1
|
Contribution of the Yeast Saccharomyces cerevisiae Model to Understand the Mechanisms of Selenium Toxicity. MOLECULAR AND INTEGRATIVE TOXICOLOGY 2018. [DOI: 10.1007/978-3-319-95390-8_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
2
|
Bae NS, Seberg AP, Carroll LP, Swanson MJ. Identification of Genes in Saccharomyces cerevisiae that Are Haploinsufficient for Overcoming Amino Acid Starvation. G3 (BETHESDA, MD.) 2017; 7:1061-1084. [PMID: 28209762 PMCID: PMC5386856 DOI: 10.1534/g3.116.037416] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/11/2017] [Indexed: 12/17/2022]
Abstract
The yeast Saccharomyces cerevisiae responds to amino acid deprivation by activating a pathway conserved in eukaryotes to overcome the starvation stress. We have screened the entire yeast heterozygous deletion collection to identify strains haploinsufficient for growth in the presence of sulfometuron methyl, which causes starvation for isoleucine and valine. We have discovered that cells devoid of MET15 are sensitive to sulfometuron methyl, and loss of heterozygosity at the MET15 locus can complicate screening the heterozygous deletion collection. We identified 138 cases of loss of heterozygosity in this screen. After eliminating the issues of the MET15 loss of heterozygosity, strains isolated from the collection were retested on sulfometuron methyl. To determine the general effect of the mutations for a starvation response, SMM-sensitive strains were tested for the ability to grow in the presence of canavanine, which induces arginine starvation, and strains that were MET15 were also tested for growth in the presence of ethionine, which causes methionine starvation. Many of the genes identified in our study were not previously identified as starvation-responsive genes, including a number of essential genes that are not easily screened in a systematic way. The genes identified span a broad range of biological functions, including many involved in some level of gene expression. Several unnamed proteins have also been identified, giving a clue as to possible functions of the encoded proteins.
Collapse
Affiliation(s)
- Nancy S Bae
- Department of Biochemistry, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, Arizona 85308
| | - Andrew P Seberg
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306-4295
| | - Leslie P Carroll
- Division of Basic Medical Sciences, Mercer University School of Medicine, Macon, Georgia 31207
| | - Mark J Swanson
- Department of Biochemistry, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, Arizona 85308
- Division of Basic Medical Sciences, Mercer University School of Medicine, Macon, Georgia 31207
| |
Collapse
|
3
|
Incorporation of non-canonical amino acids into proteins in yeast. Fungal Genet Biol 2016; 89:137-156. [DOI: 10.1016/j.fgb.2016.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 02/01/2016] [Accepted: 02/03/2016] [Indexed: 12/22/2022]
|
4
|
Abstract
Carbon–sulfur biological chemistry encompasses a fascinating area of biochemistry and medicinal chemistry and includes the roles that methionine and S-adenosyl-l-methionine play in cells as well as the chemistry of intracellular thiols such as glutathione. This article, based on the 2014 Bernard Belleau Award lecture, provides an overview of some of the key investigations that were undertaken in this area from a bioorganic perspective. The research has ameliorated our fundamental knowledge of several of the enzymes utilizing these sulfur-containing molecules, has led to the development of several novel 19F biophysical probes, and has explored some of the medicinal chemistry associated with these processes.
