1
|
Bogdanov M. Preparation of Uniformly Oriented Inverted Inner (Cytoplasmic) Membrane Vesicles from Gram-Negative Bacterial Cells. Methods Mol Biol 2024; 2715:159-180. [PMID: 37930527 PMCID: PMC10724710 DOI: 10.1007/978-1-0716-3445-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
The complex double-membrane organization of the envelope in Gram-negative bacteria places unique biosynthetic and topological constraints that can affect translocation of lipids and proteins synthesized on cytoplasm facing leaflet of cytoplasmic (inner) membrane (IM), across IM and between IM and outer membrane (OM). Uniformly oriented inside-out (ISO) vesicles became functional requisite for many biochemical reconstitution functional assays, vectorial proteomics, and vectorial lipidomics. Due to these demands, it is necessary to develop simple and reliable approaches for preparation of uniformly oriented IM membrane vesicles and validation of their sidedness. The uniformly ISO oriented membrane vesicles which have the cytoplasmic face of the membrane on the outside and the periplasmic side facing the sealed lumen can be obtained following intact cell disruption by a single passage through a French pressure cell (French press) at desired total pressure. Although high-pressure lysis leads to the formation of mostly inverted membrane vesicles (designated and abbreviated usually as ISO vesicles, everted or inverted membrane vesicles (IMVs)), inconclusive results are quite common. This uncertainty is due mainly by applying a different pressures, using either intact cells or spheroplasts and presence or absence of sucrose during rupture procedure. Many E. coli envelope fractionation techniques result in heterogeneity among isolated IM membrane vesicles. In part, this is due to difficulties in simple validation of sidedness of oriented membrane preparations of unknown sidedness. The sidedness of various preparations of membrane vesicles can be inferred from the orientation of residing uniformly oriented transmembrane protein. We outline the method in which the orientation of membrane vesicles can be verified by mapping of uniform or mixed topologies of essential protein E. coli protein leader peptidase (LepB) by advanced SCAM™. Although the protocol discussed in this chapter has been developed using Escherichia coli and Yersinia pseudotuberculosis, it can be directly adapted to other Gram-negative bacteria including pathogens.
Collapse
Affiliation(s)
- Mikhail Bogdanov
- Department of Biochemistry & Molecular Biology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
2
|
Di Cesare M, Diagne AM, Bourgey B, Jault JM, Orelle C. Functional Overexpression of Membrane Proteins in E. coli: The Good, the Bad, and the Ugly. Methods Mol Biol 2022; 2507:41-58. [PMID: 35773576 DOI: 10.1007/978-1-0716-2368-8_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Overexpression of properly folded membrane proteins is a mandatory step for their functional and structural characterization. One of the most used expression systems for the production of proteins is Escherichia coli. Many advantageous strains combined with T7 expression systems have been developed over the years. Recently, we showed that the choice of the strain is critical for the functionality of membrane proteins, even when the proteins are successfully incorporated in the membrane (Mathieu et al. Sci Rep. 2019; 9(1):2654). Notably, the amount and/or activity of the T7-RNA polymerase, which drives the transcription of the genes of interest, may indirectly affect the folding and functionality of overexpressed membrane proteins. Moreover, we reported a general trend in which mild detergents mainly extract the population of active membrane proteins, whereas a harsher detergent like Fos-choline 12 could solubilize them irrespectively of their functionality. Based on these observations, we provide some guidelines to optimize the quality of membrane proteins overexpressed in E. coli.
Collapse
Affiliation(s)
- Margot Di Cesare
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS/University of Lyon, Lyon, France
| | - Aissatou Maty Diagne
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS/University of Lyon, Lyon, France
| | - Benjamin Bourgey
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS/University of Lyon, Lyon, France
| | - Jean-Michel Jault
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS/University of Lyon, Lyon, France.
| | - Cédric Orelle
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS/University of Lyon, Lyon, France.
| |
Collapse
|
3
|
Bhadra A, Hewes JL, Scruggs A, Zhou C, Lee JY, Bauer N. Extracellular cAMP: The Past and Visiting the Future in cAMP-Enriched Extracellular Vesicles. Adv Biol (Weinh) 2021; 5:e2101064. [PMID: 34713635 DOI: 10.1002/adbi.202101064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/22/2021] [Indexed: 12/16/2022]
Abstract
It is recently discovered that the cyclic nucleotide, cyclic adenosine monophosphate (cAMP) can be enriched in the extracellular vesicles (EVs) isolated from endothelial cells. In the current perspective a historical context for the discovery of the extracellular cAMP is provided. The story of extracellular cAMP through investigations addressing the molecule's role in the adenosine pathway is followed, which is widespread in mammalian physiology. The adenosine pathway mediates normal physiological conditions such as renin release, phosphate transport, etc., and participates in pathological conditions such as bronchoconstriction of the airways. Furthermore, adenosine mediated biological pathways are regulated via the receptor mediated intracellular cAMP pathway in mammalian cells. It then speculates on the question of whether cAMP enriched EVs could bypass typical receptor mediated cell signaling and directly activate cAMP signaling cascade in target cells. Preliminary studies to suggest cAMP enriched EVs are provided, added to naïve endothelial cells, results in an increase in intracellular cAMP. An alternate mechanism is proposed, apart from the traditional adenosine pathway, that extracellular cAMP may exert its effects and put into perspective how it might consider circulating cAMP moving forward.
Collapse
Affiliation(s)
- Aritra Bhadra
- University of South Alabama, 307 North University Blvd, Mobile, AL, 36688, USA
| | - Jenny L Hewes
- University of South Alabama, 307 North University Blvd, Mobile, AL, 36688, USA
| | - April Scruggs
- University of South Alabama, 307 North University Blvd, Mobile, AL, 36688, USA
| | - Chun Zhou
- University of South Alabama, 307 North University Blvd, Mobile, AL, 36688, USA
| | - Ji Young Lee
- University of South Alabama, 307 North University Blvd, Mobile, AL, 36688, USA
| | - Natalie Bauer
- University of South Alabama, 307 North University Blvd, Mobile, AL, 36688, USA
| |
Collapse
|
4
|
Hershewe JM, Warfel KF, Iyer SM, Peruzzi JA, Sullivan CJ, Roth EW, DeLisa MP, Kamat NP, Jewett MC. Improving cell-free glycoprotein synthesis by characterizing and enriching native membrane vesicles. Nat Commun 2021; 12:2363. [PMID: 33888690 PMCID: PMC8062659 DOI: 10.1038/s41467-021-22329-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 03/08/2021] [Indexed: 02/02/2023] Open
Abstract
Cell-free gene expression (CFE) systems from crude cellular extracts have attracted much attention for biomanufacturing and synthetic biology. However, activating membrane-dependent functionality of cell-derived vesicles in bacterial CFE systems has been limited. Here, we address this limitation by characterizing native membrane vesicles in Escherichia coli-based CFE extracts and describing methods to enrich vesicles with heterologous, membrane-bound machinery. As a model, we focus on bacterial glycoengineering. We first use multiple, orthogonal techniques to characterize vesicles and show how extract processing methods can be used to increase concentrations of membrane vesicles in CFE systems. Then, we show that extracts enriched in vesicle number also display enhanced concentrations of heterologous membrane protein cargo. Finally, we apply our methods to enrich membrane-bound oligosaccharyltransferases and lipid-linked oligosaccharides for improving cell-free N-linked and O-linked glycoprotein synthesis. We anticipate that these methods will facilitate on-demand glycoprotein production and enable new CFE systems with membrane-associated activities.
Collapse
Affiliation(s)
- Jasmine M Hershewe
- Department of Chemical and Biological Engineering, Northwestern University, Technological Institute E136, Evanston, IL, 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Technological Institute E136, Evanston, IL, 60208, USA
| | - Katherine F Warfel
- Department of Chemical and Biological Engineering, Northwestern University, Technological Institute E136, Evanston, IL, 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Technological Institute E136, Evanston, IL, 60208, USA
| | - Shaelyn M Iyer
- Department of Chemical and Biological Engineering, Northwestern University, Technological Institute E136, Evanston, IL, 60208, USA
| | - Justin A Peruzzi
- Department of Chemical and Biological Engineering, Northwestern University, Technological Institute E136, Evanston, IL, 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Technological Institute E136, Evanston, IL, 60208, USA
| | - Claretta J Sullivan
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Dayton, OH, 45433, USA
| | - Eric W Roth
- Northwestern University Atomic and Nanoscale Characterization and Experimentation (NUANCE) Center, Tech Institute A/B Wing A173, Evanston, IL, 60208, USA
| | - Matthew P DeLisa
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
- Biomedical and Biological Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Neha P Kamat
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Technological Institute E136, Evanston, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Technological Institute E310, Evanston, IL, 60208, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Technological Institute E136, Evanston, IL, 60208, USA.
