1
|
Ostroumova OS, Efimova SS. Lipid-Centric Approaches in Combating Infectious Diseases: Antibacterials, Antifungals and Antivirals with Lipid-Associated Mechanisms of Action. Antibiotics (Basel) 2023; 12:1716. [PMID: 38136750 PMCID: PMC10741038 DOI: 10.3390/antibiotics12121716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
One of the global challenges of the 21st century is the increase in mortality from infectious diseases against the backdrop of the spread of antibiotic-resistant pathogenic microorganisms. In this regard, it is worth targeting antibacterials towards the membranes of pathogens that are quite conservative and not amenable to elimination. This review is an attempt to critically analyze the possibilities of targeting antimicrobial agents towards enzymes involved in pathogen lipid biosynthesis or towards bacterial, fungal, and viral lipid membranes, to increase the permeability via pore formation and to modulate the membranes' properties in a manner that makes them incompatible with the pathogen's life cycle. This review discusses the advantages and disadvantages of each approach in the search for highly effective but nontoxic antimicrobial agents. Examples of compounds with a proven molecular mechanism of action are presented, and the types of the most promising pharmacophores for further research and the improvement of the characteristics of antibiotics are discussed. The strategies that pathogens use for survival in terms of modulating the lipid composition and physical properties of the membrane, achieving a balance between resistance to antibiotics and the ability to facilitate all necessary transport and signaling processes, are also considered.
Collapse
Affiliation(s)
- Olga S. Ostroumova
- Laboratory of Membrane and Ion Channel Modeling, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, St. Petersburg 194064, Russia;
| | | |
Collapse
|
2
|
Abstract
An early exposure to lipid biochemistry in the laboratory of Konrad Bloch resulted in a fascination with the biosynthesis, structures, and functions of bacterial lipids. The discovery of plasmalogens (1-alk-1'-enyl, 2-acyl phospholipids) in anaerobic Gram-positive bacteria led to studies on the physical chemistry of these lipids and the cellular regulation of membrane lipid polymorphism in bacteria. Later studies in several laboratories showed that the formation of the alk-1-enyl ether bond involves an aerobic process in animal cells and thus is fundamentally different from that in anaerobic organisms. Our work provides evidence for an anaerobic process in which plasmalogens are formed from their corresponding diacyl lipids. Studies on the roles of phospholipases in Listeria monocytogenes revealed distinctions between its phospholipases and those previously discovered in other bacteria and showed how the Listeria enzymes are uniquely fitted to the intracellular lifestyle of this significant human pathogen.
Collapse
Affiliation(s)
- Howard Goldfine
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6076
| |
Collapse
|
3
|
Chilambi GS, Gao IH, Yoon BK, Park S, Kawakami LM, Ravikumar V, Chan-Park MB, Cho NJ, Bazan GC, Kline KA, Rice SA, Hinks J. Membrane adaptation limitations inEnterococcus faecalisunderlie sensitivity and the inability to develop significant resistance to conjugated oligoelectrolytes. RSC Adv 2018; 8:10284-10293. [PMID: 35540442 PMCID: PMC9078823 DOI: 10.1039/c7ra11823f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 03/01/2018] [Indexed: 11/21/2022] Open
Abstract
COEs are emerging antimicrobials to combat drug resistant infections and to which bacteria develop only limited resistance.