Collapse
Affiliation(s)
- John F. Honek
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
5
|
Merkel L, Budisa N. Organic fluorine as a polypeptide building element: in vivo expression of fluorinated peptides, proteins and proteomes. Org Biomol Chem 2012; 10:7241-61. [DOI: 10.1039/c2ob06922a] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Sato D, Nozaki T. Methionine gamma-lyase: The unique reaction mechanism, physiological roles, and therapeutic applications against infectious diseases and cancers. IUBMB Life 2009; 61:1019-28. [DOI: 10.1002/iub.255] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
7
|
Genome-wide screen of Saccharomyces cerevisiae null allele strains identifies genes involved in selenomethionine resistance. Proc Natl Acad Sci U S A 2008; 105:17682-7. [PMID: 19004804 DOI: 10.1073/pnas.0805642105] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Selenomethionine (SeMet) is a potentially toxic amino acid, and yet it is a valuable tool in the preparation of labeled proteins for multiwavelength anomalous dispersion or single-wavelength anomalous dispersion phasing in X-ray crystallography. The mechanism by which high levels of SeMet exhibits its toxic effects in eukaryotic cells is not fully understood. Attempts to use Saccharomyces cerevisiae for the preparation of fully substituted SeMet proteins for X-ray crystallography have been limited. A screen of the viable S. cerevisiae haploid null allele strain collection for resistance to SeMet was performed. Deletion of the CYS3 gene encoding cystathionine gamma-lyase resulted in the highest resistance to SeMet. In addition, deletion of SSN2 resulted in both increased resistance to SeMet as well as reduced levels of Cys3p. A methionine auxotrophic strain lacking CYS3 was able to grow in media with SeMet as the only source of Met, achieving essentially 100% occupancy in total proteins. The CYS3 deletion strain provides advantages for an easy and cost-effective method to prepare SeMet-substituted protein in yeast and perhaps other eukaryotic systems.
Collapse
|
8
|
Wiltschi B, Wenger W, Nehring S, Budisa N. Expanding the genetic code ofSaccharomyces cerevisiaewith methionine analogues. Yeast 2008; 25:775-86. [DOI: 10.1002/yea.1632] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
9
|
Sato D, Yamagata W, Harada S, Nozaki T. Kinetic characterization of methionine γ-lyases from the enteric protozoan parasite Entamoeba histolytica against physiological substrates and trifluoromethionine, a promising lead compound against amoebiasis. FEBS J 2008; 275:548-60. [DOI: 10.1111/j.1742-4658.2007.06221.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Malkowski MG, Quartley E, Friedman AE, Babulski J, Kon Y, Wolfley J, Said M, Luft JR, Phizicky EM, DeTitta GT, Grayhack EJ. Blocking S-adenosylmethionine synthesis in yeast allows selenomethionine incorporation and multiwavelength anomalous dispersion phasing. Proc Natl Acad Sci U S A 2007; 104:6678-83. [PMID: 17426150 PMCID: PMC1850019 DOI: 10.1073/pnas.0610337104] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Indexed: 11/18/2022] Open
Abstract
Saccharomyces cerevisiae is an ideal host from which to obtain high levels of posttranslationally modified eukaryotic proteins for x-ray crystallography. However, extensive replacement of methionine by selenomethionine for anomalous dispersion phasing has proven intractable in yeast. We report a general method to incorporate selenomethionine into proteins expressed in yeast based on manipulation of the appropriate metabolic pathways. sam1(-) sam2(-) mutants, in which the conversion of methionine to S-adenosylmethionine is blocked, exhibit reduced selenomethionine toxicity compared with wild-type yeast, increased production of protein during growth in selenomethionine, and efficient replacement of methionine by selenomethionine, based on quantitative mass spectrometry and x-ray crystallography. The structure of yeast tryptophanyl-tRNA synthetase was solved to 1.8 A by using multiwavelength anomalous dispersion phasing with protein that was expressed and purified from the sam1(-) sam2(-) strain grown in selenomethionine. Six of eight selenium residues were located in the structure.
