1
|
Specificity in suppression of SOS expression by recA4162 and uvrD303. DNA Repair (Amst) 2013; 12:1072-80. [PMID: 24084169 DOI: 10.1016/j.dnarep.2013.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 08/29/2013] [Accepted: 09/04/2013] [Indexed: 01/15/2023]
Abstract
Detection and repair of DNA damage is essential in all organisms and depends on the ability of proteins recognizing and processing specific DNA substrates. In E. coli, the RecA protein forms a filament on single-stranded DNA (ssDNA) produced by DNA damage and induces the SOS response. Previous work has shown that one type of recA mutation (e.g., recA4162 (I298V)) and one type of uvrD mutation (e.g., uvrD303 (D403A, D404A)) can differentially decrease SOS expression depending on the type of inducing treatments (UV damage versus RecA mutants that constitutively express SOS). Here it is tested using other SOS inducing conditions if there is a general feature of ssDNA generated during these treatments that allows recA4162 and uvrD303 to decrease SOS expression. The SOS inducing conditions tested include growing cells containing temperature-sensitive DNA replication mutations (dnaE486, dnaG2903, dnaN159, dnaZ2016 (at 37°C)), a del(polA)501 mutation and induction of Double-Strand Breaks (DSBs). uvrD303 could decrease SOS expression under all conditions, while recA4162 could decrease SOS expression under all conditions except in the polA strain or when DSBs occur. It is hypothesized that recA4162 suppresses SOS expression best when the ssDNA occurs at a gap and that uvrD303 is able to decrease SOS expression when the ssDNA is either at a gap or when it is generated at a DSB (but does so better at a gap).
Collapse
|
2
|
Jarvis TC, Beaudry AA, Bullard JM, Ochsner U, Dallmann HG, McHenry CS. Discovery and characterization of the cryptic psi subunit of the pseudomonad DNA replicase. J Biol Chem 2005; 280:40465-73. [PMID: 16210315 DOI: 10.1074/jbc.m508310200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously reconstituted a minimal DNA replicase from Pseudomonas aeruginosa consisting of alpha and epsilon (polymerase and editing nuclease), beta (processivity factor), and the essential tau, delta, and delta' components of the clamp loader complex (Jarvis, T., Beaudry, A., Bullard, J., Janjic, N., and McHenry, C. (2005) J. Biol. Chem. 280, 7890-7900). In Escherichia coli DNA polymerase III holoenzyme, chi and Psi are tightly associated clamp loader accessory subunits. The addition of E. coli chiPsi to the minimal P. aeruginosa replicase stimulated its activity, suggesting the existence of chi and Psi counterparts in P. aeruginosa. The P. aeruginosa chi subunit was recognizable from sequence similarity, but Psi was not. Here we report purification of an endogenous replication complex from P. aeruginosa. Identification of the components led to the discovery of the cryptic Psi subunit, encoded by holD. P. aeruginosa chi and Psi were co-expressed and purified as a 1:1 complex. P. aeruginosa chiPsi increased the specific activity of tau(3)deltadelta' 25-fold and enabled the holoenzyme to function under physiological salt conditions. A synergistic effect between chiPsi and single-stranded DNA binding protein was observed. Sequence similarity to P. aeruginosa Psi allowed us to identify Psi subunits from several other Pseudomonads and to predict probable translational start sites for this protein family. This represents the first identification of a highly divergent branch of the Psi family and confirms the existence of Psi in several organisms in which Psi was not identifiable based on sequence similarity alone.
Collapse
|
3
|
Skovgaard O, Løbner-Olesen A. Reduced initiation frequency from oriC restores viability of a temperature-sensitive Escherichia coli replisome mutant. Microbiology (Reading) 2005; 151:963-973. [PMID: 15758241 DOI: 10.1099/mic.0.27630-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ThednaXgene ofEscherichia coliencodesτandγclamp loader subunits of the replisome. Cells carrying the temperature-sensitivednaX2016mutation were induced for the SOS response at non-permissive temperature. The SOS induction most likely resulted from extensive replication fork collapse that exceeded the cells' capacity for restart. Seven mutations in thednaAgene that partly suppressed thednaX2016temperature sensitivity were isolated and characterized. Each of the mutations caused a single amino acid change in domains III and IV of the DnaA protein, where nucleotide binding and DNA binding, respectively, reside. The diversity ofdnaA(Sx) mutants obtained indicated that a direct interaction between the DnaA protein andτorγis unlikely and that the mechanism behind suppression is related to DnaA function. AlldnaA(Sx) mutant cells were compromised for initiation of DNA replication, and contained fewer active replication forks than their wild-type counterparts. Conceivably, this led to a reduced number of replication fork collapses within eachdnaX2016 dnaA(Sx) cell and prevented the SOS response. Lowered availability of wild-type DnaA protein also led to partial suppression of thednaX2016mutation, confirming that thednaA(Sx) mode of suppression is indirect and results from a reduced initiation frequency atoriC.
