by lysyl-tRNA synthetase via standard identity elements, namely anticodon region and acceptor stem. The aminoacylation follows the standard two-step mechanism. However the accuracy of selecting lysine against the other amino acids is less than average. The first threedimensional structure of a lysyl-tRNA synthetase worked out very recently, using the enzyme from the Escherichia coli lysU gene which binds one molecule of lysine, is similar to those of other class II synthetases. However, none of the reaction steps catalyzed by the enzyme is clarified to atomic resolution. Thus surprising findings might be possible. Lysyl-tRNA synthetase and its precursors as well as its substrates and products are targets and starting points of many regulation circuits, e.g. in multienzyme complex formation and function, dinucleoside polyphosphate synthesis, heat shock regulation, activation or deactivation by phosphorylation/dephosphorylation, inhibition by amino acid analogs, and generation of antibodies against lysyl-tRNA synthetase. None of these pathways is clarified completely.
Collapse
Affiliation(s)
- W Freist
- Max-Planck-Institut für Experimentelle Medizin, Göttingen, Germany
| | | |
Collapse
|
2
|
Brevet A, Chen J, Lévêque F, Blanquet S, Plateau P. Comparison of the enzymatic properties of the two Escherichia coli lysyl-tRNA synthetase species. J Biol Chem 1995; 270:14439-44. [PMID: 7782306 DOI: 10.1074/jbc.270.24.14439] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In Escherichia coli, lysyl-tRNA synthetase activity is encoded by either a constitutive lysS gene or an inducible one, lysU. The two corresponding enzymes could be purified at homogeneity from a delta lysU and a delta lysS strain, respectively. Comparison of the pure enzymes, LysS and LysU, indicates that, in the presence of saturating substrates, LysS is about twice more active than LysU in the ATP-PPi exchange as well as in the tRNALys aminoacylation reaction. Moreover, the dissociation constant of the LysU-lysine complex is 8-fold smaller than that of the LysS-lysine complex. In agreement with this difference, the activity of LysU is less sensitive than that of LysS to the addition of cadaverine, a decarboxylation product of lysine and a competitive inhibitor of lysine binding to its synthetase. This observation points to a possible useful role of LysU, under physiological conditions causing cadaverine accumulation in the bacterium. Remarkably, these conditions also induce lysU expression. Homogeneous LysU and LysS were also compared in Ap4A synthesis. LysU is only 2-fold more active than LysS in the production of this dinucleotide. This makes unlikely that the heat-inducible LysU species could be preferentially involved in the accumulation of Ap4A inside stressed Escherichia coli cells. This conclusion could be strengthened by determining the concentrations of Ap4N (N = A, C, G, or U) in a delta lysU as well as in a lysU+ strain, before and after a 1-h temperature shift at 48 degrees C. The measured concentration values were the same in both strains.
Collapse
Affiliation(s)
- A Brevet
- Laboratoire de Biochimie, URA 240 CNRS, Ecole Polytechnique, Palaiseau, France
| | | | | | | | | |
Collapse
|
3
|
Oshima T, Ito K, Kabayama H, Nakamura Y. Regulation of lrp gene expression by H-NS and Lrp proteins in Escherichia coli: dominant negative mutations in lrp. MOLECULAR & GENERAL GENETICS : MGG 1995; 247:521-8. [PMID: 7603430 DOI: 10.1007/bf00290342] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Lrp (leucine-responsive regulatory protein) is a global transcription factor of Escherichia coli and regulates, negatively or positively, many genes including lysU, which encodes lysyl-tRNA synthetase. Dominant negative mutations that derepress lysU expression were isolated in this study. These mutations affected a predicted DNA-binding domain of Lrp and mutants were defective DNA-binding domain of Lrp and mutants were defective both in activation of ilvIH expression and in repression of lysU expression. Consistent with the previous notion that lrp is autoregulated, lrp expression was derepressed by these mutations and repressed by multi-copy plasmids carrying lrp+. Moreover, we found by gene fusion and Northern blot hybridization that the "histone-like" protein, H-NS, bound specifically to a promoter segment of lrp in vitro, and the level of lrp expression increased in the hns null mutant. These results indicated that the lrp gene is not only feedback regulated by Lrp but is also controlled by H-NS protein.