Collapse
Affiliation(s)
- Michael G. Malkowski
- *Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203; and
- Department of Structural Biology, State University of New York, 700 Ellicott Street, Buffalo, NY 14203
| | | | | | | | - Yoshiko Kon
- Center for Pediatric Biomedical Research and
- Biochemistry and Biophysics, University of Rochester Medical School, Rochester, NY 14642
| | - Jennifer Wolfley
- *Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203; and
| | - Meriem Said
- *Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203; and
| | - Joseph R. Luft
- *Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203; and
- Department of Structural Biology, State University of New York, 700 Ellicott Street, Buffalo, NY 14203
| | - Eric M. Phizicky
- Center for Pediatric Biomedical Research and
- Biochemistry and Biophysics, University of Rochester Medical School, Rochester, NY 14642
| | - George T. DeTitta
- *Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203; and
- Department of Structural Biology, State University of New York, 700 Ellicott Street, Buffalo, NY 14203
| | - Elizabeth J. Grayhack
- Center for Pediatric Biomedical Research and
- Biochemistry and Biophysics, University of Rochester Medical School, Rochester, NY 14642
| |
Collapse
|
11
|
Bushnell DA, Cramer P, Kornberg RD. Selenomethionine incorporation in Saccharomyces cerevisiae RNA polymerase II. Structure 2001; 9:R11-4. [PMID: 11342141 DOI: 10.1016/s0969-2126(00)00554-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A protocol for the incorporation of SeMet into yeast proteins is described. Incorporation at a level of about 50% suffices for the location of Se sites in an anomalous difference Fourier map of the 0.5 MDa yeast RNA polymerase II. This shows the utility of the approach as an aid in the model-building of large protein complexes.
Collapse
Affiliation(s)
- D A Bushnell
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | |
Collapse
|
12
|
Billard T, Roques N, Langlois BR. Synthetic Uses of Thio- and Selenoesters of Trifluoromethylated Acids. 1. Preparation of Trifluoromethyl Sulfides and Selenides. J Org Chem 1999. [DOI: 10.1021/jo980649a] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thierry Billard
- Université Claude Bernard-Lyon I, Laboratoire de Chimie Organique 3, associé au CNRS, 43 Bd du 11 Novembre 1918, 69622 Villeurbanne, France
| | - Nicolas Roques
- Université Claude Bernard-Lyon I, Laboratoire de Chimie Organique 3, associé au CNRS, 43 Bd du 11 Novembre 1918, 69622 Villeurbanne, France
| | - Bernard R. Langlois
- Université Claude Bernard-Lyon I, Laboratoire de Chimie Organique 3, associé au CNRS, 43 Bd du 11 Novembre 1918, 69622 Villeurbanne, France
| |
Collapse
|
13
|
Duewel H, Daub E, Robinson V, Honek JF. Incorporation of trifluoromethionine into a phage lysozyme: implications and a new marker for use in protein 19F NMR. Biochemistry 1997; 36:3404-16. [PMID: 9116020 DOI: 10.1021/bi9617973] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Much interest is currently focused on understanding the detailed contribution that particular amino acid residues make in protein structure and function. Although the use of site-directed mutagenesis has greatly contributed to this goal, the approach is limited to the standard repertoire of twenty amino acids. Fluorinated amino acids have been utilized successfully to probe protein structure and dynamics as well as point to the importance of specific residues to biological function. In our continuing investigations on the importance of the amino acid methionine in biological systems, the successful incorporation of L-S-(trifluoromethyl)homocysteine (L-trifluoromethionine; L-TFM) into bacteriophage lambda lysozyme (LaL), an enzyme containing three methionine residues, is reported. The L isomer of TFM was synthesized in an overall yield of 33% from N-acetyl-D,L-homocysteine thiolactone and trifluoromethyl iodide. An expression plasmid giving strong overproduction of LaL was prepared and transformed into an Escherichia coli strain auxotrophic for methionine permitting the expression of LaL in the presence of L-TFM. The analogue would not support growth of the auxotroph and was found to be inhibitory to cell growth. However, cells that were initially grown in a Met-rich media followed by protein induction under careful control of the respective concentrations of L-Met and L-TFM in the media, were able to overexpress TFM-labeled LaL (TFM-LaL) at both high (70%) and low (31%) levels of TFM incorporation. TFM-LaL at both levels of incorporation exhibited analogous activity to the wild type enzyme and were inhibited by chitooligosaccharides indicating that incorporation of the analogue did not hinder enzyme function. Interestingly, the 19F solution NMR spectra of the TFM-labeled enzymes consisted of four sharp resonances spanning a chemical shift range of 0.9 ppm, with three of the resonances showing very modest shielding changes on binding of chitopentaose. The 19F NMR analysis of TFM-LaL at both high and low levels of incorporation suggested that one of the methionine positions gives rise to two separate resonances. The intensities of these two resonances were influenced by the extent of incorporation which was interpreted as an indication that subtle conformational changes in protein structure are induced by incorporated TFM. The similarities and differences between Met and TFM were analyzed using ab initio molecular orbital calculations. The methodology presented offers promise as a new approach to the study of protein-ligand interactions as well as for future investigations into the functional importance of methionine in proteins.