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA.
- Center for Synthetic Biology, Northwestern University, Technological Institute E136, Evanston, IL, 60208, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, 60611, USA.
- Simpson Querrey Institute, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
5
|
Complex Response of the CpxAR Two-Component System to β-Lactams on Antibiotic Resistance and Envelope Homeostasis in Enterobacteriaceae. Antimicrob Agents Chemother 2020; 64:AAC.00291-20. [PMID: 32229490 DOI: 10.1128/aac.00291-20] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/17/2020] [Indexed: 01/17/2023] Open
Abstract
The Cpx stress response is widespread among Enterobacteriaceae We previously reported a mutation in cpxA in a multidrug-resistant strain of Klebsiella aerogenes isolated from a patient treated with imipenem. This mutation yields a single-amino-acid substitution (Y144N) located in the periplasmic sensor domain of CpxA. In this work, we sought to characterize this mutation in Escherichia coli by using genetic and biochemical approaches. Here, we show that cpxAY144N is an activated allele that confers resistance to β-lactams and aminoglycosides in a CpxR-dependent manner, by regulating the expression of the OmpF porin and the AcrD efflux pump, respectively. We also demonstrate the effect of the intimate interconnection between the Cpx system and peptidoglycan integrity on the expression of an exogenous AmpC β-lactamase by using imipenem as a cell wall-active antibiotic or by inactivating penicillin-binding proteins. Moreover, our data indicate that the Y144N substitution abrogates the interaction between CpxA and CpxP and increases phosphotransfer activity on CpxR. Because the addition of a strong AmpC inducer such as imipenem is known to cause abnormal accumulation of muropeptides (disaccharide-pentapeptide and N-acetylglucosamyl-1,6-anhydro-N-acetylmuramyl-l-alanyl-d-glutamy-meso-diaminopimelic-acid-d-alanyl-d-alanine) in the periplasmic space, we propose these molecules activate the Cpx system by displacing CpxP from the sensor domain of CpxA. Altogether, these data could explain why large perturbations to peptidoglycans caused by imipenem lead to mutational activation of the Cpx system and bacterial adaptation through multidrug resistance. These results also validate the Cpx system, in particular, the interaction between CpxA and CpxP, as a promising therapeutic target.
Collapse
|
6
|
Li H, Onbe K, Liu Q, Iijima M, Tatematsu K, Seno M, Tada H, Kuroda SI. Synthesis and assembly of Hepatitis B virus envelope protein-derived particles in Escherichia coli. Biochem Biophys Res Commun 2017; 490:155-160. [PMID: 28601634 DOI: 10.1016/j.bbrc.2017.06.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 06/06/2017] [Indexed: 01/27/2023]
Abstract
Hepatitis B virus (HBV) envelope particles have been synthesized in eukaryotic cells (e.g., mammalian cells, insect cells, and yeast cells) as an HB vaccine immunogen and drug delivery system (DDS) nanocarrier. Many researchers had made attempts to synthesize the particles in Escherichia coli for minimize the cost and time for producing HBV envelope particles, but the protein was too deleterious to be synthesized in E. coli. In this study, we generated deletion mutants of HBV envelope L protein (389 amino acid residues (aa)) containing three transmembrane domains (TM1, TM2, TM3). The ΔNC mutant spanning from TM2 to N-terminal half of TM3 (from 237 aa to 335 aa) was found as a shortest form showing spontaneous particle formation. After the N-terminal end of ΔNC mutant was optimized by the N-end rule for E. coli expression, the modified ΔNC mutant (mΔNC) was efficiently expressed as particles in E. coli. The molecular mass of mΔNC particle was approx. 670 kDa, and the diameter was 28.5 ± 6.2 nm (mean ± SD, N = 61). The particle could react with anti-HBV envelope S protein antibody, indicating the particles exhibited S antigenic domain outside as well as HBV envelope particles. Taken together, the E. coli-derived mΔNC particles could be used as a substitute of eukaryotic cell-derived HBV envelope particles for versatile applications.
Collapse
Affiliation(s)
- Hao Li
- The Institute of Scientific and Industrial Research, Osaka University, Osaka, 567-0047, Japan
| | - Keisuke Onbe
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Qiushi Liu
- The Institute of Scientific and Industrial Research, Osaka University, Osaka, 567-0047, Japan
| | - Masumi Iijima
- The Institute of Scientific and Industrial Research, Osaka University, Osaka, 567-0047, Japan
| | - Kenji Tatematsu
- The Institute of Scientific and Industrial Research, Osaka University, Osaka, 567-0047, Japan
| | - Masaharu Seno
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Hiroko Tada
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan; Advanced Science Research Center, Okayama University, Okayama, 700-8530, Japan.
| | - Shun' Ichi Kuroda
- The Institute of Scientific and Industrial Research, Osaka University, Osaka, 567-0047, Japan.
| |
Collapse
|
7
|
Bioactive cell-like hybrids coassembled from (glyco)dendrimersomes with bacterial membranes. Proc Natl Acad Sci U S A 2016; 113:E1134-41. [PMID: 26884210 DOI: 10.1073/pnas.1525589113] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A library of amphiphilic Janus dendrimers including two that are fluorescent and one glycodendrimer presenting lactose were used to construct giant dendrimersomes and glycodendrimersomes. Coassembly with the components of bacterial membrane vesicles by a dehydration-rehydration process generated giant cell-like hybrid vesicles, whereas the injection of their ethanol solution into PBS produced monodisperse nanometer size assemblies. These hybrid vesicles contain transmembrane proteins including a small membrane protein, MgrB, tagged with a red fluorescent protein, lipopolysaccharides, and glycoproteins from the bacterium Escherichia coli. Incorporation of two colored fluorescent probes in each of the components allowed fluorescence microscopy to visualize and demonstrate coassembly and the incorporation of functional membrane channels. Importantly, the hybrid vesicles bind a human galectin, consistent with the display of sugar moieties from lipopolysaccharides or possibly glycosylated membrane proteins. The present coassembly method is likely to create cell-like hybrids from any biological membrane including human cells and thus may enable practical application in nanomedicine.
Collapse
|
8
|
Kim S, Ihara K, Katsube S, Hori H, Ando T, Isogai E, Yoneyama H. Characterization of the l-alanine exporter AlaE of Escherichia coli and its potential role in protecting cells from a toxic-level accumulation of l-alanine and its derivatives. Microbiologyopen 2015; 4:632-43. [PMID: 26073055 PMCID: PMC4554458 DOI: 10.1002/mbo3.269] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 04/21/2015] [Accepted: 05/04/2015] [Indexed: 11/14/2022] Open
Abstract
We previously reported that the alaE gene of Escherichia coli encodes the l-alanine exporter AlaE. The objective of this study was to elucidate the mechanism of the AlaE exporter. The minimum inhibitory concentration of l-alanine and l-alanyl-l-alanine in alaE-deficient l-alanine-nonmetabolizing cells MLA301ΔalaE was 4- and >4000-fold lower, respectively, than in the alaE-positive parent cells MLA301, suggesting that AlaE functions as an efflux pump to avoid a toxic-level accumulation of intracellular l-alanine and its derivatives. Furthermore, the growth of the alaE-deficient mutant derived from the l-alanine-metabolizing strain was strongly inhibited in the presence of a physiological level of l-alanyl-l-alanine. Intact MLA301ΔalaE and MLA301ΔalaE/pAlaE cells producing plasmid-borne AlaE, accumulated approximately 200% and 50%, respectively, of the [3H]l-alanine detected in MLA301 cells, suggesting that AlaE exports l-alanine. When 200 mmol/L l-alanine-loaded inverted membrane vesicles prepared from MLA301ΔalaE/pAlaE were placed in a solution containing 200 mmol/L or 0.34 μmol/L l-alanine, energy-dependent [3H]l-alanine accumulation occurred under either condition. This energy-dependent uphill accumulation of [3H]l-alanine was strongly inhibited in the presence of carbonyl cyanide m-chlorophenylhydrazone but not by dicyclohexylcarbodiimide, suggesting that the AlaE-mediated l-alanine extrusion was driven by proton motive force. Based on these results, physiological roles of the l-alanine exporter are discussed.