Collapse
Affiliation(s)
- Ole Skovgaard
- Department of Life Sciences and Chemistry, 18-1, Roskilde University, PO Box 260, DK-4000 Roskilde, Denmark
| | - Anders Løbner-Olesen
- Department of Life Sciences and Chemistry, 18-1, Roskilde University, PO Box 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
4
|
Jarvis TC, Beaudry AA, Bullard JM, Janjic N, McHenry CS. Reconstitution of a minimal DNA replicase from Pseudomonas aeruginosa and stimulation by non-cognate auxiliary factors. J Biol Chem 2004; 280:7890-900. [PMID: 15611049 DOI: 10.1074/jbc.m412263200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA polymerase III holoenzyme is responsible for chromosomal replication in bacteria. The components and functions of Escherichia coli DNA polymerase III holoenzyme have been studied extensively. Here, we report the reconstitution of replicase activity by essential components of DNA polymerase holoenzyme from the pathogen Pseudomonas aeruginosa. We have expressed and purified the processivity factor (beta), single-stranded DNA-binding protein, a complex containing the polymerase (alpha) and exonuclease (epsilon) subunits, and the essential components of the DnaX complex (tau(3)deltadelta'). Efficient primer elongation requires the presence of alphaepsilon, beta, and tau(3)deltadelta'. Pseudomonas aeruginosa alphaepsilon can substitute completely for E. coli polymerase III in E. coli holoenzyme reconstitution assays. Pseudomonas beta and tau(3)deltadelta' exhibit a 10-fold lower activity relative to their E. coli counterparts in E. coli holoenzyme reconstitution assays. Although the Pseudomonas counterpart to the E. coli psi subunit was not apparent in sequence similarity searches, addition of purified E. coli chi and psi (components of the DnaX complex) increases the apparent specific activity of the Pseudomonas tau(3)deltadelta' complex approximately 10-fold and enables the reconstituted enzyme to function better under physiological salt conditions.
Collapse
|
5
|
Walker JR, Hervas C, Ross JD, Blinkova A, Walbridge MJ, Pumarega EJ, Park MO, Neely HR. Escherichia coli DNA polymerase III tau- and gamma-subunit conserved residues required for activity in vivo and in vitro. J Bacteriol 2000; 182:6106-13. [PMID: 11029431 PMCID: PMC94745 DOI: 10.1128/jb.182.21.6106-6113.2000] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli DNA polymerase III tau and gamma subunits are single-strand DNA-dependent ATPases (the latter requires the delta and delta' subunits for significant ATPase activity) involved in loading processivity clamp beta. They are homologous to clamp-loading proteins of many organisms from phages to humans. Alignment of 27 prokaryotic tau/gamma homologs and 1 eukaryotic tau/gamma homolog has refined the sequences of nine previously defined identity and functional motifs. Mutational analysis has defined highly conserved residues required for activity in vivo and in vitro. Specifically, mutations introduced into highly conserved residues within three of those motifs, the P loop, the DExx region, and the SRC region, inactivated complementing activity in vivo and clamp loading in vitro and reduced ATPase catalytic efficiency in vitro. Mutation of a highly conserved residue within a fourth motif, VIc, inactivated clamp-loading activity and reduced ATPase activity in vitro, but the mutant gene, on a multicopy plasmid, retained complementing activity in vivo and the mutant gene also supported apparently normal replication and growth as a haploid, chromosomal allele.