Collapse
Affiliation(s)
- T Oshima
- Department of Tumor Biology, University of Tokyo, Japan
| | | | | | | |
Collapse
|
4
|
Ito K, Oshima T, Mizuno T, Nakamura Y. Regulation of lysyl-tRNA synthetase expression by histone-like protein H-NS of Escherichia coli. J Bacteriol 1994; 176:7383-6. [PMID: 7961513 PMCID: PMC197130 DOI: 10.1128/jb.176.23.7383-7386.1994] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The lysU gene encoding lysyl-tRNA synthetase of Escherichia coli is normally silent at low temperatures and is expressed by certain metabolites and stimuli. A novel class of lysU-constitutive mutations were isolated by random insertion mutagenesis. These mutations nullified the hns gene encoding a histone-like protein, H-NS, and affected thermoregulation of lysU.
Collapse
Affiliation(s)
- K Ito
- Department of Tumor Biology, University of Tokyo, Japan
| | | | | | | |
Collapse
|
5
|
Kisselev LL, Wolfson AD. Aminoacyl-tRNA synthetases from higher eukaryotes. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1994; 48:83-142. [PMID: 7938555 DOI: 10.1016/s0079-6603(08)60854-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- L L Kisselev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow
| | | |
Collapse
|
6
|
Abstract
Lysyl-tRNA synthetases are synthesized from two distinct genes in Escherichia coli, lysS (constitutively) and lysU (inducibly); however, the physiological significance and the differential control mechanism of these two genes have been a long-standing puzzle. Recent studies have successfully uncovered a significant control mechanism of lysU expression, which involves the leucine-responsive regulatory protein (Lrp) and a translational enhancer element called 'downstream box'. Moreover, it is likely that there is a mechanism underlying co-ordinate expression of lysU with other genes outside the leucine-Lrp regulon under harsh conditions such as low pH and anaerobiosis. A possible mechanism of lysyl-tRNA synthetase expression and function is reviewed.
Collapse
Affiliation(s)
- Y Nakamura
- Department of Tumor Biology, University of Tokyo, Japan
| | | |
Collapse
|
7
|
Ito K, Kawakami K, Nakamura Y. Multiple control of Escherichia coli lysyl-tRNA synthetase expression involves a transcriptional repressor and a translational enhancer element. Proc Natl Acad Sci U S A 1993; 90:302-6. [PMID: 7678344 PMCID: PMC45648 DOI: 10.1073/pnas.90.1.302] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Lysyl-tRNA synthetases [L-lysine:tRNA(Lys) ligase (AMP-forming), EC 6.1.1.6] are synthesized from two distinct genes in Escherichia coli, lysS (constitutively) and lysU (inducibly), but neither the physiological significance nor the mechanism of differential regulation of these two genes is understood. We have constructed a null mutation of lysS that causes cold-sensitive lethality and then used this mutant to acquire and characterize several bypass mutations called als (abandonment of lysS). Cold-resistant survivors were isolated either spontaneously or by transposon-mediated disruption, and all caused derepression of lysU transcription. One class of als mutations is linked to lysU and presumably affects the cis regulatory element. Mutations of the other class map within the lrp gene, which encodes the leucine-responsive regulatory protein (Lrp). A lysU-lacZ gene fusion study revealed that lysU is susceptible to thermal regulation in the absence of lrp and that a small mRNA region immediately downstream of the initiation codon is required for potentially high-level expression. These results suggest that lysU is part of the leucine regulon and is both negatively controlled by Lrp and positively regulated by a potential translational enhancer sequence. This sequence is similar to that of the "downstream box" complementary to nucleotides 1469-1483 of 16S rRNA, which can be universally found in tRNA synthetase genes of E. coli.