Collapse
Affiliation(s)
- Seryoung Kim
- Laboratory of Animal Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, 1-1, Amamiya-machi, Tsutsumidori, Aoba-ku, Sendai, 981-8555, Japan
| | - Kohei Ihara
- Laboratory of Animal Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, 1-1, Amamiya-machi, Tsutsumidori, Aoba-ku, Sendai, 981-8555, Japan
| | - Satoshi Katsube
- Laboratory of Animal Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, 1-1, Amamiya-machi, Tsutsumidori, Aoba-ku, Sendai, 981-8555, Japan
| | - Hatsuhiro Hori
- Laboratory of Animal Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, 1-1, Amamiya-machi, Tsutsumidori, Aoba-ku, Sendai, 981-8555, Japan
| | - Tasuke Ando
- Laboratory of Animal Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, 1-1, Amamiya-machi, Tsutsumidori, Aoba-ku, Sendai, 981-8555, Japan
| | - Emiko Isogai
- Laboratory of Animal Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, 1-1, Amamiya-machi, Tsutsumidori, Aoba-ku, Sendai, 981-8555, Japan
| | - Hiroshi Yoneyama
- Laboratory of Animal Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, 1-1, Amamiya-machi, Tsutsumidori, Aoba-ku, Sendai, 981-8555, Japan
| |
Collapse
|
9
|
Ramos-León F, Mariscal V, Frías JE, Flores E, Herrero A. Divisome-dependent subcellular localization of cell-cell joining protein SepJ in the filamentous cyanobacterium Anabaena. Mol Microbiol 2015; 96:566-80. [PMID: 25644579 DOI: 10.1111/mmi.12956] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2015] [Indexed: 12/15/2022]
Abstract
Heterocyst-forming cyanobacteria are multicellular organisms that grow as filaments that can be hundreds of cells long. Septal junction complexes, of which SepJ is a possible component, appear to join the cells in the filament. SepJ is a cytoplasmic membrane protein that contains a long predicted periplasmic section and localizes not only to the cell poles in the intercellular septa but also to a position similar to a Z ring when cell division starts suggesting a relation with the divisome. Here, we created a mutant of Anabaena sp. strain PCC 7120 in which the essential divisome gene ftsZ is expressed from a synthetic NtcA-dependent promoter, whose activity depends on the nitrogen source. In the presence of ammonium, low levels of FtsZ were produced, and the subcellular localization of SepJ, which was investigated by immunofluorescence, was impaired. Possible interactions of SepJ with itself and with divisome proteins FtsZ, FtsQ and FtsW were investigated using the bacterial two-hybrid system. We found SepJ self-interaction and a specific interaction with FtsQ, confirmed by co-purification and involving parts of the SepJ and FtsQ periplasmic sections. Therefore, SepJ can form multimers, and in Anabaena, the divisome has a role beyond cell division, localizing a septal protein essential for multicellularity.
Collapse
Affiliation(s)
- Félix Ramos-León
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Américo Vespucio 49, E-41092, Seville, Spain
| | | | | | | | | |
Collapse
|
10
|
Rycovska A, Hatahet L, Fendler K, Michel H. The nitrite transport protein NirC from Salmonella typhimurium is a nitrite/proton antiporter. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:1342-50. [DOI: 10.1016/j.bbamem.2012.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 02/01/2012] [Accepted: 02/06/2012] [Indexed: 12/31/2022]
|
11
|
Nishie M, Sasaki M, Nagao JI, Zendo T, Nakayama J, Sonomoto K. Lantibiotic transporter requires cooperative functioning of the peptidase domain and the ATP binding domain. J Biol Chem 2011; 286:11163-9. [PMID: 21303905 DOI: 10.1074/jbc.m110.212704] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lantibiotics are ribosomally synthesized and post-translationally modified peptide antibiotics that contain unusual amino acids such as dehydro and lanthionine residues. Nukacin ISK-1 is a class II lantibiotic, whose precursor peptide (NukA) is modified by NukM to form modified NukA. ATP-binding cassette (ABC) transporter NukT is predicted to cleave off the N-terminal leader peptide of modified NukA and secrete the mature peptide. Multiple sequence alignments revealed that NukT has an N-terminal peptidase domain (PEP) and a C-terminal ATP binding domain (ABD). Previously, in vitro reconstitution of NukT has revealed that NukT peptidase activity depends on ATP hydrolysis. Here, we constructed a series of NukT mutants and investigated their transport activity in vivo and peptidase activity in vitro. Most of the mutations of the conserved residues of PEP or ABD resulted in failure of nukacin ISK-1 production and accumulation of modified NukA inside the cells. NukT(N106D) was found to be the only mutant capable of producing nukacin ISK-1. Asn(106) is conserved as Asp in other related ABC transporters. Additionally, an in vitro peptidase assay of NukT mutants demonstrated that PEP is on the cytosolic side and all of the ABD mutants as well as PEP (with the exception of NukT(N106D)) did not have peptidase activity in vitro. Taken together, these observations suggest that the leader peptide is cleaved off inside the cells before peptide secretion; both PEP and ABD are important for NukT peptidase activity, and cooperation between these two domains inside the cells is indispensable for proper functioning of NukT.
Collapse
Affiliation(s)
- Mami Nishie
- Division of Applied Molecular Microbiology and Biomass Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Jiménez M, Martos A, Vicente M, Rivas G. Reconstitution and organization of Escherichia coli proto-ring elements (FtsZ and FtsA) inside giant unilamellar vesicles obtained from bacterial inner membranes. J Biol Chem 2011; 286:11236-41. [PMID: 21257762 DOI: 10.1074/jbc.m110.194365] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have incorporated, for the first time, FtsZ and FtsA (the soluble proto-ring proteins from Escherichia coli) into bacterial giant unilamellar inner membrane vesicles (GUIMVs). Inside the vesicles, the structural organization and spatial distribution of fluorescently labeled FtsZ and FtsA were determined by confocal microscopy. We found that, in the presence of GDP, FtsZ was homogeneously distributed in the lumen of the vesicle. In the presence of GTP analogs, FtsZ assembled inside the GUIMVs, forming a web of dense spots and fibers. Whereas isolated FtsA was found adsorbed to the inner face of GUIMVs, the addition of FtsZ together with GTP analogs resulted in its dislodgement and its association with the FtsZ fibers in the lumen, suggesting that the FtsA-membrane interaction can be modulated by FtsZ polymers. The use of this novel in vitro system to probe interactions between divisome components will help to determine the biological implications of these findings.
Collapse
Affiliation(s)
- Mercedes Jiménez
- Chemical and Physical Biology Programme, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain.
| | | | | | | |
Collapse
|
13
|
Shaikh S, Samanta K, Kar P, Roy S, Chakraborti T, Chakraborti S. m-Calpain-mediated cleavage of Na+/Ca2+ exchanger-1 in caveolae vesicles isolated from pulmonary artery smooth muscle. Mol Cell Biochem 2010; 341:167-80. [PMID: 20372982 DOI: 10.1007/s11010-010-0448-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 03/17/2010] [Indexed: 01/30/2023]
Abstract
Using m-calpain antibody, we have identified two major bands corresponding to the 80 kDa large and the 28 kDa small subunit of m-calpain in caveolae vesicles isolated from bovine pulmonary artery smooth muscle plasma membrane. In addition, 78, 35, and 18 kDa immunoreactive bands of m-calpain have also been detected. Casein zymogram studies also revealed the presence of m-calpain in the caveolae vesicles. We have also identified Na(+)/Ca(2+) exchanger-1 (NCX1) in the caveolae vesicles. Purification and N-terminal sequence analyses of these two proteins confirmed their identities as m-calpain and NCX1, respectively. We further sought to determine the role of m-calpain on calcium-dependent proteolytic cleavage of NCX1 in the caveolae vesicles. Treatment of the caveolae vesicles with the calcium ionophore, A23187 (1 microM) in presence of CaCl(2) (1 mM) appears to cleave NCX1 (120 kDa) to an 82 kDa fragment as revealed by immunoblot study using NCX1 monoclonal antibody; while pretreatment with the calpain inhibitors, calpeptin or MDL28170; or the Ca(2+) chelator, BAPTA-AM did not cause a discernible change in the NCX protein profile. In vitro cleavage of the purified NCX1 by the purified m-calpain supports this finding. The cleavage of NCX1 by m-calpain in the caveolae vesicles may be interpreted as an important mechanism of Ca(2+) overload, which could arise due to inhibition of Ca(2+) efflux by the forward-mode NCX and that could lead to sustained Ca(2+) overload in the smooth muscle leading to pulmonary hypertension.
