1
|
Surekha K, Prabhu D, Richard M, Nachiappan M, Biswal J, Jeyakanthan J. Investigation of vital pathogenic target orotate phosphoribosyltransferases (OPRTase) from Thermus thermophilus HB8: Phylogenetic and molecular modeling approach. Gene 2016; 583:102-111. [PMID: 26861612 DOI: 10.1016/j.gene.2016.02.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 01/16/2016] [Accepted: 02/05/2016] [Indexed: 01/28/2023]
Abstract
Biosynthesis pathways of pyrimidine and purine are shown to play an important role in regular cellular activities. The biosynthesis can occur either through de novo or salvage pathways based on the requirement of the cell. The pyrimidine biosynthesis pathway has been linked to several disorders and various autoimmune diseases. Orotate phosphoribosyl transferase (OPRTase) is an important enzyme which catalyzes the conversion of orotate to orotate monophosphate in the fifth step of pyrimidine biosynthesis. Phylogenetic analysis of 228 OPRTase sequences shows the distribution of proteins across different living forms of life. High structural similarities between Thermusthermophilus and other organisms kindled us to concentrate on OPRTase as an anti-pathogenic target. In this study, a homology model of OPRTase was constructed using 2P1Z as a template. About 100 ns molecular dynamics simulation was performed to investigate the conformational stability and dynamic patterns of the protein. The amino acid residues (Met1, Asp2, Glu43, Ala44, Glu47, Lys51, Ala157 and Leu158) lining in the binding site were predicted using SiteMap. Further, structure based virtual screening was performed on the predicted binding site using ChemBridge, Asinex, Binding, NCI, TosLab and Zinc databases. Compounds retrieved from the screening collections were manually clustered. The resultant protein-ligand complexes were subjected to molecular dynamics simulations, which further validates the binding modes of the hits. The study may provide better insight for designing potent anti-pathogenic agent.
Collapse
Affiliation(s)
- Kanagarajan Surekha
- Room No. 402, Structural Biology and Biocomputing Lab, Department of Bioinformatics, Alagappa University, Science Campus, Karaikudi 630004, India
| | - Damodharan Prabhu
- Room No. 402, Structural Biology and Biocomputing Lab, Department of Bioinformatics, Alagappa University, Science Campus, Karaikudi 630004, India
| | - Mariadasse Richard
- Room No. 402, Structural Biology and Biocomputing Lab, Department of Bioinformatics, Alagappa University, Science Campus, Karaikudi 630004, India
| | - Mutharasappan Nachiappan
- Room No. 402, Structural Biology and Biocomputing Lab, Department of Bioinformatics, Alagappa University, Science Campus, Karaikudi 630004, India
| | - Jayashree Biswal
- Room No. 402, Structural Biology and Biocomputing Lab, Department of Bioinformatics, Alagappa University, Science Campus, Karaikudi 630004, India
| | - Jeyaraman Jeyakanthan
- Room No. 402, Structural Biology and Biocomputing Lab, Department of Bioinformatics, Alagappa University, Science Campus, Karaikudi 630004, India.
| |
Collapse
|
2
|
Hou X, Chen X, Zhang M, Yan A. QSAR study on the antimalarial activity of Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) inhibitors. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2016; 27:101-124. [PMID: 26911561 DOI: 10.1080/1062936x.2015.1134652] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Plasmodium falciparum, the most fatal parasite that causes malaria, is responsible for over one million deaths per year. P. falciparum dihydroorotate dehydrogenase (PfDHODH) has been validated as a promising drug development target for antimalarial therapy since it catalyzes the rate-limiting step for DNA and RNA biosynthesis. In this study, we investigated the quantitative structure-activity relationships (QSAR) of the antimalarial activity of PfDHODH inhibitors by generating four computational models using a multilinear regression (MLR) and a support vector machine (SVM) based on a dataset of 255 PfDHODH inhibitors. All the models display good prediction quality with a leave-one-out q(2) >0.66, a correlation coefficient (r) >0.85 on both training sets and test sets, and a mean square error (MSE) <0.32 on training sets and <0.37 on test sets, respectively. The study indicated that the hydrogen bonding ability, atom polarizabilities and ring complexity are predominant factors for inhibitors' antimalarial activity. The models are capable of predicting inhibitors' antimalarial activity and the molecular descriptors for building the models could be helpful in the development of new antimalarial drugs.