Collapse
|
4
|
Increasing dissolved-oxygen disrupts iron homeostasis in production cultures of Escherichia coli. Antonie van Leeuwenhoek 2016; 110:115-124. [PMID: 27757702 DOI: 10.1007/s10482-016-0781-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 10/05/2016] [Indexed: 12/20/2022]
Abstract
The damaging effect of high oxygen concentration on growth of Escherichia coli is well established. Over-oxygenation increases the intracellular concentration of reactive oxygen species (ROS), causing the destruction of the [4Fe-4S] cluster of dehydratases and limiting the biosynthesis of both branched-chain amino acids and nicotinamide adenine dinucleotide. A key enzyme that reduces the damaging effect of superoxide is superoxide dismutase (SOD). Its transcriptional regulation is controlled by global transcription regulators that respond to changes in oxygen and iron concentrations and pH. Production of biological compounds from E. coli is currently achieved using cultures grown to high cell densities which require oxygen-enriched air supply. It is, therefore, important to study the effect of over-oxygenation on E. coli metabolism and the bacterial protecting mechanism. The effect of over-oxygenation on the superoxide dismutase regulation system was evaluated in cultures grown in a bioreactor by increasing the oxygen concentration from 30 to 300 % air saturation. Following the change in the dissolved oxygen (DO), the expression of sodC, the periplasmic CuZn-containing SOD, and sodA, the cytosolic Mn-containing SOD, was higher in all the tested strains, while the expression of the sodB, the cytosolic Fe-containing SOD, was lower. The down-regulation of the sodB was found to be related to the activation of the small RNA RyhB. It was revealed that iron homeostasis, in particular ferric iron, was involved in the RyhB activation and in sodB regulation but not in sodA. Supplementation of amino acids to the culture medium reduced the intracellular ROS accumulation and reduced the activation of both SodA and SodC following the increase in the oxygen concentration. The study provides evidence that at conditions of over-oxygenation, sodA and sodC are strongly regulated by the amount of ROS, in particular superoxide; and sodB is regulated by iron availability through the small RNA RyhB. In addition, information on the impact of NADH, presence of amino acids and type of iron on SOD regulation, and consequently, on the ROS concentration is provided.
Collapse
|
5
|
Belenky P, Ye JD, Porter CBM, Cohen NR, Lobritz MA, Ferrante T, Jain S, Korry BJ, Schwarz EG, Walker GC, Collins JJ. Bactericidal Antibiotics Induce Toxic Metabolic Perturbations that Lead to Cellular Damage. Cell Rep 2015; 13:968-80. [PMID: 26565910 DOI: 10.1016/j.celrep.2015.09.059] [Citation(s) in RCA: 332] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/04/2015] [Accepted: 09/17/2015] [Indexed: 01/16/2023] Open
Abstract
Understanding how antibiotics impact bacterial metabolism may provide insight into their mechanisms of action and could lead to enhanced therapeutic methodologies. Here, we profiled the metabolome of Escherichia coli after treatment with three different classes of bactericidal antibiotics (?-lactams, aminoglycosides, quinolones). These treatments induced a similar set of metabolic changes after 30 min that then diverged into more distinct profiles at later time points. The most striking changes corresponded to elevated concentrations of central carbon metabolites, active breakdown of the nucleotide pool, reduced lipid levels, and evidence of an elevated redox state. We examined potential end-target consequences of these metabolic perturbations and found that antibiotic-treated cells exhibited cytotoxic changes indicative of oxidative stress, including higher levels of protein carbonylation, malondialdehyde adducts, nucleotide oxidation, and double-strand DNA breaks. This work shows that bactericidal antibiotics induce a complex set of metabolic changes that are correlated with the buildup of toxic metabolic by-products.
Collapse
Affiliation(s)
- Peter Belenky
- Department of Biomedical Engineering and Center of Synthetic Biology, Boston University, 36 Cummington Mall, Boston, MA 02215, USA; Department of Molecular Microbiology and Immunology, Brown University, 171 Meeting Street, Providence, RI 02912, USA.
| | - Jonathan D Ye
- Department of Biomedical Engineering and Center of Synthetic Biology, Boston University, 36 Cummington Mall, Boston, MA 02215, USA
| | - Caroline B M Porter
- Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Nadia R Cohen
- Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Michael A Lobritz
- Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, MA 02115, USA; Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02115, USA
| | - Thomas Ferrante
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Saloni Jain
- Department of Biomedical Engineering and Center of Synthetic Biology, Boston University, 36 Cummington Mall, Boston, MA 02215, USA; Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Benjamin J Korry
- Department of Molecular Microbiology and Immunology, Brown University, 171 Meeting Street, Providence, RI 02912, USA
| | - Eric G Schwarz
- Department of Biomedical Engineering and Center of Synthetic Biology, Boston University, 36 Cummington Mall, Boston, MA 02215, USA
| | - Graham C Walker
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - James J Collins
- Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, MA 02115, USA.