Collapse
Affiliation(s)
- H Duewel
- Department of Chemistry, University of Waterloo, Ontario, Canada
| | | | | | | |
Collapse
|
14
|
Poirson-Bichat F, Lopez R, Bras Gonçalves RA, Miccoli L, Bourgeois Y, Demerseman P, Poisson M, Dutrillaux B, Poupon MF. Methionine deprivation and methionine analogs inhibit cell proliferation and growth of human xenografted gliomas. Life Sci 1997; 60:919-31. [PMID: 9061049 DOI: 10.1016/s0024-3205(96)00672-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Growth of numerous malignant tumors depends on an exogenous methionine (MET) supply, while endogenously synthesized MET supports normal cell proliferation. Because an antitumor effect should be obtained by aggravating the altered MET metabolism in gliomas, MET dependency of human xenografted gliomas was evaluated and a therapeutic approach using MET deprivation or MET analogs to induce MET starvation was applied. In vitro proliferation inhibition of glioma cell lines by MET deprivation and two MET analogs, ethionine (ETH) and trifluoromethylhomocysteine (TFH), was measured. Proliferation of 7 human glioma cell lines tested was inhibited in MET-free medium, and was poorly or not reversed by homocysteine (HCY). ETH or TFH (concentration range: 0.005-2 mg/ml) inhibited proliferation of all cell lines tested. MET analog-induced inhibition was abolished by MET and enhanced by HCY. Cell-cycle alterations due to MET deprivation were optimally assessed after 30 h of culture and bromodeoxyuridine incorporation. In MET- medium, cells were arrested in the G1-phase. ETH induced a dramatic accumulation of cells in the G2-phase. ATP contents were reduced by MET analogs only in HCY+ medium, suggesting complementary effects of MET analogs and HCY. Human glioma bearing nude mice were fed an amino acid-substituted MET- HCY-supplemented diet (MET-HCY+) and/or treated with MET analogs, injected intraperitoneally daily. Using two human xenografted tumors derived from gliomas, antitumor effects were obtained by subjecting tumor-bearing nude mice to MET starvation. TG-1-MA was more sensitive to MET depletion (40% of growth inhibition, P < 0.10) than TG-8-OZ (no growth inhibition). Antitumor effects of a MET-HCY+ diet and 200 mg/kg of ETH were potentiated when co-administered to glioma-bearing mice (77% GI, P < 0.025 and 67%, P < 0.0057 to TG-1-MA and TG-8-OZ respectively). A dose-response effect with no toxicity was obtained when the ETH dose was increased 10 fold. Potentiation of the effects of ETH and a MET-free diet indicates that they probably act on the same pathway but not the same target. In conclusion, experimentally induced MET deprivation and MET-analog treatment retarded the growth of human gliomas. Combination of MET-analog therapy with MET substitution by HCY enhanced their respective effects.