Collapse
Affiliation(s)
- K Ito
- Department of Tumor Biology, University of Tokyo, Japan
| | | | | |
Collapse
|
8
|
Kawakami K, Ito K, Nakamura Y. Differential regulation of two genes encoding lysyl-tRNA synthetases in Escherichia coli: lysU-constitutive mutations compensate for a lysS null mutation. Mol Microbiol 1992; 6:1739-45. [PMID: 1321323 DOI: 10.1111/j.1365-2958.1992.tb01346.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Lysyl-tRNA synthetases are synthesized in Escherichia coli from two distinct genes, lysS and lysU, which are regulated differentially. A strain which is null for lysS, the constitutive gene, was created by gene disruption (lysS1) and exhibited cold-sensitive lethality. Hence, lysS is dispensable at high temperatures. This cold sensitivity was suppressed by a multi-copy plasmid carrying lysU, the inducible gene. These data are interpreted as indicating that lysS is functionally replaceable by lysU for cell growth, and that the cold sensitivity of lysS1 is caused by insufficient expression of lysU at low temperatures. To investigate the mechanism of lysU expression, cold-resistant bypass mutations were isolated from lysS1, and named als (for abandonment of lysS). Two als mutations which were linked to lysU contain IS2 insertions upstream of the lysU promoter. They caused a 16-19-fold increase in the lysU-mRNA level. Furthermore, deletion mutations created immediately upstream of the lysU promoter restored growth of lysS1. These results suggest that transcription of lysU is negatively controlled by a cis-element located upstream of the promoter.
Collapse
Affiliation(s)
- K Kawakami
- Department of Tumour Biology, University of Tokyo, Japan
| | | | | |
Collapse
|
9
|
Gazeau M, Delort F, Dessen P, Blanquet S, Plateau P. Escherichia coli leucine-responsive regulatory protein (Lrp) controls lysyl-tRNA synthetase expression. FEBS Lett 1992; 300:254-8. [PMID: 1555652 DOI: 10.1016/0014-5793(92)80857-d] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Using random Tn10 insertion mutagenesis, we isolated an Escherichia coli mutant strain affected in the regulation of lysU, the gene encoding the inducible form of lysyl-tRNA synthetase. The transposon giving rise to the altered expression of lysU was found inserted within lrp. The latter gene codes for the leucine-responsive regulatory protein (Lrp) which mediates a global response of the bacterium to leucine. An involvement of Lrp in the regulation of lysU was searched for by using a lysU-lacZ operon fusion. The following conclusions were reached: (i) inactivation of lrp causes an increased activity of the lysU promoter, whatever the growth conditions assayed, (ii) insertion of a wild-type lrp gene into a multi-copy plasmid significantly reduces lysU expression, and (iii) sensitivity of the lysU promoter to the presence of leucine in the growth medium is abolished in the lrp context.
Collapse
Affiliation(s)
- M Gazeau
- Laboratoire de Biochimie, Unité de Recherche Associée 240 du Centre National de la Recherche Scientifique, Ecole Polytechnique, Palaiseau, France
| | | | | | | | | |
Collapse
|
10
|
Hirshfield IN, Tenreiro R, Vanbogelen RA, Neidhardt FC. Escherichia coli K-12 lysyl-tRNA synthetase mutant with a novel reversion pattern. J Bacteriol 1984; 158:615-20. [PMID: 6373723 PMCID: PMC215473 DOI: 10.1128/jb.158.2.615-620.1984] [Citation(s) in RCA: 38] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Fast-growing revertants have been selected from a slow-growing lysyl-tRNA synthetase mutant. All of the revertants had increased lysyl-tRNA synthetase activity compared with the mutant (5- to 85-fold), and in some revertants this amounted to two to three times the wild-type synthetase activity. Two-dimensional gel electrophoresis of a whole-cell extract of revertant IH2018 (1.5- to 2-fold wild-type synthetase activity) showed that the increase in synthetase activity is due to the induction of cryptic lysyl-tRNA synthetase forms and not to a change in the constitutive lysyl-tRNA synthetase. Genetic studies have shown that a locus termed rlu (for regulation of lysU ) which is cotransducible with purF at 49.5 min influences the amount of the cryptic lysyl-tRNA synthetase.