| |
Collapse
|
6
|
Baez A, Shiloach J. Effect of elevated oxygen concentration on bacteria, yeasts, and cells propagated for production of biological compounds. Microb Cell Fact 2014; 13:181. [PMID: 25547171 PMCID: PMC4279996 DOI: 10.1186/s12934-014-0181-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 12/11/2014] [Indexed: 12/03/2022] Open
Abstract
The response of bacteria, yeast, and mammalian and insects cells to oxidative stress is a topic that has been studied for many years. However, in most the reported studies, the oxidative stress was caused by challenging the organisms with H2O2 and redox-cycling drugs, but not by subjecting the cells to high concentrations of molecular oxygen. In this review we summarize available information about the effect of elevated oxygen concentrations on the physiology of microorganisms and cells at various culture conditions. In general, increased oxygen concentrations promote higher leakage of reactive oxygen species (superoxide and H2O2) from the respiratory chain affecting metalloenzymes and DNA that in turn cause impaired growth and elevated mutagenesis. To prevent the potential damage, the microorganisms and cells respond by activating antioxidant defenses and repair systems. This review described the factors that affect growth properties and metabolism at elevated oxygen concentrations that cells may be exposed to, in bioreactor sparged with oxygen enriched air which could affect the yield and quality of the recombinant proteins produced by high cell density schemes.
Collapse
Affiliation(s)
| | - Joseph Shiloach
- Biotechnology Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda 20892, MD, USA.
| |
Collapse
|
7
|
Cyclopropane-ring formation in the acyl groups of chlorosome glycolipids is crucial for acid resistance of green bacterial antenna systems. Bioorg Med Chem 2013; 21:3689-94. [DOI: 10.1016/j.bmc.2013.04.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 11/21/2022]
|
8
|
Zhou X, Taghizadeh K, Dedon PC. Chemical and biological evidence for base propenals as the major source of the endogenous M1dG adduct in cellular DNA. J Biol Chem 2005; 280:25377-82. [PMID: 15878883 DOI: 10.1074/jbc.m503079200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The endogenous DNA adduct, M(1)dG, has been shown to arise in vitro in reactions of dG with malondialdehyde (MDA), a product of both lipid peroxidation and 4'-oxidation of deoxyribose in DNA, and with base propenals also derived from deoxyribose 4'-oxidation. We now report the results of cellular studies consistent with base propenals, and not MDA, as the major source of M1dG under biological conditions. As a foundation for cellular studies, M1dG, base propenals, and MDA were quantified in purified DNA treated with oxidizing agents known to produce deoxyribose 4'-oxidation. The results revealed a consistent pattern; Fe2+-EDTA and gamma-radiation generated MDA but not base propenals or M1dG, whereas bleomycin and peroxynitrite (ONOO-) both produced M1dG as well as base propenals with no detectable MDA. These observations were then assessed in Escherichia coli with controlled membrane levels of polyunsaturated fatty acids (PUFA). ONOO- treatment (2 mm) of cells containing no PUFA (defined medium with 18:0/stearic acid) produced 6.5 M1dG/10(7) deoxynucleotides and no detectable lipid peroxidation products, including MDA, as compared with 3.8 M1dG/10(7) deoxynucleotides and 0.07 microg/ml lipid peroxidation products with control cells grown in a mixture of fatty acids (0.5% PUFA) mimicking Luria-Bertani medium. In cells grown with linoleic acid (18:2), the level of PUFA rose to 54% and the level of MDA rose to 0.14 microg/ml, whereas M1dG fell to 1.4/10(7) deoxynucleotides. Parallel studies with gamma-radiation revealed levels of MDA similar to those produced by ONOO- but no detectable M1dG. These results are consistent with base propenals as the major source of M1dG in this model cell system.