Collapse
Affiliation(s)
- Soni Shaikh
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741235 West Bengal, India
| | | | | | | | | | | |
Collapse
|
14
|
Joshi AD, Pajor AM. Identification of conformationally sensitive amino acids in the Na(+)/dicarboxylate symporter (SdcS). Biochemistry 2009; 48:3017-24. [PMID: 19260674 DOI: 10.1021/bi8022625] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Na(+)/dicarboxylate symporter (SdcS) from Staphylococcus aureus is a homologue of the mammalian Na(+)/dicarboxylate cotransporters (NaDC1) from the solute carrier 13 (SLC13) family. This study examined succinate transport by SdcS heterologously expressed in Escherichia coli, using right-side-out (RSO) and inside-out (ISO) membrane vesicles. The K(m) values for succinate in RSO and ISO vesicles were similar, approximately 30 microM. The single cysteine of SdcS was replaced to produce the cysteine-less transporter, C457S, which demonstrated functional characteristics similar to those of the wild type. Single-cysteine mutants were made in SdcS-C457S at positions that are functionally important in mammalian NaDC1. Mutant N108C of SdcS was sensitive to chemical labeling by MTSET {[2-(trimethylammonium)ethyl]methanethiosulfonate} from both the cytoplasmic and extracellular sides, depending on the conformational state of the transporter, suggesting that Asn-108 may be found in the translocation pore of the protein. Mutant D329C was sensitive to MTSET in the presence of Na(+) but only from the extracellular side. Finally, mutant L436C was insensitive to MTSET, although changes in its kinetic properties indicate that this residue may be important in substrate binding. In conclusion, this work identifies Asn-108 as a key residue in the translocation pathway of the protein, accessible in different states from both sides of the membrane. Functional characterization of SdcS should provide useful structural as well as functional details about mammalian transporters from the SLC13 family.
Collapse
Affiliation(s)
- Aditya D Joshi
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
15
|
Nonfermentative thermoalkaliphilic growth is restricted to alkaline environments. Appl Environ Microbiol 2009; 75:7649-54. [PMID: 19854920 DOI: 10.1128/aem.01639-09] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Caldalkalibacillus thermarum strain TA2.A1 grew in pH-controlled batch culture containing a fermentable growth substrate (i.e., sucrose) from pH 7.5 to 10.0 with no significant change in the specific growth rate, suggesting that this bacterium was a facultative alkaliphile. However, when strain TA2.A1 was grown on a nonfermentable carbon source, such as succinate or malate, no growth was observed until the external pH was >9.0, suggesting that this bacterium was an obligate alkaliphile. Succinate transport and sucrose transport by strain TA2.A1 showed pH profiles similar to that of growth on these carbon sources, and the molar growth yield on sucrose was higher at pH 9.5 than at pH 7.5, despite the increased energy demands on the cell for intracellular pH regulation. Succinate transport, succinate-dependent oxygen consumption, and succinate dehydrogenase and F(1)F(o)-ATPase specific activities were all significantly lower in cultures of strain TA2.A1 grown at pH 7.5 than in those cultured at pH 9.5. No significant ATP synthesis via the F(1)F(o)-ATP synthase was detected until the external pH was >8.5. On the basis of these results, we propose that nonfermentative thermoalkaliphilic growth is specialized to function at high pH values, but not at pH values near neutral pH.
Collapse
|
16
|
Ca2+ influx mechanisms in caveolae vesicles of pulmonary smooth muscle plasma membrane under inhibition of alpha2beta1 isozyme of Na+/K+-ATPase by ouabain. Life Sci 2008; 84:139-48. [PMID: 19059418 DOI: 10.1016/j.lfs.2008.11.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 09/23/2008] [Accepted: 11/12/2008] [Indexed: 11/21/2022]
Abstract
AIMS We sought to determine the mechanisms of an increase in Ca(2+) level in caveolae vesicles in pulmonary smooth muscle plasma membrane during Na(+)/K(+)-ATPase inhibition by ouabain. MAIN METHODS The caveolae vesicles isolated by density gradient centrifugation were characterized by electron microscopic and immunologic studies and determined ouabain induced increase in Na(+) and Ca(2+) levels in the vesicles with fluorescent probes, SBFI-AM and Fura2-AM, respectively. KEY FINDINGS We identified the alpha(2)beta(1) and alpha(1)beta(1) isozymes of Na(+)/K(+)-ATPase in caveolae vesicles, and only the alpha(1)beta(1) isozyme in noncaveolae fraction of the plasma membrane. The alpha(2)-isoform contributes solely to the enzyme inhibition in the caveolae vesicles at 40 nM ouabain. Methylisobutylamiloride (Na(+)/H(+)-exchange inhibitor) and tetrodotoxin (voltage-gated Na(+)-channel inhibitor) pretreatment prevented ouabain induced increase in Na(+) and Ca(2+) levels. Ouabain induced increase in Ca(2+) level was markedly, but not completely, inhibited by KB-R7943 (reverse-mode Na(+)/Ca(2+)-exchange inhibitor) and verapamil (L-type Ca(2+)-channel inhibitor). However, pretreatment with tetrodotoxin in conjunction with KB-R7943 and verapamil blunted ouabain induced increase in Ca(2+) level in the caveolae vesicles, indicating that apart from Na(+)/Ca(+)-exchanger and L-type Ca(2+)-channels, "slip-mode conductance" of Na(+) channels could also be involved in this scenario. SIGNIFICANCE Inhibition of alpha(2) isoform of Na(+)/K(+)-ATPase by ouabain plays a crucial role in modulating the Ca(2+) influx regulatory components in the caveolae microdomain for marked increase in (Ca(2+))(i) in the smooth muscle, which could be important for the manifestation of pulmonary hypertension.
Collapse
|
17
|
McMillan DGG, Keis S, Dimroth P, Cook GM. A specific adaptation in the a subunit of thermoalkaliphilic F1FO-ATP synthase enables ATP synthesis at high pH but not at neutral pH values. J Biol Chem 2007; 282:17395-404. [PMID: 17434874 DOI: 10.1074/jbc.m611709200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Analysis of the atp operon from the thermoalkaliphilic Bacillus sp. TA2.A1 and comparison with other atp operons from alkaliphilic bacteria reveals the presence of a conserved lysine residue at position 180 (Bacillus sp. TA2.A1 numbering) within the a subunit of these F(1)F(o)-ATP synthases. We hypothesize that the basic nature of this residue is ideally suited to capture protons from the bulk phase at high pH. To test this hypothesis, a heterologous expression system for the ATP synthase from Bacillus sp. TA2.A1 (TA2F(1)F(o)) was developed in Escherichia coli DK8 (Deltaatp). Amino acid substitutions were made in the a subunit of TA2F(1)F(o) at position 180. Lysine (aK180) was substituted for the basic residues histidine (aK180H) or arginine (aK180R), and the uncharged residue glycine (aK180G). ATP synthesis experiments were performed in ADP plus P(i)-loaded right-side-out membrane vesicles energized by ascorbate-phenazine methosulfate. When these enzyme complexes were examined for their ability to perform ATP synthesis over the pH range from 7.0 to 10.0, TA2F(1)F(o) and aK180R showed a similar pH profile having optimum ATP synthesis rates at pH 9.0-9.5 with no measurable ATP synthesis at pH 7.5. Conversely, aK180H and aK180G showed maximal ATP synthesis at pH values 8.0 and 7.5, respectively. ATP synthesis under these conditions for all enzyme forms was sensitive to DCCD. These data strongly imply that amino acid residue Lys(180) is a specific adaptation within the a subunit of TA2F(1)F(o) to facilitate proton capture at high pH. At pH values near the pK(a) of Lys(180), the trapped protons readily dissociate to reach the subunit c binding sites, but this dissociation is impeded at neutral pH values causing either a blocking of the proposed H(+) channel and/or mechanism of proton translocation, and hence ATP synthesis is inhibited.