Collapse
Affiliation(s)
- X Hou
- a State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering , Beijing University of Chemical Technology , Beijing , P.R. China
| | - X Chen
- a State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering , Beijing University of Chemical Technology , Beijing , P.R. China
| | - M Zhang
- a State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering , Beijing University of Chemical Technology , Beijing , P.R. China
| | - A Yan
- a State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering , Beijing University of Chemical Technology , Beijing , P.R. China
- b Stake Key Laboratory of Natural and Biomimetic Drugs , Peking University , Beijing , P.R. China
| |
Collapse
|
3
|
Booker ML, Bastos CM, Kramer ML, Barker RH, Skerlj R, Sidhu AB, Deng X, Celatka C, Cortese JF, Guerrero Bravo JE, Crespo Llado KN, Serrano AE, Angulo-Barturen I, Jiménez-Díaz MB, Viera S, Garuti H, Wittlin S, Papastogiannidis P, Lin JW, Janse CJ, Khan SM, Duraisingh M, Coleman B, Goldsmith EJ, Phillips MA, Munoz B, Wirth DF, Klinger JD, Wiegand R, Sybertz E. Novel inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase with anti-malarial activity in the mouse model. J Biol Chem 2010; 285:33054-33064. [PMID: 20702404 DOI: 10.1074/jbc.m110.162081] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plasmodium falciparum, the causative agent of the most deadly form of human malaria, is unable to salvage pyrimidines and must rely on de novo biosynthesis for survival. Dihydroorotate dehydrogenase (DHODH) catalyzes the rate-limiting step in the pyrimidine biosynthetic pathway and represents a potential target for anti-malarial therapy. A high throughput screen and subsequent medicinal chemistry program identified a series of N-alkyl-5-(1H-benzimidazol-1-yl)thiophene-2-carboxamides with low nanomolar in vitro potency against DHODH from P. falciparum, P. vivax, and P. berghei. The compounds were selective for the parasite enzymes over human DHODH, and x-ray structural data on the analog Genz-667348, demonstrated that species selectivity could be attributed to amino acid differences in the inhibitor-binding site. Compounds from this series demonstrated in vitro potency against the 3D7 and Dd2 strains of P. falciparum, good tolerability and oral exposure in the mouse, and ED(50) values in the 4-day murine P. berghei efficacy model of 13-21 mg/kg/day with oral twice-daily dosing. In particular, treatment with Genz-667348 at 100 mg/kg/day resulted in sterile cure. Two recent analogs of Genz-667348 are currently undergoing pilot toxicity testing to determine suitability as clinical development candidates.
Collapse
Affiliation(s)
| | | | | | | | - Renato Skerlj
- From Genzyme Corporation, Waltham, Massachusetts 02451
| | - Amar Bir Sidhu
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02141
| | - Xiaoyi Deng
- Departments of Pharmacology, Dallas, Texas 75390-9041
| | | | - Joseph F Cortese
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02141
| | - Jose E Guerrero Bravo
- Department of Microbiology and Medical Zoology, University of Puerto Rico School of Medicine, P. O. Box 365067, San Juan, Puerto Rico 00936-5067
| | - Keila N Crespo Llado
- Department of Microbiology and Medical Zoology, University of Puerto Rico School of Medicine, P. O. Box 365067, San Juan, Puerto Rico 00936-5067
| | - Adelfa E Serrano
- Department of Microbiology and Medical Zoology, University of Puerto Rico School of Medicine, P. O. Box 365067, San Juan, Puerto Rico 00936-5067
| | - Iñigo Angulo-Barturen
- Medicines Development Campus, Diseases of the Developing World, GlaxoSmithKline, c/Severo Ochoa 2, 28760 Tres Cantos, Spain
| | - María Belén Jiménez-Díaz
- Medicines Development Campus, Diseases of the Developing World, GlaxoSmithKline, c/Severo Ochoa 2, 28760 Tres Cantos, Spain
| | - Sara Viera
- Medicines Development Campus, Diseases of the Developing World, GlaxoSmithKline, c/Severo Ochoa 2, 28760 Tres Cantos, Spain
| | - Helen Garuti
- Medicines Development Campus, Diseases of the Developing World, GlaxoSmithKline, c/Severo Ochoa 2, 28760 Tres Cantos, Spain
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4002, Basel, Switzerland; University of Basel, Petersplatz 1, CH-4003, Basel, Switzerland
| | - Petros Papastogiannidis
- Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4002, Basel, Switzerland; University of Basel, Petersplatz 1, CH-4003, Basel, Switzerland
| | - Jing-Wen Lin