Collapse
Affiliation(s)
- J R Walker
- Section of Molecular Genetics and Microbiology, Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Ginés-Candelaria E, Blinkova A, Walker JR. Mutations in Escherichia coli dnaA which suppress a dnaX(Ts) polymerization mutation and are dominant when located in the chromosomal allele and recessive on plasmids. J Bacteriol 1995; 177:705-15. [PMID: 7836305 PMCID: PMC176647 DOI: 10.1128/jb.177.3.705-715.1995] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Extragenic suppressor mutations which had the ability to suppress a dnaX2016(Ts) DNA polymerization defect and which concomitantly caused cold sensitivity have been characterized within the dnaA initiation gene. When these alleles (designated Cs, Sx) were moved into dnaX+ strains, the new mutants became cold sensitive and phenotypically were initiation defective at 20 degrees C (J.R. Walker, J.A. Ramsey, and W.G. Haldenwang, Proc. Natl. Acad. Sci. USA 79:3340-3344, 1982). Detailed localization by marker rescue and DNA sequencing are reported here. One mutation changed codon 213 from Ala to Asp, the second changed Arg-432 to Leu, and the third changed codon 435 from Thr to Lys. It is striking that two of the three spontaneous mutations occurred in codons 432 and 435; these codons are within a very highly conserved, 12-residue region (K. Skarstad and E. Boye, Biochim. Biophys. Acta 1217:111-130, 1994; W. Messer and C. Weigel, submitted for publication) which must be critical for one of the DnaA activities. The dominance of wild-type and mutant alleles in both initiation and suppression activities was studied. First, in initiation function, the wild-type allele was dominant over the Cs, Sx alleles, and this dominance was independent of location. That is, the dnaA+ allele restored growth to dnaA (Cs, Sx) strains at 20 degrees C independently of which allele was present on the plasmid. The dnaA (Cs, Sx) alleles provided initiator function at 39 degrees C and were dominant in a dnaA(Ts) host at that temperature. On the other hand, suppression was dominant when the suppressor allele was chromosomal but recessive when it was plasmid borne. Furthermore, suppression was not observed when the suppressor allele was present on a plasmid and the chromosomal dnaA was a null allele. These data suggest that the suppressor allele must be integrated into the chromosome, perhaps at the normal dnaA location. Suppression by dnaA (Cs, Sx) did not require initiation at oriC; it was observed in strains deleted of oriC and which initiated at an integrated plasmid origin.
Collapse
|
7
|
Affiliation(s)
- M G Cull
- Department of Biochemistry, Biophysics and Genetics, University of Colorado Health Sciences Center, Denver 80262, USA
| | | |
Collapse
|
8
|
Süss F, Frunder B, Klaus S, Noack D. Characterization of a thermosensitive mutant of Streptomyces hygroscopicus defective in both DNA and RNA syntheses. J Basic Microbiol 1988; 28:541-51. [PMID: 2466979 DOI: 10.1002/jobm.3620280816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A stable temperature sensitive mutant of Streptomyces hygroscopicus JA6599 defective in both DNA and RNA syntheses is described. The mutant ts35 is characterized by an immediate stop of DNA synthesis and continued protein synthesis after transfer to restrictive temperature. The reinitiation of DNA synthesis begins immediately after a return to the permissive temperature. This kinetics of macromolecular synthesis at restrictive temperature appears to share similarities with a defect in the DNA elongation process, as described for Escherichia coli (Carl 1970, Hanna and Carl 1975). The simultaneous stop of both DNA and RNA syntheses may be caused by an additional mutational event affecting also the RNA synthesis. The data were discussed with respect to similar results in E. coli.
Collapse
Affiliation(s)
- F Süss
- Akademie der Wissenschaften der DDR
| | | | | | | |
Collapse
|
9
|
Blinkowa A, Haldenwang WG, Ramsey JA, Henson JM, Mullin DA, Walker JR. Physiological properties of cold-sensitive suppressor mutations of a temperature-sensitive dnaZ mutant of Escherichia coli. J Bacteriol 1983; 153:66-75. [PMID: 6184364 PMCID: PMC217342 DOI: 10.1128/jb.153.1.66-75.1983] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Suppressors of a temperature-sensitive dnaZ polymerization mutant of Escherichia coli have been identified by selecting temperature-insensitive revertants. Those suppressed strains which concomitantly became cold sensitive were chosen for further study. Intragenic suppressor mutations, which caused cold-sensitive defects in DNA polymerization, were located in dnaZ by transduction with lambda dnaZ+ phages. Extragenic suppressor mutations were mapped within the initiation gene dnaA. These suppressor-containing strains were defective in initiation at low temperature as determined by measurements of DNA synthesis in vivo and in toluene-treated cells. The occurrence of suppressor mutations of dnaZ(Ts) within the dnaA gene is considered evidence that the dnaA and dnaZ products interact in vivo. A second indication of a dnaA-dnaZ protein-protein interaction was provided by the observation that the introduction of additional copies of the dnaZ+ gene into a strain carrying the dnaA suppressor mutation was lethal [whether the strain was dnaZ+ or dnaZ(Ts)].