Collapse
Affiliation(s)
- Duncan G G McMillan
- Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | | | | | | |
Collapse
|
18
|
Abstract
Cells faced with dehydration because of increasing extracellular osmotic pressure accumulate solutes through synthesis or transport. Water follows, restoring cellular hydration and volume. Prokaryotes and eukaryotes possess arrays of osmoregulatory genes and enzymes that are responsible for solute accumulation under osmotic stress. In bacteria, osmosensing transporters can detect increasing extracellular osmotic pressure and respond by mediating the uptake of organic osmolytes compatible with cellular functions ("compatible solutes"). This chapter reviews concepts and methods critical to the identification and study of osmosensing transporters. Like some experimental media, cytoplasm is a "nonideal" solution so the estimation of key solution properties (osmotic pressure, osmolality, water activity, osmolarity, and macromolecular crowding) is essential for studies of osmosensing and osmoregulation. Because bacteria vary widely in osmotolerance, techniques for its characterization provide an essential context for the elucidation of osmosensory and osmoregulatory mechanisms. Powerful genetic, molecular biological, and biochemical tools are now available to aid in the identification and characterization of osmosensory transporters, the genes that encode them, and the osmoprotectants that are their substrates. Our current understanding of osmosensory mechanisms is based on measurements of osmosensory transporter activity performed with intact cells, bacterial membrane vesicles, and proteoliposomes reconstituted with purified transporters. In the quest to elucidate the structural mechanisms of osmosensing and osmoregulation, researchers are now applying the full range of available biophysical, biochemical, and molecular biological tools to osmosensory transporter prototypes.
Collapse
Affiliation(s)
- Janet M Wood
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
19
|
McDonald TP, Henderson PJ. Cysteine residues in the D-galactose-H+ symport protein of Escherichia coli: effects of mutagenesis on transport, reaction with N-ethylmaleimide and antibiotic binding. Biochem J 2001; 353:709-17. [PMID: 11171069 PMCID: PMC1221618 DOI: 10.1042/0264-6021:3530709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The galactose-H(+) membrane-transport protein, GalP, of Escherichia coli is similar in substrate specificity and susceptibility to cytochalasin B and forskolin, to the human GLUT1 sugar-transport protein; furthermore, they are about 30% identical in amino acid sequence. Transport activities of both GalP and GLUT1 are inhibited by the thiol-group-specific reagent, N-ethylmaleimide. GalP contains only three cysteine residues at positions 19, 374 and 389, each of which we have mutated, singly and in combination, to serine. Each single change of Cys-->Ser has only a minor effect on transport activity, whereas alteration of all three simultaneously profoundly diminishes V(max) for transport. The high level of expression of the GalP protein facilitates measurements of the reactivity of each mutant with N-ethylmaleimide or eosin 5-maleimide, which conclusively demonstrate that Cys(374) is the site of covalent modification by the reagents. By comparing the reactivity of Cys(374) in right-side-out and inside-out vesicles it appears that Cys(374) is located on the cytoplasmic face of the GalP protein. Although impaired in transport activity, the 'Cys-free' mutant, with all three cysteine residues mutated into serine, binds cytochalasin B and forskolin with wild-type affinities. All these results are interpreted in terms of a 12-helix model of the folding of the protein, in which the relative orientations of helix 10, containing the reactive Cys(374) residue, and helix 11, containing the unreactive Cys(389) residue, can now be defined.
Collapse
Affiliation(s)
- T P McDonald
- School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | | |
Collapse
|
20
|
Valiyaveetil FI, Fillingame RH. Transmembrane topography of subunit a in the Escherichia coli F1F0 ATP synthase. J Biol Chem 1998; 273:16241-7. [PMID: 9632683 DOI: 10.1074/jbc.273.26.16241] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Subunit a is the least understood of the three subunits that compose the F0 sector in the Escherichia coli F0F1 ATP synthase. In this study, we have substituted Cys into predicted extramembranous loops of the protein and used chemical modification to obtain topographical information on the folding of subunit a. The extent of labeling of the substituted Cys residues by fluorescein-5'-maleimide was determined. The localization of reactive Cys residues was inferred from differences in the extent of labeling in inside out and right side out membrane vesicles. The NH2-terminal segment of subunit a was localized to the outside (periplasmic) surface and the COOH terminus to the cytoplasmic surface by these procedures. Loop residues in two periplasmic extramembranous loops and in two cytoplasmic extramembranous loops were also localized. The localization of two cytoplasmic Cys residues was confirmed by using 4-acetamido-4'-maleimidylstilbene-2,2'-disulfonic acid to block fluorescein-5'-maleimide labeling. From the localization of the Cys residues, a model for the topography is proposed that consists of five transmembrane segments with the NH2 terminus periplasmic and the COOH terminus cytoplasmic. The positions of second site suppressors, including several isolated here to the nonfunctional E219C and H245C substitutions, provide support for the topographical model proposed.
Collapse
Affiliation(s)
- F I Valiyaveetil
- Department of Biomolecular Chemistry, University of Wisconsin Medical School, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
21
|
White G, Pencer J, Nickel BG, Wood JM, Hallett FR. Optical changes in unilamellar vesicles experiencing osmotic stress. Biophys J 1996; 71:2701-15. [PMID: 8913607 PMCID: PMC1233756 DOI: 10.1016/s0006-3495(96)79461-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Membrane properties that vary as a result of isotropic and transmembrane osmolality variations (osmotic stress) are of considerable relevance to mechanisms such as osmoregulation, in which a biological system "senses" and responds to changes in the osmotic environment. In this paper the light-scattering behavior of a model system consisting of large unilamellar vesicles of dioleoyl phosphatidyl glycerol (DOPG) is examined as a function of their osmotic environment. Osmotic downshifts lead to marked reductions in the scattered intensity, whereas osmotic upshifts lead to strong intensity increases. It is shown that these changes in the scattering intensity involve changes in the refractive index of the membrane bilayer that result from an alteration in the extent of hydration and/or the phospholipid packing density. By considering the energetics of osmotically stressed vesicles, and from explicit analysis of the Rayleigh-Gans-Debye scattering factors for spherical and ellipsoidal shells, we quantitatively demonstrate that although changes in vesicle volume and shape can arise in response to the imposition of osmotic stress, these factors alone cannot account for the observed changes in scattered intensity.
Collapse
Affiliation(s)
- G White
- Department of Physics, University of Guelph, Ontario, Canada
| | | | | | | | | |
Collapse
|
22
|
Liu D, Cole RA, Reeves PR. An O-antigen processing function for Wzx (RfbX): a promising candidate for O-unit flippase. J Bacteriol 1996; 178:2102-7. [PMID: 8606190 PMCID: PMC177911 DOI: 10.1128/jb.178.7.2102-2107.1996] [Citation(s) in RCA: 202] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
O antigen is the major cell surface antigen of gram-negative bacteria, and the genes responsible for its synthesis are located in a single gene cluster. The wzx (rbfX) gene, which is characteristic of the major class of O-antigen gene clusters, encodes a hydrophobic protein with 12 potential transmembrane segments. We demonstrate that a wzx mutant accumulates undecaprenol pyrophosphate-linked O units which appear to be on the cytoplasmic side of the cytoplasmic membrane, suggesting that the wzx gene encodes a flippase for O-unit translocation across that membrane.
Collapse
Affiliation(s)
- D Liu
- Department of Microbiology, University of Sydney, New South Wales, Australia
| | | | | |
Collapse
|
23
|
Boyer JL, Meier PJ. Characterizing mechanisms of hepatic bile acid transport utilizing isolated membrane vesicles. Methods Enzymol 1990; 192:517-33. [PMID: 2074806 DOI: 10.1016/0076-6879(90)92091-q] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Utilizing the above-outlined approaches, mechanisms of hepatic bile acid transport have been characterized in membrane vesicles of rat liver, particularly for the conjugated trihydroxy bile acid, taurocholic acid. Uptake across the sinusoidal membrane is carrier mediated and coupled to the transmembrane sodium gradient. This carrier has an apparent Km between 30 to 50 microM and a Vmax between 4 to 6 nmol mg-1 protein min-1. Furthermore, Na+ gradient-dependent sinusoidal uptake of taurocholate can be stimulated by low concentrations of albumin. There is controversy as to whether the process is electrogenic. Although photoaffinity labeling studies indicate that an additional carrier for Na(+)-dependent bile acid uptake is also present at the sinusoidal membrane, this carrier has so far not been characterized in membrane vesicles. The proposition that pH gradient-driven furosemide-sensitive cholic acid uptake into sinusoidal membrane vesicles may represent carrier-mediated hydroxyl/cholate exchange must be revised on the basis of the recent findings that (1) true initial uptake rates are not saturable; (2) pH gradient-driven cholate uptake is also found in liposomes; and (3) furosemide also inhibits pH gradient-driven cholate uptake in liposomes. The mechanisms of transcellular transport of bile acids have been studied less extensively, but Na(+)-independent carrier-mediated taurocholic acid transport has been demonstrated in purified subcellular fractions such as rat liver microsomes and Golgi membranes. Finally, transport studies in canalicular rat liver plasma membrane vesicles indicate that canalicular excretion of bile acids is also a carrier-mediated process that may be driven, at least in part, by the physiologic electrical potential gradient, and that preferentially transports trihydroxy and conjugated dihydroxy bile acids.