- Leiden Malaria Research Group, Department of Parasitology, Centre for Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Chris J Janse
- Leiden Malaria Research Group, Department of Parasitology, Centre for Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Shahid M Khan
- Leiden Malaria Research Group, Department of Parasitology, Centre for Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Manoj Duraisingh
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts 02115
| | - Bradley Coleman
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts 02115
| | - Elizabeth J Goldsmith
- Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041
| | | | - Benito Munoz
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02141
| | - Dyann F Wirth
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts 02115
| | | | - Roger Wiegand
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02141
| | | |
Collapse
|
4
|
Patel V, Booker M, Kramer M, Ross L, Celatka CA, Kennedy LM, Dvorin JD, Duraisingh MT, Sliz P, Wirth DF, Clardy J. Identification and characterization of small molecule inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase. J Biol Chem 2008; 283:35078-85. [PMID: 18842591 PMCID: PMC2596402 DOI: 10.1074/jbc.m804990200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 10/06/2008] [Indexed: 11/06/2022] Open
Abstract
Plasmodium falciparum causes the most deadly form of malaria and accounts for over one million deaths annually. The malaria parasite is unable to salvage pyrimidines and relies on de novo biosynthesis for survival. Dihydroorotate dehydrogenase (DHOD), a mitochondrially localized flavoenzyme, catalyzes the rate-limiting step of this pathway and is therefore an attractive antimalarial chemotherapeutic target. Using a target-based high throughput screen, we have identified a series of potent, species-specific inhibitors of P. falciparum DHOD (pfDHOD) that are also efficacious against three cultured strains (3D7, HB3, and Dd2) of P. falciparum. The primary antimalarial mechanism of action of these compounds was confirmed to be inhibition of pfDHOD through a secondary assay with transgenic malaria parasites, and the structural basis for enzyme inhibition was explored through in silico structure-based docking and site-directed mutagenesis. Compound-mediated cytotoxicity was not observed with human dermal fibroblasts or renal epithelial cells. These data validate pfDHOD as an antimalarial drug target and provide chemical scaffolds with which to begin medicinal chemistry efforts.
Collapse
Affiliation(s)
- Vishal Patel
- Department of Biological
Chemistry and Molecular Pharmacology, Harvard Medical School, Boston,
Massachusetts 02115, the Department
of Immunology and Infectious Disease, Harvard School of Public Health, Boston,
Massachusetts 02115, Drug and
Biomaterial Research and Development, Genzyme Corporation, Waltham,
Massachusetts 02451, Division of
Infectious Diseases, Children's Hospital Boston, Boston, Massachusetts 02115,
and the Department of Pediatrics, Harvard
Medical School, Boston, Massachusetts 02115
| | - Michael Booker
- Department of Biological
Chemistry and Molecular Pharmacology, Harvard Medical School, Boston,
Massachusetts 02115, the Department
of Immunology and Infectious Disease, Harvard School of Public Health, Boston,
Massachusetts 02115, Drug and
Biomaterial Research and Development, Genzyme Corporation, Waltham,
Massachusetts 02451, Division of
Infectious Diseases, Children's Hospital Boston, Boston, Massachusetts 02115,
and the Department of Pediatrics, Harvard
Medical School, Boston, Massachusetts 02115
| | - Martin Kramer
- Department of Biological
Chemistry and Molecular Pharmacology, Harvard Medical School, Boston,
Massachusetts 02115, the Department
of Immunology and Infectious Disease, Harvard School of Public Health, Boston,
Massachusetts 02115, Drug and
Biomaterial Research and Development, Genzyme Corporation, Waltham,
Massachusetts 02451, Division of
Infectious Diseases, Children's Hospital Boston, Boston, Massachusetts 02115,
and the Department of Pediatrics, Harvard
Medical School, Boston, Massachusetts 02115
| | - Leila Ross
- Department of Biological
Chemistry and Molecular Pharmacology, Harvard Medical School, Boston,
Massachusetts 02115, the Department
of Immunology and Infectious Disease, Harvard School of Public Health, Boston,
Massachusetts 02115, Drug and
Biomaterial Research and Development, Genzyme Corporation, Waltham,
Massachusetts 02451, Division of