Collapse
Affiliation(s)
- Xinfeng Zhou
- Biological Engineering Division and Center for Environmental Health Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
9
|
Chang YY, Cronan JE. Membrane cyclopropane fatty acid content is a major factor in acid resistance of Escherichia coli. Mol Microbiol 1999; 33:249-59. [PMID: 10411742 DOI: 10.1046/j.1365-2958.1999.01456.x] [Citation(s) in RCA: 297] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cyclopropane fatty acid (CFA) formation is a post-synthetic modification of the lipid bilayer that occurs as cultures of Escherichia coli and many other bacteria enter stationary phase. We report the first distinct phenotype for this membrane modification; early stationary phase cultures of strains lacking CFA (as a result of a null mutation in the cfa gene) are abnormally sensitive to killing by a rapid shift from neutral pH to pH 3. This sensitivity to acid shock is dependent on CFA itself because resistance to acid shock is restored to cfa mutant strains by incorporation of CFAs from the growth medium or by introduction of a functional cfa gene on a plasmid. The synthesis of CFA depends in part on the RpoS sigma factor, but the role of RpoS in resistance to acid shock involves additional factors because strains with null mutations in both cfa and rpoS are more sensitive to acid shock than either single mutant strain. Exponential phase cultures of E. coli are much more sensitive to acid shock than stationary phase cultures, but survival is greatly increased if the exponential phase cultures are exposed to moderately acid conditions (pH 5) before shift to pH 3. We show that exposure to moderately acid conditions gives a marked increase in cfa transcription. The efficiency of the survival of acid shock is extremely strain dependent, even among putative wild-type strains. Much, but not all, of this variability can be explained by the partially or totally defective RpoS alleles carried by many strains.
Collapse
Affiliation(s)
- Y Y Chang
- Department of Microbiology, University of Illinois, Urbana 61801, USA
| | | |
Collapse
|
10
|
Barry CE, Lee RE, Mdluli K, Sampson AE, Schroeder BG, Slayden RA, Yuan Y. Mycolic acids: structure, biosynthesis and physiological functions. Prog Lipid Res 1998; 37:143-79. [PMID: 9829124 DOI: 10.1016/s0163-7827(98)00008-3] [Citation(s) in RCA: 388] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- C E Barry
- Tuberculosis Research Section, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT 59840, USA.
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
It has been known for several decades that cyclopropane fatty acids (CFAs) occur in the phospholipids of many species of bacteria. CFAs are formed by the addition of a methylene group, derived from the methyl group of S-adenosylmethionine, across the carbon-carbon double bond of unsaturated fatty acids (UFAs). The C1 transfer does not involve free fatty acids or intermediates of phospholipid biosynthesis but, rather, mature phospholipid molecules already incorporated into membrane bilayers. Furthermore, CFAs are typically produced at the onset of the stationary phase in bacterial cultures. CFA formation can thus be considered a conditional, postsynthetic modification of bacterial membrane lipid bilayers. This modification is noteworthy in several respects. It is catalyzed by a soluble enzyme, although one of the substrates, the UFA double bond, is normally sequestered deep within the hydrophobic interior of the phospholipid bilayer. The enzyme, CFA synthase, discriminates between phospholipid vesicles containing only saturated fatty acids and those containing UFAs; it exhibits no affinity for vesicles of the former composition. These and other properties imply that topologically novel protein-lipid interactions occur in the biosynthesis of CFAs. The timing and extent of the UFA-to-CFA conversion in batch cultures and the widespread distribution of CFA synthesis among bacteria would seem to suggest an important physiological role for this phenomenon, yet its rationale remains unclear despite experimental tests of a variety of hypotheses. Manipulation of the CFA synthase of Escherichia coli by genetic methods has nevertheless provided valuable insight into the physiology of CFA formation. It has identified the CFA synthase gene as one of several rpoS-regulated genes of E. coli and has provided for the construction of strains in which proposed cellular functions of CFAs can be properly evaluated. Cloning and manipulation of the CFA synthase structural gene have also enabled this novel but extremely unstable enzyme to be purified and analyzed in molecular terms and have led to the identification of mechanistically related enzymes in clinically important bacterial pathogens.