Collapse
|
15
|
Poirson-Bichat F, Gonfalone G, Bras-Gonçalves RA, Dutrillaux B, Poupon MF. Growth of methionine-dependent human prostate cancer (PC-3) is inhibited by ethionine combined with methionine starvation. Br J Cancer 1997; 75:1605-12. [PMID: 9184175 PMCID: PMC2223532 DOI: 10.1038/bjc.1997.274] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Methionine (MET) is required for cell metabolism. MET endogenously synthesized from homocysteine (HCY) supports the proliferation of normal cells, but not that of numerous malignant cells, as shown previously. MET starvation should have an anti-tumour effect, and its deleterious effects on the hosts might be prevented by HCY. Anti-tumour effects of MET starvation must be reinforced by ethionine (ETH), a MET analogue. MET dependency of PC-3, a human prostate cancer cell line, was studied in vitro. Proliferation of PC-3 cells, cultivated in MET-free medium, was 29% compared with growth in MET+HCY- medium. Addition of HCY to MET-free medium increased the proliferation rate to 56%. The concentration of ETH required to decrease the PC-3 cell proliferation rate to 50% (IC50) was 0.5 mg ml(-1) in MET-HCY- medium. ETH-induced inhibition was abolished by MET addition and was reinforced by HCY. PC-3 cell cycle was blocked in the S-G2-phase after 30 h culture in the absence of MET; this blockage was not reversed by addition of HCY. ETH at the IC50 in MET-HCY+ medium blocked DNA replication. Apoptotic cells appeared after 30 h incubation in MET-HCY+ medium only when ETH was added. ATP pools were decreased after 15 h of culture in MET-free medium. In vivo, MET starvation was obtained by feeding tumour-bearing mice a diet containing a synthetic amino acid mixture as the protein supply, in which HCY replaced MET. Given to nude mice bearing xenografted PC-3, from day 1 after grafting and for 3 weeks, this diet inhibited tumour growth (34% on day 20, P < 0.007); this effect was potentiated by ETH (200 mg kg(-1) day(-1) i.p.) (56% on day 20, P < 5 x 10(-5)). The differences between the effects of these two treatments were significant (P < 0.017) and optimal on day 20. These data showed that combination of ETH and HCY slowed the proliferation of prostate cancer cells in vitro and in vivo, decreased ATP synthesis and caused cell cycle arrest and apoptosis. Experimental therapy based on cancer cell MET metabolism deficiency could be efficient for treating advanced prostate cancers refractory to current therapies.
Collapse
|
16
|
Tsushima T, Ishihara S, Fujita Y. Fluorine-containing amino acids and their derivatives. 9. Synthesis and biological activities of difluoromethylhomocysteine. Tetrahedron Lett 1990. [DOI: 10.1016/s0040-4039(00)89013-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Riscoe MK, Ferro AJ, Fitchen JH. Methionine recycling as a target for antiprotozoal drug development. ACTA ACUST UNITED AC 1989; 5:330-3. [PMID: 15463143 DOI: 10.1016/0169-4758(89)90128-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The development of new and effective ontiprotozool drugs has been difficult because of the close metabolic relationship between protozoa and mammalian cells. In this article, Michael Riscoe, Al Ferro and john Fitchen present their hypothesis for chemotherapeutic exploitation of methylthioribose (MTR) kinase, an enzyme critical to methionine salvage in certain protozoa. They propose that analogues of MTR if properly designed, would be converted to toxic products in organisms that contain MTR kinase but not in mammalian cells, which lack this enzyme.