Infectious Diseases, Children's Hospital Boston, Boston, Massachusetts 02115,
and the Department of Pediatrics, Harvard
Medical School, Boston, Massachusetts 02115
| | - Cassandra A. Celatka
- Department of Biological
Chemistry and Molecular Pharmacology, Harvard Medical School, Boston,
Massachusetts 02115, the Department
of Immunology and Infectious Disease, Harvard School of Public Health, Boston,
Massachusetts 02115, Drug and
Biomaterial Research and Development, Genzyme Corporation, Waltham,
Massachusetts 02451, Division of
Infectious Diseases, Children's Hospital Boston, Boston, Massachusetts 02115,
and the Department of Pediatrics, Harvard
Medical School, Boston, Massachusetts 02115
| | - Leah M. Kennedy
- Department of Biological
Chemistry and Molecular Pharmacology, Harvard Medical School, Boston,
Massachusetts 02115, the Department
of Immunology and Infectious Disease, Harvard School of Public Health, Boston,
Massachusetts 02115, Drug and
Biomaterial Research and Development, Genzyme Corporation, Waltham,
Massachusetts 02451, Division of
Infectious Diseases, Children's Hospital Boston, Boston, Massachusetts 02115,
and the Department of Pediatrics, Harvard
Medical School, Boston, Massachusetts 02115
| | - Jeffrey D. Dvorin
- Department of Biological
Chemistry and Molecular Pharmacology, Harvard Medical School, Boston,
Massachusetts 02115, the Department
of Immunology and Infectious Disease, Harvard School of Public Health, Boston,
Massachusetts 02115, Drug and
Biomaterial Research and Development, Genzyme Corporation, Waltham,
Massachusetts 02451, Division of
Infectious Diseases, Children's Hospital Boston, Boston, Massachusetts 02115,
and the Department of Pediatrics, Harvard
Medical School, Boston, Massachusetts 02115
| | - Manoj T. Duraisingh
- Department of Biological
Chemistry and Molecular Pharmacology, Harvard Medical School, Boston,
Massachusetts 02115, the Department
of Immunology and Infectious Disease, Harvard School of Public Health, Boston,
Massachusetts 02115, Drug and
Biomaterial Research and Development, Genzyme Corporation, Waltham,
Massachusetts 02451, Division of
Infectious Diseases, Children's Hospital Boston, Boston, Massachusetts 02115,
and the Department of Pediatrics, Harvard
Medical School, Boston, Massachusetts 02115
| | - Piotr Sliz
- Department of Biological
Chemistry and Molecular Pharmacology, Harvard Medical School, Boston,
Massachusetts 02115, the Department
of Immunology and Infectious Disease, Harvard School of Public Health, Boston,
Massachusetts 02115, Drug and
Biomaterial Research and Development, Genzyme Corporation, Waltham,
Massachusetts 02451, Division of
Infectious Diseases, Children's Hospital Boston, Boston, Massachusetts 02115,
and the Department of Pediatrics, Harvard
Medical School, Boston, Massachusetts 02115
| | - Dyann F. Wirth
- Department of Biological
Chemistry and Molecular Pharmacology, Harvard Medical School, Boston,
Massachusetts 02115, the Department
of Immunology and Infectious Disease, Harvard School of Public Health, Boston,
Massachusetts 02115, Drug and
Biomaterial Research and Development, Genzyme Corporation, Waltham,
Massachusetts 02451, Division of
Infectious Diseases, Children's Hospital Boston, Boston, Massachusetts 02115,
and the Department of Pediatrics, Harvard
Medical School, Boston, Massachusetts 02115
| | - Jon Clardy
- Department of Biological
Chemistry and Molecular Pharmacology, Harvard Medical School, Boston,
Massachusetts 02115, the Department
of Immunology and Infectious Disease, Harvard School of Public Health, Boston,
Massachusetts 02115, Drug and
Biomaterial Research and Development, Genzyme Corporation, Waltham,
Massachusetts 02451, Division of
Infectious Diseases, Children's Hospital Boston, Boston, Massachusetts 02115,
and the Department of Pediatrics, Harvard
Medical School, Boston, Massachusetts 02115
| |
Collapse
|
5
|
West TP. Effect of pyrophosphate and orotidine monophosphate on cytosine deaminase regulatory properties. EXPERIENTIA 1985; 41:1563-4. [PMID: 3000814 DOI: 10.1007/bf01964808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The maximal velocity of the reaction (Vmax) and the half-saturation constant (K0.5) values of the S. typhimurium cytosine deaminase were altered in the presence of its effectors, pyrophosphate and orotidine monophosphate. From the kinetics of orotidine monophosphate inhibition of cytosine deaminase, it was characterized as a mixed-type noncompetitive inhibitor.