Collapse
Affiliation(s)
- D W Grogan
- Department of Biological Sciences, University of Cincinnati, Ohio 45221-0006, USA
| | | |
Collapse
|
12
|
George KM, Yuan Y, Sherman DR, Barry CE. The biosynthesis of cyclopropanated mycolic acids in Mycobacterium tuberculosis. Identification and functional analysis of CMAS-2. J Biol Chem 1995; 270:27292-8. [PMID: 7592990 DOI: 10.1074/jbc.270.45.27292] [Citation(s) in RCA: 142] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The major mycolic acid produced by Mycobacterium tuberculosis contains two cis-cyclopropanes in the meromycolate chain. The gene whose product cyclopropanates the proximal double bond was cloned by homology to a putative cyclopropane synthase identified from the Mycobacterium leprae genome sequencing project. This gene, named cma2, was sequenced and found to be 52% identical to cma1 (which cyclopropanates the distal double bond) and 73% identical to the gene from M. leprae. Both cma genes were found to be restricted in distribution to pathogenic species of mycobacteria. Expression of cma2 in Mycobacterium smegmatis resulted in the cyclopropanation of the proximal double bond in the alpha 1 series of mycolic acids. Coexpression of both cyclopropane synthases resulted in cyclopropanation of both centers, producing a molecule structurally similar to the M. tuberculosis alpha-dicyclopropyl mycolates. Differential scanning calorimetry of purified cell walls and mycolic acids demonstrated that cyclopropanation of the proximal position raised the observed transition temperature by 3 degrees C. These results suggest that cyclopropanation contributes to the structural integrity of the cell wall complex.
Collapse
Affiliation(s)
- K M George
- Laboratory of Intracellular Parasites, NIAID, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana 59840, USA
| | | | | | | |
Collapse
|
13
|
Rabinowitch HD, Sklan D, Chace DH, Stevens RD, Fridovich I. Escherichia coli produces linoleic acid during late stationary phase. J Bacteriol 1993; 175:5324-8. [PMID: 8366020 PMCID: PMC206585 DOI: 10.1128/jb.175.17.5324-5328.1993] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Escherichia coli produces linoleic acid in the late stationary phase. This was the case whether the cultures were grown aerobically or anaerobically on a supplemented glucose-salts medium. The linoleic acid was detected by thin-layer chromatography and was measured as the methyl ester by gas chromatography. The linoleic acid methyl ester was identified by its mass spectrum. Lipids extracted from late-stationary-phase cells generated thiobarbituric acid-reactive carbonyl products when incubated with a free radical initiator. In contrast, extracts from log-phase or early-stationary-phase cells failed to do so, in accordance with the presence of polyunsaturated fatty acid only in the stationary-phase cells.
Collapse
Affiliation(s)
- H D Rabinowitch
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
| | | | | | | | | |
Collapse
|
14
|
Abstract
Oxidative stress is strongly implicated in a number of diseases, such as rheumatoid arthritis, inflammatory bowel disorders, and atherosclerosis, and its emerging as one of the most important causative agents of mutagenesis, tumorigenesis, and aging. Recent progress on the genetics and molecular biology of the cellular responses to oxidative stress, primarily in Escherichia coli and Salmonella typhimurium, is summarized. Bacteria respond to oxidative stress by invoking two distinct stress responses, the peroxide stimulon and the superoxide stimulon, depending on whether the stress is mediated by peroxides or the superoxide anion. The two stimulons each contain a set of more than 30 genes. The expression of a subset of genes in each stimulon is under the control of a positive regulatory element; these genes constitute the OxyR and SoxRS regulons. The schemes of regulation of the two regulons by their respective regulators are reviewed in detail, and the overlaps of these regulons with other stress responses such as the heat shock and SOS responses are discussed. The products of Oxy-R- and SoxRS-regulated genes, such as catalases and superoxide dismutases, are involved in the prevention of oxidative damage, whereas others, such as endonuclease IV, play a role in the repair of oxidative damage. The potential roles of these and other gene products in the defense against oxidative damage in DNA, proteins, and membranes are discussed in detail. A brief discussion of the similarities and differences between oxidative stress responses in bacteria and eukaryotic organisms concludes this review.