Collapse
|
11
|
De Felice M, Guardiola J, Schreil W, Levinthal M, Iaccarino M. Metabolic interlock between the acetolactate synthase isoenzymes and lysine biosynthesis in Escherichia coli K-12. MOLECULAR & GENERAL GENETICS : MGG 1977; 156:9-16. [PMID: 340895 DOI: 10.1007/bf00272246] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Hirshfield IN, Liu C, Yeh FM. Two modes of metabolic regulation of lysyl-transfer ribonucleic acid synthetase in Escherichia coli K-12. J Bacteriol 1977; 131:589-97. [PMID: 328487 PMCID: PMC235468 DOI: 10.1128/jb.131.2.589-597.1977] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Lysyl-transfer ribonucleic acid (tRNA) synthetase activity was compared in three independently isolated Escherichia coli K-12 mutants of the enzyme S-adenosyl-L-methionine synthetase (metK mutants) and their isogenic parents. In all three cases the activity of the lysyl-tRNA synthetase was elevated two- to fourfold in the mutant strains. Glycyl-L-leucine (3 mM) usually enhanced lysyl-tRNA synthetase activity two- to threefold in wild-type cells but did not further stimulate the synthetase activity in metK mutants. By two other criteria, the lysyl-tRNA synthetase from wild-type cells grown with the peptide and from the metK mutant RG62, grown in minimal medium, were similar. These criteria are enhanced resistance to thermal inactivation and altered susceptibility to endogenous proteases when compared with the synthetase from wild-type cells grown in minimal medium. In a separate set of experiments, the activities of the lysyl-, arginyl-, seryl-, and valyl-tRNA synthetases were measured in an isogenic pair of relt and rel strains of E. coli grown in a relatively poor growth medium (acetate) and in enriched medium. In the rel+ strain the level of all four synthetases was higher (two- to fourfold) in the enriched medium as expected. In the rel strain the difference in the activities of the synthetases between the two media were diminished. In all four cases the activities of the synthetases were higher in acetate medium in the rel strain. Evidence is presented that these two modes of metabolic regulation act independently.
Collapse
|
13
|
Johnson RC, Vanatta PR, Fresco JR. Metabolic regulation of aminoacyl-tRNA synthetase biosynthesis in bakers' yeast. J Biol Chem 1977. [DOI: 10.1016/s0021-9258(19)75180-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
14
|
Hirshfield IN, Yeh FM, Zamecnik PC. An in vivo effect of the metabolites L-alanine and glycyl-L-leucine on the properties of lysyl-tRNA synthetase from Escherichia coli K-12. I. Influence on subunit composition and molecular weight distribution. BIOCHIMICA ET BIOPHYSICA ACTA 1976; 435:290-305. [PMID: 779846 DOI: 10.1016/0005-2787(76)90110-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Lysyl-tRNA synthetase was purified to 70-90% of homogeneity from Escherichia coli K-12. The enzyme was purified from wild-type cells grown in minimal medium, or minimal medium containing either 20 mM L-alanine or 3 mM glycly-L-leucine. The synthetase was similarly purified from a mutant strain grown in minimal medium plus 20 mM L-alanine. Results based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, gel filtration, and trypsin inactivation studies indicate (A) that the presence of L-alanine of glycyl-L-leucine in the culture medium alters the properties of the wild-type enzyme; (B) that the alteration of the synthetase by l-alanine and glycyl-L-leucine is different; and (c) that the molecular weight of lysyl-tRNA synthetase is at least 135000--140000. The results suggest that most likely the metabolites modify the structure of lysyl-tRNA synthetase, but the possibility that the metabolites induce the synthesis of a new lysyl-tRNA synthetase cannot be completely eliminated.
Collapse
|
15
|
Imbault P, Ehresmann B, Weil JH. Effects of changes in growth rate on the levels of several aminoacyl-tRNA synthetases in yeast. Biochimie 1975; 57:579-85. [PMID: 1101973 DOI: 10.1016/s0300-9084(75)80138-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
When the growth rate of yeast cells is decreased (for instance by transferring the cells from a rich medium to a poor one, or when the cells enter the stationary phase, or when growth is inhibited by cycloheximide, or when valine is removed from the medium supporting growth of a valine-requiring mutant, or when a thermosensitive mutant is shifted to the non-permissive temperature) there is a decrease in the levels of the four aminoacyl-tRNA synthetases tested. Conversely, an increase in the growth rate is accompanied by an increase in the levels of the four enzymes. But when the growth rate is slowed down by decreasing the temperature of the medium, no effect on the levels of the aminoacyl-tRNA synthetases is observed. These results are consistent with the concept of "metabolic regulation" proposed by Parker and neidhardt.