Collapse
Affiliation(s)
- M K Riscoe
- M. Riscoe and J. Fitchen are at the Medical Research Service, Veterans Administration Medical Center, Portland, OR 97207, USA
| | | | | |
Collapse
|
18
|
Allen ER, Orrego C, Wabiko H, Freese E. An ethA mutation in Bacillus subtilis 168 permits induction of sporulation by ethionine and increases DNA modification of bacteriophage phi 105. J Bacteriol 1986; 166:1-8. [PMID: 3082850 PMCID: PMC214547 DOI: 10.1128/jb.166.1.1-8.1986] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In contrast to Escherichia coli and Salmonella typhimurium, Bacillus subtilis could convert ethionine to S-adenosylethionine (SAE), as can Saccharomyces cerevisiae. This conversion was essential for growth inhibition by ethionine because metE mutants which were deficient in S-adenosylmethionine synthetase activity, were resistant to 10 mM ethionine and converted only a small amount of ethionine to SAE. Another mutation (ethA1) produced partial resistance to ethionine (2 mM) and enabled continual sporulation in glucose medium containing 4 mM DL-ethionine. This sporulation induction probably resulted from the effect of SAE, since it was abolished by the addition of a metE1 mutation. The induction of sporulation was not simply controlled by the ratio of SAE to S-adenosylmethionine, but apparently depended on another effect of the ethA1 mutation, which could be demonstrated by comparing the restriction of clear plaque mutants of bacteriophage phi 105 grown in an ethA1 strain with the restriction of those grown in the standard strain. The phages grown in the ethA1 strain showed increased protection against BsuR restriction. We propose that SAE induces sporulation through the inhibition of a key methylation reaction.
Collapse
|
19
|
Ferchichi M, Hemme D, Bouillanne C. Influence of Oxygen and pH on Methanethiol Production from
l
-Methionine by
Brevibacterium linens
CNRZ 918. Appl Environ Microbiol 1986; 51:725-9. [PMID: 16347036 PMCID: PMC238955 DOI: 10.1128/aem.51.4.725-729.1986] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effects of dissolved oxygen concentration and pH on the growth of
Brevibacterium linens
CNRZ 918 and its production of methanethiol from
l
-methionine were investigated. Optimal specific methanethiol production was obtained at 25% saturation of dissolved oxygen and at a pH between 8 and 9, whereas optimal cell growth occurred at 50% oxygen saturation and when the pH was maintained constantly at 7. Methanethiol production by nonproliferating bacteria required the presence of
l
-methionine (7 mM) in the culture medium. This was probably due to the induction of enzyme systems involved in the process. The intracellular concentration of
l
-methionine seemed to play a key role in this process.
B. linens
CNRZ 918 tolerated alkaline pHs with a maximal growth pH of approximately 9. Its orange pigmentation seemed to depend on the presence of
l
-methionine in the culture medium and on the concentration of dissolved oxygen.
Collapse
Affiliation(s)
- M Ferchichi
- Laboratoire de Microbiologie Laitière, Institut National de la Recherche Agronomique, Centre National de Recherches Zootechniques, 78350 Jouy-en-Josas, France
| | | | | |
Collapse
|
20
|
Téllez R, Jacob G, Basilio C, George-Nascimento C. Effect of ethionine on the in vitro synthesis and degradation of mitochondrial translation products in yeast. FEBS Lett 1985; 192:88-94. [PMID: 3902507 DOI: 10.1016/0014-5793(85)80049-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The effect of ethionine, an amino acid analog of methionine, has been studied in Saccharomyces cerevisiae in relation to cell growth, oxygen consumption, in vitro protein synthesis of mitochondrial translation products (MTPs) and the degradation of those mitoribosomally made proteins by an ATP-dependent process present within the organelle. Ethionine was found to increase the generation time of those cells already committed to cell division and to abolish the initiation of new cell cycles. Oxygen consumption of cultures grown in the presence of the analog was drastically reduced. Ethionine was also found to impair the incorporation of methionine and leucine into mitochondrial translation products, however the synthesis of proteins was not totally blocked and, apparently, mitochondria utilized ethionine as a precursor amino acid. MTPs synthesized by isolated mitochondria in the presence of ethionine were rapidly degraded inside the organelle at a faster rate compared with the normal proteins synthesized under identical conditions in the mitochondria. It is also shown that these in vitro synthesized proteins are degraded by an ATP-stimulated proteolytic system, as has been previously established.