Collapse
|
24
|
Murphy CK, Klebba PE. Export of FepA::PhoA fusion proteins to the outer membrane of Escherichia coli K-12. J Bacteriol 1989; 171:5894-900. [PMID: 2553664 PMCID: PMC210451 DOI: 10.1128/jb.171.11.5894-5900.1989] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A library of fepA::phoA gene fusions was generated in order to study the structure and secretion of the Escherichia coli K-12 ferric enterobactin receptor, FepA. All of the fusion proteins contained various lengths of the amino-terminal portion of FepA fused in frame to the catalytic portion of bacterial alkaline phosphatase. Localization of FepA::PhoA fusion proteins in the cell envelope was dependent on the number of residues of mature FepA present at the amino terminus. Hybrids containing up to one-third of the amino-terminal portion of FepA fractionated with their periplasm, while those containing longer sequences of mature FepA were exported to the outer membrane. Outer membrane-localized fusion proteins expressed FepA sequences on the external face of the outer membrane and alkaline phosphatase moieties in the periplasmic space. From sequence determinations of the fepA::phoA fusion joints, residues within FepA which may be exposed on the periplasmic side of the outer membrane were identified.
Collapse
Affiliation(s)
- C K Murphy
- Department of Microbiology, Medical College of Wisconsin, Milwaukee 53226
| | | |
Collapse
|
25
|
Den Blaauwen T, Wientjes FB, Kolk AH, Spratt BG, Nanninga N. Preparation and characterization of monoclonal antibodies against native membrane-bound penicillin-binding protein 1B of Escherichia coli. J Bacteriol 1989; 171:1394-401. [PMID: 2466033 PMCID: PMC209758 DOI: 10.1128/jb.171.3.1394-1401.1989] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We prepared monoclonal antibodies against penicillin-binding protein 1B (PBP 1B) of Escherichia coli to study the membrane topology, spatial organization, and enzyme activities of this protein. The majority of the antibodies derived with PBP 1B as the immunogen reacted against the carboxy terminus. To obtain monoclonal antibodies recognizing other epitopes, we used PBP 1B lacking the immunodominant carboxy-terminal 65 amino acids as the immunogen. Eighteen monoclonal antibodies directed against membrane-bound PBP 1B were isolated and characterized. The epitopes recognized by those monoclonal antibodies were located with various truncated forms of PBP 1B. We could distinguish four different epitope areas located on different parts of the molecule. Interestingly, we could not isolate monoclonal antibodies against the amino terminus, although they were specifically selected for. This is attributed to its predicted extreme hydrophilicity and flexibility, which could make the amino terminus very sensitive to proteolytic degradation. All antibodies reacted against native PBP 1B in a dot-blot immunobinding assay. One monoclonal antibody also recognized PBP 1B in a completely sodium dodecyl sulfate-denatured form. This suggests that all the other monoclonal antibodies recognize conformational epitopes. These properties make the monoclonal antibodies suitable tools for further studies.
Collapse
Affiliation(s)
- T Den Blaauwen
- Department of Molecular Cell Biology, University of Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
26
|
Stremmel W. Translocation of fatty acids across the basolateral rat liver plasma membrane is driven by an active potential-sensitive sodium-dependent transport system. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)45566-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
27
|
Ishidate K, Creeger ES, Zrike J, Deb S, Glauner B, MacAlister TJ, Rothfield LI. Isolation of differentiated membrane domains from Escherichia coli and Salmonella typhimurium, including a fraction containing attachment sites between the inner and outer membranes and the murein skeleton of the cell envelope. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(17)42490-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
28
|
Hommes RW, van Hell B, Postma PW, Neijssel OM, Tempest DW. The functional significance of glucose dehydrogenase in Klebsiella aerogenes. Arch Microbiol 1985; 143:163-8. [PMID: 3907571 DOI: 10.1007/bf00411042] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In order to assess the functional significance of the quinoprotein glucose dehydrogenase recently found to be present in K+ -limited Klebsiella aerogenes, a broad study was made of the influence of specific environmental conditions on the cellular content of this enzyme. Whereas high activities were manifest in cells from glucose containing chemostat cultures that were either potassium- or phosphate-limited, only low activities were apparent in cells from similar cultures that were either glucose-, sulphate- or ammonia-limited. With these latter two cultures, a marked increase in glucose dehydrogenase activity was observed when 2,4-dinitrophenol (1 mM end concentration) was added to the growth medium. These results suggested that the synthesis of glucose dehydrogenase is not regulated by the level of glucose in the growth medium, but possibly by conditions that imposed an energetic stress upon the cells. This conclusion was further supported by a subsequent finding that K+ -limited cells that were growing on glycerol also synthesized substantial amounts of glucose dehydrogenase. The enzyme was found to be membrane associated, and preliminary evidence has been obtained that it is located on the periplasmic side of the cytoplasmic membrane and functionally linked to the respiratory chain. This structural and functional orientation is consistent with glucose dehydrogenase serving as a low impedance energy generating system.
Collapse
|
29
|
|
30
|
Duffy MC, Blitzer BL, Boyer JL. Direct determination of the driving forces for taurocholate uptake into rat liver plasma membrane vesicles. J Clin Invest 1983; 72:1470-81. [PMID: 6630516 PMCID: PMC370431 DOI: 10.1172/jci111103] [Citation(s) in RCA: 98] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
To determine directly the driving forces for bile acid entry into the hepatocyte, the uptake of [3H]taurocholic acid into rat liver plasma membrane vesicles was studied. The membrane preparation contained predominantly right-side-out vesicles, and was highly enriched in plasma membrane marker enzymes. The uptake of taurocholate at equilibrium was inversely related to medium osmolarity, indicating transport into an osmotically sensitive space. In the presence of an inwardly directed sodium gradient (NaCl or sodium gluconate), the initial rate of uptake was rapid and taurocholate was transiently accumulated at a concentration twice that at equilibrium (overshoot). Other inwardly directed cation gradients (K+, Li+, choline+) or the presence of sodium in the absence of a gradient (Na+ equilibrated) resulted in a slower initial uptake rate and did not sustain an overshoot. Bile acids inhibited sodium-dependent taurocholate uptake, whereas bromsulphthalein inhibited both sodium-dependent and sodium-independent uptake and D-glucose had no effect on uptake. Uptake was temperature dependent, with maximal overshoots occurring at 25 degrees C. Imposition of a proton gradient across the vesicle (pHo less than pHi) in the absence of a sodium gradient failed to enhance taurocholate uptake, indicating that double ion exchange (Na+-H+, OH- -anion) is unlikely. Creation of a negative intravesicular potential by altering accompanying anions or by valinomycin-induced K+-diffusion potentials did not enhance taurocholate uptake, suggesting an electroneutral transport mechanism. The kinetics of taurocholate uptake demonstrated saturability with a Michaelis constant at 52 microM and maximum velocity of 4.5 nmol X mg-1 X protein X min-1. These studies provide definitive evidence for a sodium gradient-dependent, carrier-mediated, electrically neutral transport mechanism for hepatic taurocholate uptake. These findings are consistent with a model for bile secretion in which the basolateral enzyme Na+,K+-ATPase provides the driving force for "uphill" bile acid transport by establishing a trans-membrane sodium gradient.