Collapse
Affiliation(s)
- S B Farr
- Department of Molecular and Cellular Toxicology, Harvard School of Public Health, Boston, Massachusetts 02115
| | | |
Collapse
|
15
|
Massa EM, López Vińals A, Farías RN. Influence of unsaturated fatty acid membrane component on sensitivity of an Escherichia coli fatty acid auxotroph to conditions of nutrient depletion. Appl Environ Microbiol 1988; 54:2107-11. [PMID: 3052298 PMCID: PMC202811 DOI: 10.1128/aem.54.8.2107-2111.1988] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The unsaturated fatty acid auxotroph Escherichia coli AK7 was provided with either oleic acid (cis 18:1) or linolenic acid (cis 18:3) to vary the degree of unsaturation of cell membrane lipids. The susceptibility of oleic acid- and linolenic acid-grown cells to starvation at 37 degrees C in 154 mM NaCl was compared following the decline in the number of CFU by plating the cells on agar medium. The decline in CFU was faster for linolenic acid-than for oleic acid-grown cells, but it was not indicative of cell death, since culturable CFU was recovered after respirable substrate was added to the starved cell suspension. Cell envelope microviscosity (determined by fluorescence polarization) of oleic acid- and linolenic acid-grown cells was equal in the presence of a respirable substrate, but in its absence the microviscosity of linolenic acid-grown cells was lower than that of oleic acid-grown cells. The results suggest that cell envelope microviscosity is an important factor in determining the sensitivity of E. coli to conditions of nutrient depletion.
Collapse
Affiliation(s)
- E M Massa
- Departamento de Bioquímica de la Nutrición, Instituto Superior de Investigaciones Biológicas, San Miguel de Tucumán, Argentina
| | | | | |
Collapse
|
16
|
Grogan DW, Cronan JE. Characterization of Escherichia coli mutants completely defective in synthesis of cyclopropane fatty acids. J Bacteriol 1986; 166:872-7. [PMID: 3519583 PMCID: PMC215207 DOI: 10.1128/jb.166.3.872-877.1986] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The synthesis of cyclopropane fatty acids (CFA) in bacteria represents a biochemically and physiologically unique membrane modification whose importance for the cell remains unknown, despite extensive study of a Cfa- mutant of Escherichia coli and of the cloned cfa gene. Recently we reported the isolation of new Cfa- mutants (D. W. Grogan and J. E. Cronan, Jr., Mol. Gen. Genet. 196:367-372, 1984). Molecular-genetic and biochemical analysis indicated that these were null mutants of the E. coli cfa locus which were formed by inversions of a chromosomal segment. Isogenic Cfa+ and Cfa- strains were constructed from one such mutant and subjected to various stress conditions. In nearly all cases, both strains responded equally, but certain treatments, such as repeated freezing and thawing, favored the survival of Cfa+ strains over Cfa- strains. Though not essential, CFA thus appeared to play some beneficial role (or roles) in the bacterial cell.
Collapse
|
17
|
Farr SB, Natvig DO, Kogoma T. Toxicity and mutagenicity of plumbagin and the induction of a possible new DNA repair pathway in Escherichia coli. J Bacteriol 1985; 164:1309-16. [PMID: 2933393 PMCID: PMC219331 DOI: 10.1128/jb.164.3.1309-1316.1985] [Citation(s) in RCA: 70] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Actively growing Escherichia coli cells exposed to plumbagin, a redox cycling quinone that increases the flux of O2- radicals in the cell, were mutagenized or killed by this treatment. The toxicity of plumbagin was not found to be mediated by membrane damage. Cells pretreated with plumbagin could partially reactivate lambda phage damaged by exposure to riboflavin plus light, a treatment that produces active oxygen species. The result suggested the induction of a DNA repair response. Lambda phage damaged by H2O2 treatment were not reactivated in plumbagin-pretreated cells, nor did H2O2-pretreated cells reactivate lambda damaged by treatment with riboflavin plus light. Plumbagin treatment did not induce lambda phage in a lysogen, nor did it cause an increase in beta-galactosidase production in a dinD::Mu d(lac Ap) promoter fusion strain. Cells pretreated with nonlethal doses of plumbagin showed enhanced survival upon exposure to high concentrations of plumbagin, but were unchanged in their susceptibility to far-UV irradiation. polA and recA mutants were not significantly more sensitive than wild type to killing by plumbagin. However, xth-1 mutants were partially resistant to plumbagin toxicity. It is proposed that E. coli has an inducible DNA repair response specific for the type of oxidative damage generated during incubation with plumbagin. Furthermore, this response appears to be qualitatively distinct from the SOS response and the repair response induced by H2O2.