Collapse
|
10
|
Blinkowa A, Walker JR. Interactions of DNA replication factors in vivo as detected by introduction of suppressor alleles of dnaA into other temperature-sensitive dna mutants. J Bacteriol 1983; 153:535-8. [PMID: 6444206 PMCID: PMC217404 DOI: 10.1128/jb.153.1.535-538.1983] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Suppressor mutations located within dnaA can suppress the temperature sensitivity of a dnaZ polymerization mutant, indicating in vivo interaction of the products of these genes. The suppressor allele of dnaA [designated dnaA(SUZ, Cs)] could not be introduced, even at the permissive temperature, by transduction into temperature-sensitive (Ts) dnaC or dnaG recipients; it was transduced into dnaB(Ts) and dnaE(Ts) strains but at very low frequency. Recipient cells which were dnaA+ dnaE(Ts) were killed by the incoming dnaA(SUZ, Cs) allele, and it is presumed that combinations of dnaA(SUZ, Cs) with dnaB(Ts), dnaC(Ts), or dnaG(Ts) are lethal also. In one specific case, the lethality required the presence of three alleles: the incoming dnaA suppressor mutation, the resident dnaA+ gene, and the dnaB(Ts) gene. This was shown by the fact that dnaB(Ts) could readily be introduced into a dnaA(SUZ, Cs) dnaB+ recipient. That is, in the absence of dnaA+, the dnaA suppressor and dnaB(Ts) double mutant was stable. One model to explain these results proposes that the dnaA protein functions not only in initiation but also in the replication complex which contains multiple copies of dnaA and other replication factors.
Collapse
|
11
|
Walker JR, Ramsey JA, Haldenwang WG. Interaction of the Escherichia coli dnaA initiation protein with the dnaZ polymerization protein in vivo. Proc Natl Acad Sci U S A 1982; 79:3340-4. [PMID: 6285347 PMCID: PMC346411 DOI: 10.1073/pnas.79.10.3340] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
To define in vivo interactions of Escherichia coli DNA replication components, extragenic suppressors of a dnaZ(TS) mutant were isolated. A temperature-sensitive dnaZ mutant, which is defective in polymerization, was placed at 39 degrees C to select temperature-insensitive revertants. Some of these revertants also were cold sensitive, a phenotypic property that facilitated study of the suppressor. Mapping of the cold sensitivity indicated that some of the suppressor mutations are intragenic but others are located within the initiation gene, dnaA. The dnaA mutations that suppress the dnaZ(TS) defect are designated dnaA(SUZ, CS). The dnaA(SUZ, CS) strains have a defect in DNA synthesis at low temperature that is typical of an initiation defect. These data suggest that the dnaA product, an initiation factor, interacts in vivo with the dnaZ protein, a polymerization factor.
Collapse
|
12
|
Wagner S, Feldman A, Snipes W. Recovery from damage induced by acridine plus near-ultraviolet light in Escherichia coli. Photochem Photobiol 1982; 35:73-81. [PMID: 7043500 DOI: 10.1111/j.1751-1097.1982.tb03813.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
13
|
Taketo A, Kodaira K. Replication of bacteriophage G13 DNA in dna mutants of Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA 1978; 520:505-11. [PMID: 363152 PMCID: PMC9664326 DOI: 10.1016/0005-2787(78)90136-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Host functions required for replication of microvirid phage G13 DNA were investigated in vivo, using thermosensitive dna mutants of Escherichia coli. In dna+ bacteria, conversion of viral single-stranded DNA into double-stranded replicative form (stage I synthesis) was resistant to 150 microgram/ml of chloramphenicol or 200 microgram/ml of rifampicin. Although multiplication of G13 phage was severely inhibited at 42--43 degrees C even in dna+ host, considerable amount of parental replicative form was synthesized at 43 degrees C in dna+, dnaA or dnaE bacteria. In dnaB and dnaG mutants, however, synthesis of parental replicative form was severely inhibited at the restrictive temperature. Interestingly enough, stage I replication of G13 DNA was, unlike that of phiX174, dependent on host dnaC(D) function. Moreover, the stage I synthesis of G13 DNA in dnaZ was thermosensitive in nutrient broth but not in Tris/casamino acids/glucose medium. In contrast with the stage I replication, synthesis of G13 progeny replicative form was remarkably thermosensitive even in dna+ or dnA cells.
Collapse
|
14
|
Filpula D, Fuchs JA. Regulation of the synthesis of ribonucleoside diphosphate reductase in Escherichia coli: specific activity of the enzyme in relationship to perturbations of DNA replication. J Bacteriol 1978; 135:429-35. [PMID: 355225 PMCID: PMC222400 DOI: 10.1128/jb.135.2.429-435.1978] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Ribonucleoside diphosphate reductase (RDP reductase) activity was found to greatly increase after a shift to the nonpermissive temperature in Escherichia coli mutants temperature sensitive for DNA elongation (dnaE dnaG dnaZ lig) or DNA initiation (dnaA dnaC dnaI). However, the kinetics of increase in RDP reductase after a shift to nonpermissive conditions were significantly different in initiation-defective mutants compared with elongation-defective mutants. In strains without defects in DNA metabolism, the specific activity of RDP reductase was found to increase with increasing growth rate. Nutritional shifts to faster growth conditions caused cells to transiently overproduce RDP reductase before adjusting to the new steady-state conditions.
Collapse
|