Collapse
|
6
|
Michaels G, Kelln RA. Construction and use of pyr::lac fusion strains to study regulation of pyrimidine biosynthesis in Salmonella typhimurium. MOLECULAR & GENERAL GENETICS : MGG 1983; 189:463-70. [PMID: 6223200 DOI: 10.1007/bf00325910] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The technique developed by Rosenfeld and Brenchley [J Bacteriol 144, 848-851 (1980)] has been used to introduce Mu d1 (Apr lac) into Salmonella typhimurium for purposes of constructing pyr::lac fusion strains. A stable pyrB::lac fusion mutant was subsequently derived and used for the genetic characterization of the pyrB gene. The direction of transcription of pyrB was determined to be counterclockwise on the S. typhimurium linkage map and argI was shown to be located clockwise of pyrB. Mutants altered in the regulation of expression of pyrB were isolated and two of the isolates chosen for further study were tentatively categorized as promoter or operator mutants.
Collapse
|
7
|
Roof WD, Foltermann KF, Wild JR. The organization and regulation of the pyrBI operon in E. coli includes a rho-independent attenuator sequence. MOLECULAR & GENERAL GENETICS : MGG 1982; 187:391-400. [PMID: 6294470 DOI: 10.1007/bf00332617] [Citation(s) in RCA: 80] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
1. The two polypeptide chains that comprise aspartate carbamoyltransferase in Escherichia coli are encoded by adjacent cistrons expressed in the order, promoter-leader-catalytic cistron-regulatory cistron (p-leader-pyrBI). These two cistrons and their single control region have been cloned as a 2,800 base pair (bp) fragment (The minimal coding requirement for the catalytic and regulatory polypeptides is about 1,350 bp plus control regions). The genes contained by this fragment are subject to normal repression controls and thus possess the intact control regions. 2. By deleting an internal fragment with specific restriction endonucleases, it was possible to construct shortened fragments which no longer produced the regulatory polypeptide. In these cases the expression of the catalytic cistron was normal and subject to repression upon growth in the presence of uracil. Since the pyrB cistron retained transcriptional control, the regulatory polypeptide was not required for expression or control of the catalytic cistron. As expected, the catalytic trimer (Mr = 100,000 daltons) from these deletion mutants had no effector response nor did it exhibit homotropic kinetics for aspartate. The enzyme was identical to the c3 trimer purified from the native holoenzyme by neohydrin dissociation. 3. Insertion of Mu d1(lac Apr) into the structural region of pyrB had a negative effect on the expression of pyrI. This supports the idea that the catalytic and regulatory polypeptide chains of aspartate carbamoyl-transferase are encoded by a single bicistronic operon. Detailed restriction analysis of the cloned pyrBI region has produced a genetic map of restriction sites which is colinear with the published amino acid sequences of the two polypeptides. These maps indicate that the 3'-terminus of the catalytic cistron is adjacent to the 5'-terminus of the regulatory cistron and separated by 10-20 bp. 4. DNA sequence analysis of the 5'-proximal regions of pyrBI revealed that an extensive leader sequence separated the promoter and first structural gene pyrB. This leader of approximately 150 bp contains an attenuator sequence and the translational signals required for the production of a leader polypeptide of 43 amino acids. In this paper we describe the structural organization of pyrBI, and provide a detailed analysis of its regulatory region including its DNA sequence.
Collapse
|
8
|
Abstract
The synthesis of cytosine deaminase in Salmonella typhimurium is repressed by pyrimidines. This repression is mediated by both a uridine and a cytidine compound, indicating a distinct difference in the regulation of synthesis of cytosine deaminase from the regulation of the de novo pyrimidine pathway enzymes. A salvage role for the enzyme in pyrimidine metabolism is postulated.