Collapse
|
16
|
Hirshfield IN, Yeh FM, Sawyer LE. Metabolites influence control of lysine transfer ribonucleic acid synthetase formation in Escherichia coli K-12. Proc Natl Acad Sci U S A 1975; 72:1364-7. [PMID: 805427 PMCID: PMC432534 DOI: 10.1073/pnas.72.4.1364] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A mutant of E. coli K-12 has been isolated which has only 1-3% of the wild-type lysyl-tRNA synthetase activity [L-lysine:tRNA ligase (AMP forming), EC 6.1.1.6]. Additions of 20 mM L-alanine or 6 mM leucine dipeptides to the culture medium can restore the activity of lysyl-tRNA synthetase in the mutant strain to the wild-type level. Experiments on the in vivo charging of lysine tRNA in the mutant show that in the absence of the metabolites lysine tRNA is charged 15-23%. Upon the addition of 3 mM L-leucyl-L-alanine to the medium the lysyl tRNA synthetase activity increases 25-fold and the in vivo charging of lysine tRNA returns to the wild-type level. Experiments with antibody against lysyl-tRNA synthetase show that the stimulation of lysyl-tRNA synthetase activity by the metabolites is the result of new protein synthesis.
Collapse
|
17
|
Ehresmann B, Imbault P, Weil J. Role of valyl-tRNA in the regulation of the biosynthesis of valyl-, isoleucyl-, and leucyl-tRNA synthetases in yeast. Biochimie 1975. [DOI: 10.1016/s0300-9084(75)80021-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Steinberg W. Thermal death of temperature-sensitive lysyl- and tryptophanyl-transfer ribonucleic acid synthetase mutants of Bacillus subtilis: effect of culture medium and developmental stage. J Bacteriol 1974; 120:767-78. [PMID: 4218233 PMCID: PMC245837 DOI: 10.1128/jb.120.2.767-778.1974] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The growth of thermosensitive Bacillus subtilis lysyl- and tryptophanyl-transfer ribonucleic acid synthetase mutants (lysS1 and trypS1) (l-lysine:transfer ribonucleic acid [tRNA] ligase [AMP], EC 6.1.1.6; and l-tryptophan:tRNA ligase [AMP], EC 6.1.1.2) was terminated when exponential phase cells were shifted from 30 to 43 C in a rich medium. Under these conditions, the temperature-inhibited cells undergo thermal death; they rapidly lose their ability to form colonies at 30 C. Another lysyl-tRNA synthetase mutant (lysS2) is refractory to thermal death even though its growth is inhibited at 43 C. The thermal death response of the lysS1 mutant is affected by the stage of cell development. At periods in spore outgrowth and sporogenesis these cells become refractory to thermal death. The refractory state does not result from the production of an inhibitor, or from the degradation of an activator of thermal death. However, culture medium composition does modify the thermal death response. Rich media enhance the effect, and no thermal death occurs in the lysS1 strain grown in a minimal medium. Temperature-sensitive cells can grow in a lysine- (0.25 mM) or tryptophan- (0.25 mM) supplemented minimal medium at 43 C, but amino acid concentrations of 25 mM only transiently protect trypS1 and lysS1 cells from thermal death in a rich medium. Osmotic agents such as sucrose (0.5 M) and NaCl (0.34 M) completely prevent thermal death in the lysS1 strain, although growth is still arrested. On solid media, sucrose stabilized lysS1 cells can form colonies at the restrictive temperature, but neither sucrose (0.5 M) nor NaCl (0.34 M) stabilized the lysS1 enzyme in vitro. Chloramiphenicol increased the rate of thermal death of the lysS1 strain but decreased the thermal death response of the trypS1 mutant. Considering the nature of the enzyme defect in the lysS1 strain, the common genetic origin of the spore and vegetative lysyl-tRNA synthetase, and the protective effects exerted by lysine and osmotic agents, it is tentatively concluded that thermal death results from irreversible inactivation of the mutant gene product. According to this hypothesis, either the lysS1 enzyme is altered during sporogenesis or some physiological or structural aspect of this developmental phase can stabilize the mutant phenotype and thereby rescue cells from thermal death.
Collapse
|
19
|
Buklad NE, Sanborn D, Hirshfield IN. Particular influence of leucine peptides on lysyl-transfer ribonucleic acid ligase formation in a mutant of Escherichia coli K-12. J Bacteriol 1973; 116:1477-8. [PMID: 4584819 PMCID: PMC246510 DOI: 10.1128/jb.116.3.1477-1478.1973] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
l-Leucine dipeptides can enhance lysyl-transfer ribonucleic acid ligase activity 15- to 20-fold in a mutant of Escherichia coli K-12. Evidence indicates the peptides act per se.
Collapse
|