Collapse
|
31
|
Hengge R, Boos W. Maltose and lactose transport in Escherichia coli. Examples of two different types of concentrative transport systems. BIOCHIMICA ET BIOPHYSICA ACTA 1983; 737:443-78. [PMID: 6349688 DOI: 10.1016/0304-4157(83)90009-6] [Citation(s) in RCA: 121] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
32
|
Sugar transport by the bacterial phosphotransferase system. Preparation and characterization of membrane vesicles from mutant and wild type Salmonella typhimurium. J Biol Chem 1982. [DOI: 10.1016/s0021-9258(19)45414-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
33
|
Sips HJ, Brown D, Oonk R, Orci L. Orientation of rat-liver plasma membrane vesicles. A biochemical and ultrastructural study. BIOCHIMICA ET BIOPHYSICA ACTA 1982; 692:447-54. [PMID: 6293571 DOI: 10.1016/0005-2736(82)90396-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Using both biochemical and morphological methods, the membrane orientation of plasma membrane vesicles from rat liver which are capable of catalysing the active transport of amino acids was investigated. In intact vesicles, the plasma membrane enzyme (Na+ + K+)-ATPase displays only a minor portion of its total activity which is greatly increased upon vesicle disruption. The same intact vesicles show an almost maximal binding of ouabain, which binds only to the extracellular side of the plasma membrane. A freeze-fracture analysis of the vesicles shows that a distinct population of relatively large vesicles have predominantly the in vivo membrane orientation. These large vesicles are labelled with numerous filipin-sterol complexes following exposure to the cholesterol probe, filipin, and are therefore assumed to be plasma membrane vesicles. A population of smaller vesicles with mainly an inside-out orientation were not labelled with filipin and are probably microsomes. The data obtained with both biochemical and ultrastructural techniques indicate that the plasma membrane vesicles isolated from rat liver for transport studies are mostly (at least 70%) orientated as in vivo, i.e. inside-in.
Collapse
|
34
|
Kalomiris E, Bardin C, Neuhaus FC. Biosynthesis of peptidoglycan in Gaffkya homari: reactivation of membranes by freeze-thawing in the presence and absence of walls. J Bacteriol 1982; 150:535-44. [PMID: 7068530 PMCID: PMC216399 DOI: 10.1128/jb.150.2.535-544.1982] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The reactivation of membranes from Gaffkya homari for the synthesis of sodium dodecyl sulfate-insoluble peptidoglycan (SDS-insoluble PG) was achieved by successive cycles of freeze-thawing (- 196 versus 25 degrees C). The presence of G. homari walls during this process affected the synthesis of both SDS-soluble (nascent) and SDS-insoluble PG. At two cycles the synthesis of SDS-soluble PG decreased by 70%, whereas that of SDS-insoluble PG increased sevenfold when compared with membranes reactivated in the absence of walls but assayed in the presence of walls. Moreover, at six cycles the lag time for the synthesis of SDS-insoluble PG decreased from 15 min to 5 to 7 min. Walls from G. homari could not be replaced with walls from Bacillus megaterium or cellulose. In addition to these effects, the presence of walls from G. homari or B. megaterium or of cellulose during the incubation of membranes freeze-thawed in the absence of walls increased twofold the amount of SDS-insoluble PG. Reactivated membranes showed greater sensitivities to penicillin (an inhibitor of dd-carboxypeptidase) and d-methionine (an inhibitor of ld-carboxypeptidase) than did isolated membrane-walls. The percentage of cross-linking of the SDS-insoluble PG synthesized by the reactivated system was 34%, a value similar to that observed for the polymer synthesized by isolated membrane-walls. Freeze-thawing membranes and walls together gave a complex with a density different from that of either membranes or walls. Thus, the assembly system for the synthesis and processing of PG was reconstituted in a complex of membranes and walls prepared from the isolated components. Whether this complex has the exact interrelationship between membrane and wall found in the organism has not been established.
Collapse
|
35
|
Demant EJ, Op Den Kamp JA. Visualization of lipid biosynthesis in isolated cytoplasmic membrane vesicles of Escherichia coli by freeze fracture electron microscopy. Arch Biochem Biophys 1982; 213:186-92. [PMID: 7036905 DOI: 10.1016/0003-9861(82)90454-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
36
|
Pacaud M. Identification and localization of two membrane-bound esterases from Escherichia coli. J Bacteriol 1982; 149:6-14. [PMID: 7033216 PMCID: PMC216585 DOI: 10.1128/jb.149.1.6-14.1982] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Hydrolytic activities of isolated membrane fractions of Escherichia coli against chromogenic substrates, p-nitrophenyl ester and beta-naphthyl ester derivatives of N-substituted amino acids, were investigated by spectrophotometric and electrophoretic methods. Although detergents were absolutely necessary for the solubilization of enzymes, the amount of solubilized activities was increased by adding salt, such as NaCl or KCl. Two esterases were identified and separated by PAGE and by chromatography of the solubilized proteins in the presence of detergent. One hydrolyzed the alanine derivatives preferentially, whereas the other was mainly active on phenylalanine derivatives. Only the first was inactivated by diisopropyl fluorophosphate, a serine hydrolase inhibitor. Whereas the chymotrypsin-like enzyme was equally distributed between the inner and the outer membrane, the alanine activity was only detected in the inner membrane. They were both resistant to extraction with high salt concentrations, indicating their integral association with membranes. A study of the accessibility of these enzymes to their substrate in membrane vesicles with known polarity suggests that both alanine and phenylalanine activities are localized near the external surface of the cytoplasmic (inner) membrane. However, the phenylalanine activity (chymotrypsin-like enzyme) appears to be deeply buried inside the outer membrane. Because of its insensitivity to diisopropyl fluorophosphate, this last esterase seems to be distinct from the previously isolated periplasmic endopeptidase, protease I, which is also a chymotrypsin-like enzyme.
Collapse
|
37
|
Hugenholtz J, Hong JS, Kaback HR. ATP-driven active transport in right-side-out bacterial membrane vesicles. Proc Natl Acad Sci U S A 1981; 78:3446-9. [PMID: 6267592 PMCID: PMC319585 DOI: 10.1073/pnas.78.6.3446] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Membrane vesicles from Salmonella typhimurium induced for phosphoglycerate transport, were loaded with pyruvate kinase and ADP by lysing spheroplasts under appropriate conditions. Vesicles so prepared catalyze active transport of proline and serine in the presence of phosphoenolpyruvate; this activity is abolished by the protonophore carbonyl cyanide-m-chlorophenylhydrazone and by the H+-ATPase inhibitor N,N' dicyclohexylcarbodiimide but not by anoxia or cyanide. In contrast, D-lactate-driven active transport is abolished by the hydrazone and by anoxia or cyanide but not by the carbodiimide. Moreover, phosphoenolpyruvate does not drive transport effectively in vesicles that lack the phosphoglycerate transport system. The results are consistent with an overall mechanism in which phosphoenolpyruvate gains access to the interior of the vesicles by means of the phosphoglycerate transporter and is then acted on by pyruvate kinase to phosphorylate ADP. ATP formed inside of the vesicles is then hydrolyzed by the H+-ATPase, leading to the generation of a proton electrochemical gradient that drives H+/solute symport. By using pBR322 as vector and Escherichia coli as host, a fragment of S. typhimurium DNA coding for the phosphoglycerate transport system has been cloned. E. coli membrane vesicles containing the phosphoglycerate transport system also catalyze transport in the presence of phosphoenolpyruvate when they are loaded with pyruvate kinase and ADP.
Collapse
|
38
|
Apel WA, Dugan PR, Tuttle JH. Adenosine 5'-triphosphate formation in Thiobacillus ferrooxidans vesicles by H+ ion gradients comparable to those of environmental conditions. J Bacteriol 1980; 142:295-301. [PMID: 7372573 PMCID: PMC293951 DOI: 10.1128/jb.142.1.295-301.1980] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Vesicles prepared from iron-grown Thiobacillus ferrooxidans, and subsequently loaded with adenosine 5'-diphosphate and inorganic phosphate, produced adenosine 5'-triphosphate when subjected to H+ gradients comparable to those in the cells' normal environment (i.e., an internal pH in the range of 6.0 to 8.0 with an optimum of 7.0 to 7.8 and an external pH in the range of 2.1 to 4.1 with an optimum of 2.8). Nigericin, dicyclohexylcarbodiimide, and pentachlorophenol decreased adenosine 5'-triphosphate synthesis. Valinomycin at concentrations of 2.5 and 5.0 micrograms/ml increased adenosine 5'-triphosphate formation by 25 and 30%, respectively.