Collapse
|
9
|
Williams JC, Lee CE, Wild JR. Genetic and biochemical characterization of distinct transport systems for uracil, uridine and cytidine in Salmonella typhimurium. MOLECULAR & GENERAL GENETICS : MGG 1980; 178:121-30. [PMID: 6991875 DOI: 10.1007/bf00267220] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
10
|
Jenness DD, Schachman HK. pryB mutations as suppressors of arginine auxotrophy in Salmonella typhimurium. J Bacteriol 1980; 141:33-40. [PMID: 6986362 PMCID: PMC293526 DOI: 10.1128/jb.141.1.33-40.1980] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Salmonella typhimurium strains which produce high constitutive levels of aspartate transcarbamoylase due to the pyrH700 mutation were found to grow more slowly in minimal medium than pyrH+ controls. The addition of arginine or citrulline but not ornithine restored normal growth rates. This requirement for arginine was completely suppressed by pyrB mutations and partially suppressed by pyrC and pyrD mutations. No suppression was observed with mutants at the pyrF locus. Introduction of leaky mutation argI2002 resulted in a more extreme arginine requirement and accentuated suppression by pyrB mutations. Suppression by the pyrC and pyrD mutations was reduced as a result of the incorporation of the leaky argI2002 allele. These results indicate that in pyrH700 strains carbamoyl phosphate is preferentially directed toward the formation of intermediates in the pyrimidine biosynthetic pathway. Arginine auxotrophy results from the reduced availability of carbamoyl phosphate for the biosynthesis of arginine. Suppression of this arginine dependence for growth is used as a convenient positive selection technique for pyrB mutations.
Collapse
|
11
|
Lissens W, Cunin R, Kelker N, Glansdorff N, Piérard A. In vitro synthesis of Escherichia coli carbamoylphosphate synthase: evidence for participation of the arginine repressor in cumulative repression. J Bacteriol 1980; 141:58-66. [PMID: 6243630 PMCID: PMC293530 DOI: 10.1128/jb.141.1.58-66.1980] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A deoxyribonucleic acid-directed in vitro system for the synthesis of Escherichia coli carbamoylphosphate synthase has been developed, and its properties have been studied. The system uses the deoxyribonucleic acid of a lambda phage carrying the car genes (lambdadcarAB) as template and mediates the synthesis of both subunits of the enzyme. This newly synthesized enzyme exhibits the properties of native carbamoylphosphate synthase. A study of the in vitro synthetic capacities of S-30 extracts from strains containing either a mutated or the wild-type allele of gene argR supports earlier suggestions, based on in vivo evidence, that the argR product is involved in cumulative repression of carbamoylphosphate synthase by arginine and the pyrimidines. Repression in vitro is as efficient as in vivo. In keeping with such observation it is shown that in vitro synthesis of carbamoylphosphate synthase is repressed by partially purified arginine repressor. Evidence was obtained which indicates that arginine repression of carbamoylphosphate synthase mainly operates at the level of transcription. This was based on the design of an in vitro transcription system for gene carA, the structural gene for the light subunit of carbamoylphosphate synthase. This system also allowed us to demonstrate that free arginine is the corepressor involved in carbamoylphosphate synthase repression. The present in vitro approaches, in addition to the information they have already provided, open new possibilities for further investigations on the mechanism of cumulative repression and, in particular, on the participation of pyrimidine end products in this regulatory mechanism.
Collapse
|
12
|
Womack JE, O'Donovan GA. Orotic acid excretion in some wild-type strains of Escherichia coli K-12. J Bacteriol 1978; 136:825-7. [PMID: 361725 PMCID: PMC218615 DOI: 10.1128/jb.136.2.825-827.1978] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
During rapid growth, the excretion of pyrimidines, predominantly uracil, is a common phenomenon in procaryotes and eucaryotes. In Escherichia coli, some K-12 strains excrete orotic acid and not uracil. This is caused by a mutation in the pyrF gene.
Collapse
|
13
|
|
14
|
Wild JR, Belser WL. Pyrimidine biosynthesis in Serratia marcescens: a possible role for nonsequential enzyme interactions in mimicking coordinate gene expression. Biochem Genet 1977; 15:157-72. [PMID: 192191 DOI: 10.1007/bf00484559] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The coordinate expression of four sequential enzymes in the de novo pyrimidine pathway may result from the interaction of the various polypeptides of the pathway in Serratia marcescens rather than represent some unit of transcriptional regulation. These interactions were defined by examining the polypeptide association observed in extracts of parental and mutant strains in a series of pleiotropic pyrimidine auxotrophs. Extracts of pyrE auxotrophs [processing dihydroorotate (DHOase) activity but no orotidine-5'-monophosphate pyrophosphorylase (OMPppase) activity] stimulate OMPppase activity in extracts of pyrC auxotrophs (posessing reduced OMPppase activity but no DHOase activity). Separation by molecular weight on Sephadex G200 has suggested an aggregation between the final two enzymes, OMPppase and OMPdecarboxylase (OMPdecase), and the earlier enzyme, DHOase. The reduction of OMPppase activity in pyrC auxotrophs (encoding either a defective polypeptide or reduced levels) is explained by the lack of adequate levels of DHOase for aggregate formation. Such polypeptide interactions appear to mimic the coordinate formation of polypeptides which are controlled as a unit of regulation. The measurable levels of enzymatic activity vary in a quantitatively identical manner, but the variation does not result directly from the regulation of polypeptide formation.