Collapse
|
21
|
Alston TA, Bright HJ. Conversion of trifluoromethionine to a cross-linking agent by gamma-cystathionase. Biochem Pharmacol 1983; 32:947-50. [PMID: 6838645 DOI: 10.1016/0006-2952(83)90608-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
22
|
Alix JH. Molecular aspects of the in vivo and in vitro effects of ethionine, an analog of methionine. Microbiol Rev 1982; 46:281-95. [PMID: 6752686 PMCID: PMC281545 DOI: 10.1128/mr.46.3.281-295.1982] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
23
|
Na+/solute symport in membrane vesicles from Bacillus alcalophilus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1982. [DOI: 10.1016/0005-2728(82)90302-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
24
|
|
25
|
Brawley JV, Ferro AJ. Stimulation of yeast ascospore germination and outgrowth by S-adenosylmethionine. J Bacteriol 1980; 142:608-14. [PMID: 6991481 PMCID: PMC294033 DOI: 10.1128/jb.142.2.608-614.1980] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The supplementation of S-adenosylmethionine (SAM) to germination medium stimulated the accumulation of [14C]uracil from the medium into germinating cells, as well as its incorporation into ribonucleic acid during germination and outgrowth of ascospores of Saccharomyces cerevisiae. In addition to uracil, the accumulation of leucine, cytosine, serine, and methionine was also stimulated by the extracellular addition of this sulfonium compound. The SAM-stimulatory effect was dose dependent; half-maximal stimulation was observed at about 50 muM. The effect exerted by SAM supplementation appeared to be specific for SAM and for germination and outgrowth. In the absence of SAM biosynthesis (in the presence of cycloleucine), spores were inhibited in their ability to accumulate label, whereas the supplementation of SAM completely reversed the cycloleucine-induced inhibition of accumulation. In addition to accumulation and incorporation, the kinetics of bud formation during outgrowth were also stimulated by exogenous SAM. The stimulation of budding by SAM was amplified in an ethionine-resistant strain. These observations suggest that SAM may be essential for the initiation of cell division during the breaking of spore dormancy.
Collapse
|
26
|
Singer RA, Johnston GC, Bedard D. Methionine analogs and cell division regulation in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 1978; 75:6083-7. [PMID: 366609 PMCID: PMC393122 DOI: 10.1073/pnas.75.12.6083] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Methionine analogs such as ethionine, selenomethionine, and trifluoromethionine all arrest growth and division of the yeast Saccharomyces cerevisiae. One analog, ethionine, caused cells of the yeast to arrest specifically within G1; reciprocal shift experiments showed that ethionine and alpha-factor arrested cells at the same step ("start"). The major effect of ethionine on synthesis of macromolecules was to reduce both the rate of appearance of 35S ribosomal precursor RNA and the rate of production of mature rRNA. Synthesis of protein was relatively unaffected by ethionine. Selenomethionine and trifluoromethionine caused cells to arrest randomly in the cell division cycle. Although treatment of cells with either selenomethionine or trifluoromethionine also reduced the rate of total RNA synthesis, each of these analogs had other effects that presumably prohibited completion of the cell cycle. We propose that the rate of rRNA production is an important regulatory event in the cell cycle.
Collapse
|
27
|
|
28
|
Choih SJ, Ferro AJ, Shapiro SK. Function of S-adenosylmethionine in germinating yeast ascospores. J Bacteriol 1977; 131:63-8. [PMID: 326770 PMCID: PMC235391 DOI: 10.1128/jb.131.1.63-68.1977] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Germination and outgrowth of ascospores of Saccharomyces cerevisiae 4579 require both methionine and adenine, whereas leucine is only required for outgrowth. The methionine requirement may be satisfied by S-adenosylmethionine, but this sulfonium compound will not substitute for adenine. Between 30 and 70 min of protein synthesis is initially required for the completion of germination in strain 4579. The inhibition of S-adenosylmethionine synthetase by trifluoromethionine prevents both germination and protein synthesis. During the initial stages of germination, the S-adenosylmethionine synthetase, S-adenosylmethionine decarboxylase, and transfer ribonucleic acid methyltransferases increased significantly, indicating that polyamines and/or the methylation of transfer ribonucleic acid are required for the initiation of germination.
Collapse
|
29
|
|