Collapse
|
39
|
Goldenbaum PE, Hall GA. Transport of cyclic adenosine 3',5'-monophosphate across Escherichia coli vesicle membranes. J Bacteriol 1979; 140:459-67. [PMID: 227841 PMCID: PMC216670 DOI: 10.1128/jb.140.2.459-467.1979] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The uptake and efflux of cyclic adenosine 3',5'-monophosphate (3',5'-cAMP) by Escherichia coli membrane vesicles were studied. Metabolic energy was not required for the uptake process and was found to actually decrease the amount of 3',5'-cAMP found in the vesicles. 3',5'-cAMP uptake exhibits saturation kinetics (Km = 10 mM, Vmax = 2.8 nmol/mg of protein per min) and was competitively inhibited by a number of 3',5'-cAMP analogs. The uptake of 3',5'-cAMP was found to be sharply affected by a membrane phase transition. The excretion of 3',5'-cAMP was studied by using everted membrane vesicles. Efflux in this system was dependent upon metabolic energy and was reduced or abolished by uncouplers. Different energy sources powered efflux at different rates, showing a relationship between the degree of membrane energization and rate of excretion of 3',5'-cAMP. The efflux process also displayed saturation kinetics (Km = 10.0 mM, Vmax = 0.98 nmol/mg of protein per min) and was competitively inhibited by the same 3',5'-cAMP analogs and to the same degree as was the uptake process. 3',5'-cAMP was found to be chemically unaltered by both the uptake and excretion processes. These data are interpreted as showing that the uptake and excretion of 3',5'-cAMP in E. coli membrane vesicles are carrier-mediated phenomena, possibly employing the same carrier system. Uptake is by facilitated diffusion whereas efflux is via an energy-dependent, active transport process. Evidence is presented showing that cells can regulate the number of 3',5'-cAMP transport carriers. The rate of 3',5'-cAMP excretion is possibly regulated by both the degree of membrane energization and the number of carriers present per cells.
Collapse
|
40
|
Takemoto J, Bachmann RC. Orientation of chromatophores and spheroplast-derived membrane vesicles of Rhodopseudomonas sphaeroides: analysis by localization of enzyme activities. Arch Biochem Biophys 1979; 195:526-34. [PMID: 157720 DOI: 10.1016/0003-9861(79)90379-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
41
|
|
42
|
Wientjes FB, van 't Piet J, Nanninga N. Formation of inside-out vesicles of Bacillus licheniformis. Dependence on buffer composition and lysis procedure. BIOCHIMICA ET BIOPHYSICA ACTA 1979; 553:213-23. [PMID: 444516 DOI: 10.1016/0005-2736(79)90226-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
1. The extent to which the cytoplasmic membrane of the Gram-positive bacterium Bacillus licheniformis formed inside-out vesicles was studied with the freeze-fracture technique. The membrane orientation appeared to be dependent on the buffer compositon as well as on the lysis procedure used. 2. By manipulating these conditions, membrane preparations were obtained with the percentage of inside-out vesicles varying from 15 to 80%. 3. More vesicles had the opposite orientation when the cells were lysed in potassium phosphate buffer than when they were lysed in sodium phosphate buffer. Tris-HCl buffer favoured the formation of inside-out vesicles more than phosphate buffer. 4. Lysis of protoplasts in hypotonic buffers resulted in more inside-out vesicles than did direct lysis of cells in hypotonic media. 5. In an attempt to explain the observed differences, experiments were performed in which the morphology of thin-sectioned lysing cells in sodium phosphate buffer was compared with that in potassium phosphate buffer. The results from these experiments indicate that the formation of inside-out vesicles is brought about by an effect on the membrane itself rather than on the cell wall, on the cell wall membrane association, or on the cytoplasm.
Collapse
|
43
|
Hartig PR, Raftery MA. Preparation of right-side-out, acetylcholine receptor enriched intact vesicles from Torpedo californica electroplaque membranes. Biochemistry 1979; 18:1146-50. [PMID: 427105 DOI: 10.1021/bi00574a004] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Intact vesicles enriched in acetylcholine receptor from Torpedo californica electroplaque membranes can be separated from collapsed or leaky vesicles and membrane sheets on sucrose density gradients. alpha-Bungarotoxin binding in intact vesicles reveals that approximately 95% of the acetylcholine receptor containing vesicles are formed outside-out (with the synaptic membrane face exposed on the vesicle exterior). The binding data also indicated that only 5% or less of the sites for alpha-bungarotoxin binding to synaptic membranes are located on the interior, cytoplasmic face. Intact vesicles are stable to gentle pelleting and resuspension but are easily osmotically shocked. The vesicles are impermeable to sucrose and Ficoll, but glycerol readily transverses to membrane barrier. Intact vesicles provide a sealed, oriented membrane preparation for studies of vectorial acetylcholine receptor mediated processes.
Collapse
|
44
|
Konings WN. Energization of solute transport in membrane vesicles from anaerobically grown bacteria. Methods Enzymol 1979; 56:378-88. [PMID: 379513 DOI: 10.1016/0076-6879(79)56035-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
45
|
Rosen BP, Tsuchiya T. Preparation of everted membrane vesicles from Escherichia coli for the measurement of calcium transport. Methods Enzymol 1979; 56:233-41. [PMID: 156865 DOI: 10.1016/0076-6879(79)56026-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
46
|
Lo T, Bewick M. The molecular mechanisms of dicarboxylic acid transport in Escherichia coli K12. The role and orientation of the two membrane-bound dicarboxylate binding proteins. J Biol Chem 1978. [DOI: 10.1016/s0021-9258(17)34445-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
47
|
Tokuda H, Konisky J. In vitro depolarization of Escherichia coli membrane vesicles by colicin Ia. J Biol Chem 1978. [DOI: 10.1016/s0021-9258(17)34430-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
48
|
Oelze J. Proteins exposed at the surface of chromatophores of Rhodospirillum rubrum: the orientation of isolated chromatophores. BIOCHIMICA ET BIOPHYSICA ACTA 1978; 509:450-61. [PMID: 418810 DOI: 10.1016/0005-2736(78)90239-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The exposure of proteins at the surface of isolated chromatophores (i.e., the cytoplasmic face of intracytoplasmic membranes) of Rhodospirillum rubrum was studied by proteolysis as well as by enzymatic iodination with 125I. Analyses were performed after polyacrylamide gel electrophoresis of chromatophore proteins solubilized with sodium dodecyl sulfate. Reversible light induced proton uptake by partially digested chromatophores was used as a criterion for the integrity of the permeability barrier and thus, as evidence for proteolysis only of proteins outside of this barrier. Trypsin or alpha-chymotrypsin completely cleaved four proteins which were identified as the heavy subunit of succinate dehydrogenase (Mr = 64 000), the alpha- and beta-subunits of coupling factor ATPase (Mr = 55 000 and 51 000), and the heavy (H) subunit of photochemical reaction centers (Mr = 31 000). alpha-Chymotrypsin, in addition, attacked the protein (Mr = 9000) of light harvesting bacteriochlorophyll preparations. By enzymatic iodination, the same proteins were labeled as were digested with trypsin or alpha-chymotrypsin except for the protein of Mr = 9000. In addition, significant label was incorporated into three more proteins, one of which (Mr = 41 000) could be identified as a major protein of the cell wall. The complete cleavage with trypsin of four proteins exposed at the surface indicated that isolated chromatophores were homogeneously oriented regardless of the method employed for cell breakage, i.e., passage through a French pressure cell at different forces or osmotic shock of sphaeroplasts.
Collapse
|
49
|
Haase W, Schäfer A, Murer H, Kinne R. Studies on the orientation of brush-border membrane vesicles. Biochem J 1978; 172:57-62. [PMID: 656075 PMCID: PMC1185661 DOI: 10.1042/bj1720057] [Citation(s) in RCA: 213] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Orientation of rat renal and intestinal brush-border membrane vesicles was studied with two independent methods: electron-microscopic freeze-fracture technique and immunological methods. With the freeze-fracture technique a distinct asymmetric distribution of particles on the two membrane fracture faces was demonstrated; this was used as a criterion for orientation of the isolated membrane vesicles. For the immunological approach the accessibility or inaccessibility of aminopeptidase M localized on the outer surface of the cell membrane to antibodies was used. With both methods we showed that the brush-border membrane vesicles isolated from rat kidney cortex and from rat small intestine for transport studies are predominantly orientated right-side out.
Collapse
|
50
|
Kobayashi H, Van Brunt J, Harold F. ATP-linked calcium transport in cells and membrane vesicles of Streptococcus faecalis. J Biol Chem 1978. [DOI: 10.1016/s0021-9258(17)38043-2] [Citation(s) in RCA: 110] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|