Collapse
|
15
|
Williams JC, Peterson JC. Enzymatic activities leading to pyrimidine nucleotide biosynthesis from cell-free extracts of Rickettsia typhi. Infect Immun 1976; 14:439-48. [PMID: 823112 PMCID: PMC420904 DOI: 10.1128/iai.14.2.439-448.1976] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cell-free extracts from Rickettsia typhi were examined for the presence or absence of pyrimidine phosphotransferase enzymes and compared with the enzymes of mouse L cells and Salmonella typhimurium. The organisms were grown in mouse L cells and in the yolk sacs of chicken embryos, purified by Renografin density gradient centrifugation, and ruptured in a French pressure cell. The enzymes for the reutilization of uridine and thymidine, uridine kinase (EC 2.7.1.48) and thymidine kinase (EC 2.7.1.21), were not detected in R. typhi extracts with the phosphate donors effective for control enzymes. The following enzyme activities were demonstrated in R. typhi: uridine-5'-monophosphate kinase (UMPK, EC 2.7.4.4), deoxythymidine-5'-monophosphate kinase (dTMPK, EC 2.7.4.9), and nucleosidediphosphate kinase (NDPK, EC 2.7.4.6). Physicochemical and enzymatic analyses demonstrated that the pyrimidine nucleotide kinases of R. typhi were not of host origin and that the source (yolk sac and mouse L cells) did not influence the relative enzymatic activities. The specific activities of UMPK and dTMPK were higher when the rickettsiae were harvested before embryo death, whereas NDPK levels were slightly decreased. The specific activities of UMPK, dTMPK, and NDPK were comparable to those of S. typhimurium, and consequently the rickettsiae have potential for the anabolism of monophosphates, as do the host-independent bacteria. These results suggest that R. typhi cannot utilize host uridine or thymidine pools directly but must rely on themonophosphorylated molecules of the host cell or must synthesize the monophosphates de novo.
Collapse
|
16
|
Piérard A, Glansdorff N, Gigot D, Crabeel M, Halleux P, Thiry L. Repression of Escherichia coli carbamoylphosphate synthase: relationships with enzyme synthesis in the arginine and pyrimidine pathways. J Bacteriol 1976; 127:291-301. [PMID: 179975 PMCID: PMC233061 DOI: 10.1128/jb.127.1.291-301.1976] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cumulative repression of Escherichia coli carbamoylphosphate synthase (CPSase; EC 2.7.2.9) by arginine and pyrimidine was analyzed in relation to control enzyme synthesis in the arginine and pyrimidine pathways. The expression of carA and carB, the adjacent genes that specify the two subunits of the enzyme, was estimated by means of an in vitro complementation assay. The synthesis of each gene product was found to be under repression control. Coordinate expression of the two genes was observed under most conditions investigated. They might thus form an operon. The preparation of strains blocked in the degradation of cytidine and harboring leaky mutations affecting several steps of pyrimidine nucleotide synthesis made it possible to distinguish between the effects of cytidine and uridine compounds in the repression of the pyrimidine pathway enzymes. The data obtained suggest that derivatives of both cytidine and uridine participate in the repression of CPSase. In addition, repression of CPSase by arginine did not appear to occur unless pyrimidines were present at a significant intracellular concentration. This observation, together with our previous report that argR mutations impair the cumulative repression of CPSase, suggests that this control is mediated through the concerted effects of regulatory elements specific for the arginine and pyrimidine pathways.