Collapse
|
18
|
Goldfine H. Modulation of polar lipid composition by aliphatic chain unsaturation in bacteria. CURRENT TOPICS IN CELLULAR REGULATION 1985; 26:163-74. [PMID: 4075820 DOI: 10.1016/b978-0-12-152826-3.50020-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
19
|
Steiner B, Wong GH, Graves S. Susceptibility of Treponema pallidum to the toxic products of oxygen reduction and the non-treponemal nature of its catalase. Br J Vener Dis 1984; 60:14-22. [PMID: 6421449 PMCID: PMC1046263 DOI: 10.1136/sti.60.1.14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We examined the sensitivity of Treponema pallidum (Nichols strain) to toxic products of oxygen reduction. T pallidum was sensitive to hydrogen peroxide at concentrations similar to those to which obligate anaerobes are sensitive. Accelerated death of T pallidum occurred at hydrogen peroxide concentrations below 50 mumol/l. Agents protective against hydrogen peroxide and the hydroxyl free radical (catalase, peroxidase, and mannitol) significantly enhanced treponemal survival in vitro under all three conditions of aerobiosis tested--that is, air, 3% oxygen, and 3% oxygen in conjunction with a reduced medium. Superoxide dismutase (which provides protection against superoxide radicals) did not enhance treponemal survival in normal media. When superoxide radicals were generated in the medium by means of a xanthine and xanthine oxidase system, however, the enzyme did protect T pallidum. A possible toxic involvement of singlet oxygen was also indicated by enhanced treponemal survival in air in the presence of histidine. Extracts of T pallidum from infected rabbit testes showed catalase activity which, on polyacrylamide gel electrophoresis, had the same relative mobility as purified rabbit catalase. The treponemal catalase activity was neutralised by anti rabbit catalase antiserum (raised in guinea pigs). This confirmed that the catalase was of rabbit origin and not an endogenous enzyme of T pallidum. We discuss the relation of these results to the obligate parasitism of T pallidum.
Collapse
|
20
|
Ohlrogge JB, Kernan TP. Toxicity of activated oxygen: lack of dependence on membrane unsaturated fatty acid composition. Biochem Biophys Res Commun 1983; 113:301-8. [PMID: 6344868 DOI: 10.1016/0006-291x(83)90466-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Membrane unsaturated fatty acid oxidation has been suggested as a mechanism of toxicity for a variety of activated oxygen species. We have tested this hypothesis by manipulating the fatty acid composition of an Escherichia coli mutant that is unable to synthesize unsaturated fatty acids. To provide a wide range of susceptibility to membrane oxidation we have replaced the naturally occurring monoenoic acyl chains with cyclopropanes to greatly reduce the unsaturation level and with linoleate to increase the membrane unsaturation. These cultures were treated with ozone, hydrogen peroxide, singlet oxygen and paraquat. In no case was there substantial protection from toxicity afforded by cyclopropanes nor was there enhancement of toxicity to cells with the polyunsaturated membranes. We suggest, therefore, that oxidation of membrane unsaturated fatty acids is not an essential component of the toxicity to E. coli of active oxygen species.
Collapse
|
21
|
|
22
|
|
23
|
Silvius JR, McElhaney R. Effects of phospholipid acylchain structure on thermotropic phase properties. 2: Phosphatidylcholines with unsaturated or cyclopropane acyl chains. Chem Phys Lipids 1979. [DOI: 10.1016/0009-3084(79)90062-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Su CJ, Reusch R, Sadoff HL. Fatty acids in phospholipids of cells, cysts, and germinating cysts of Azotobacter vinelandii. J Bacteriol 1979; 137:1434-6. [PMID: 438125 PMCID: PMC218332 DOI: 10.1128/jb.137.3.1434-1436.1979] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cyclopropane fatty acids constitute 25% of the phospholipid acyl groups in cysts of Azotobacter vinelandii. These are lost by dilution during germination when the synthesis of the fatty acids characteristic of vegetative cell phospholipids commences.
Collapse
|