Collapse
|
17
|
Kelln RA, Kinahan JJ, Foltermann KF, O'Donovan GA. Pyrimidine biosynthetic enzymes of Salmonella typhimurium, repressed specifically by growth in the presence of cytidine. J Bacteriol 1975; 124:764-74. [PMID: 1102530 PMCID: PMC235966 DOI: 10.1128/jb.124.2.764-774.1975] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The repressive effects of exogenous cytidine on growing cells was examined in a specially constructed strain in which the pool sizes of endogenous uridine 5'-diphosphate and uridine 5'-triphosphate cannot be varied by the addition of uracil and/or uridine to the medium. Five enzymes of the pyrimidine biosynthetic pathway and one enzyme of the arginine biosynthetic pathway were assayed from cells grown under a variety of conditions. Cytidine repressed the synthesis of dihydroorotase (encoded by pyrC), dihydroorotate dehydrogenase (encoded by pyrD), and ornithine transcarbamylase (encoded by argI). Moreover, aspartate transcarbamylase (encoded by pyrB) became further derepressed upon cytidine addition, whereas no change occurred in the levels of the last two enzymes (encoded by pyrE and pyrF) of the pyrimidine pathway. Quantitative nucleotide pool determinations have provided evidence that any individual ribo- or deoxyribonucleoside mono-, di-, or triphosphate of cytosine or uracil is not a repressing metabolite for the pyrimidine biosynthetic enzymes. Other nucleotide derivatives or ratios must be considered.
Collapse
|
18
|
Justesen J, Neuhard J. pyrR identical to pyrH in Salmonella typhimurium: control of expression of the pyr genes. J Bacteriol 1975; 123:851-4. [PMID: 169229 PMCID: PMC235806 DOI: 10.1128/jb.123.3.851-854.1975] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mutants of Salmonella typhimurium showing constitutive synthesis of the pyrimidine biosynthetic enzymes coded for by the pyrA-F genes (G. A. O'Donavan and J. C. Gerhart, 1972) have been reinvestigated. The high rate of expression of the pyrB-F genes in these mutants as well as their pyrimidine excretion is shown to be due to mutations in the gene pyrH encoding uridine 5'-monophosphate kinase. Thus, the term pyrR used for these mutants should be replaced by the designation pyrH.
Collapse
|
19
|
Schwartz M, Neuhard J. Control of expression of the pyr genes in Salmonella typhimurium: effects of variations in uridine and cytidine nucleotide pools. J Bacteriol 1975; 121:814-22. [PMID: 163814 PMCID: PMC246008 DOI: 10.1128/jb.121.3.814-822.1975] [Citation(s) in RCA: 91] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The differential rate of synthesis of five of the pyrimidine biosynthetic enzymes coded for by pyrB-F, and the endogenous concentrations of the individual pyrimidine nucleotides were determined in specially constructed mutants of Salmonella typhimurium. In the mutants employed the different pyrimidine nucleotide pools may be manipulated individually during exponential growth. The results obtained indicate the following. (i) The expression of pyrB, pyrE, and pyrF is controlled by a uridine nucleotide in a noncoordinate manner. (ii) The expression of pyrC and pyrD is regulated predominantly by a cytidine nucleotide. Under all conditions investigated, their expression seems to be coordinated, even though the genes are not contiguous on the chromosome. (iii) The low-molecular-weight effectors involved in controlling the expression of the pyr genes are neither uridine 5'-monophosphate nor cytidine 5'-monophosphate, but rather the corresponding di- or triphosphates.
Collapse
|
20
|
Ginther CL, Ingraham JL. Cold-sensitive mutant of Salmonella typhimurium defective in nucleosidediphosphokinase. J Bacteriol 1974; 118:1020-6. [PMID: 4364328 PMCID: PMC246852 DOI: 10.1128/jb.118.3.1020-1026.1974] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
A cold-sensitive mutant of Salmonella typhimurium defective in nucleosidediphosphokinase (ATP:nucleosidediphosphate phosphotransferase, EC 2.7.4.6) has been isolated and characterized. The mutant contains only 2% of the enzyme activity found in the parent, and the heat lability of this activity is 10 times that from the parent at 33 C. Mutant extracts lack the ability to convert any of 11 nucleoside diphosphates tested to the corresponding nucleoside triphosphates, but the nucleosidemonophosphatase activities are normal. Although the nucleoside triphosphate pools of the mutant are depressed significantly at the restrictive temperature (20 C), they are slightly elevated at the permissive temperature (37 C). The levels of guanosine pentaphosphate and guanosine tetraphosphate are dramatically increased. Two representative enzymes of pyrimidine de novo synthesis, aspartic transcarbamylase and dihydroorotate dehydrogenase, are fully repressed at both 37 and 20 C. Intracellular pools of uridine diphosphate are depressed at both permissive and restrictive temperature.
Collapse
|