1
|
Kanashiro AM, Akiyama DY, Kupper KC, Fill TP. Penicillium italicum: An Underexplored Postharvest Pathogen. Front Microbiol 2020; 11:606852. [PMID: 33343551 PMCID: PMC7746842 DOI: 10.3389/fmicb.2020.606852] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/06/2020] [Indexed: 11/13/2022] Open
Abstract
In the agricultural sector, citrus is one of the most important fruit genus in the world. In this scenario, Brazil is the largest producer of oranges; 34% of the global production, and exporter of concentrated orange juice; 76% of the juice consumed in the planet, summing up US$ 6.5 billion to Brazilian GDP. However, the orange production has been considerable decreasing due to unfavorable weather conditions in recent years and the increasing number of pathogen infections. One of the main citrus post-harvest phytopathogen is Penicillium italicum, responsible for the blue mold disease, which is currently controlled by pesticides, such as Imazalil, Pyrimethanil, Fludioxonil, and Tiabendazole, which are toxic chemicals harmful to the environment and also to human health. In addition, P. italicum has developed considerable resistance to these chemicals as a result of widespread applications. To address this growing problem, the search for new control methods of citrus post-harvest phytopathogens is being extensively explored, resulting in promising new approaches such as biocontrol methods as “killer” yeasts, application of essential oils, and antimicrobial volatile substances. The alternative methodologies to control P. italicum are reviewed here, as well as the fungal virulence factors and infection strategies. Therefore, this review will focus on a general overview of recent research carried out regarding the phytopathological interaction of P. italicum and its citrus host.
Collapse
Affiliation(s)
| | | | - Katia Cristina Kupper
- Advanced Citrus Research Center, Sylvio Moreira/Campinas Agronomic Institute, São Paulo, Brazil
| | | |
Collapse
|
2
|
Abdeljalil S, Ben Hmad I, Saibi W, Amouri B, Maalej W, Kaaniche M, Koubaa A, Gargouri A. Investigations on hydrolytic activities from Stachybotrys microspora and their use as an alternative in yeast DNA extraction. Appl Biochem Biotechnol 2013; 172:1599-611. [PMID: 24241970 DOI: 10.1007/s12010-013-0608-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 10/23/2013] [Indexed: 10/26/2022]
Abstract
Stachybotrys microspora is a filamentous fungus characterized by the secretion of multiple hydrolytic activities (cellulolytic and non-cellulolytic enzymes). The production of these biocatalysts was studied under submerged culture using glucose, cellulose, and wheat bran as carbon sources. Endoglucanases, pectinases, xylanases, β-glucanases, chitinases, and proteases were induced on cellulose-based medium and repressed on glucose in both strains with higher amounts produced by the mutant. β-glucosidases were roughly equally produced by both strains under glucose and cellulose conditions. The yield of chitinases, β-glucanases, and proteases produced by Stachybotrys strains was as much higher than the commercialized lysing enzyme called "zymolyase," currently used in yeast DNA extraction. In this context, we showed that S. microspora hydrolases can be successfully applied in the extraction of yeast DNA.
Collapse
Affiliation(s)
- Salma Abdeljalil
- Laboratoire de Valorisation de la Biomasse et Production de Protéines chez les Eucaryotes Centre de Biotechnologie de Sfax, University of Sfax, Route Sidi Mansour, BP 1177, 3018, Sfax, Tunisia,
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Szilágyi M, Kwon NJ, Dorogi C, Pócsi I, Yu JH, Emri T. The extracellular β-1,3-endoglucanase EngA is involved in autolysis of Aspergillus nidulans. J Appl Microbiol 2010; 109:1498-508. [PMID: 20602653 DOI: 10.1111/j.1365-2672.2010.04782.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS To elucidate the roles of the β-1,3-endoglucanase EngA in autolysis of the filamentous fungus Aspergillus nidulans and to identify the common regulatory elements of autolytic hydrolases. METHODS AND RESULTS A β-1,3-endoglucanase was purified from carbon-starving cultures of A. nidulans. This enzyme is found to be encoded by the engA gene (locus ID: AN0472.3). Functional and gene-expression studies demonstrated that EngA is involved in the autolytic cell wall degradation resulting from carbon starvation of the fungus. Moreover, regulation of engA is found to be dependent on the FluG/BrlA asexual sporulation signalling pathway in submerged culture. The deletion of either engA or chiB (encoding an endochitinase) caused highly reduced production of hydrolases in general. CONCLUSIONS The β-1,3-endoglucanase EngA plays a pivotal role in fungal autolysis, and activities of both EngA and ChiB are necessary to orchestrate the expression of autolytic hydrolases. The production of cell wall-degrading enzymes was coordinately controlled in a highly sophisticated and complex manner. SIGNIFICANCE AND IMPACT OF THE STUDY No information was available on the autolytic glucanase(s) of the euascomycete A. nidulans. This study demonstrates that EngA is a key element in fungal autolysis, and normal activities of both EngA and ChiB are crucial for balanced production of hydrolases.
Collapse
Affiliation(s)
- M Szilágyi
- Department of Microbial Biotechnology and Cell Biology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | | | | | | | | | | |
Collapse
|
4
|
Intracellular and cell wall associated β-glucanases and β-glucosidases of Acremonium persicinum. ACTA ACUST UNITED AC 1999. [DOI: 10.1017/s0953756299008370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Pitson SM, Seviour RJ, McDougall BM. Effect of carbon source on extracellular (1 → 3)- and (1 → 6)-β-glucanase production by Acremonium persicinum. Can J Microbiol 1997. [DOI: 10.1139/m97-061] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect of carbon source on the levels of three (1 → 3)-β-glucanases and a (1 → 6)-β-glucanase in the culture filtrates of the filamentous fungus Acremonium persicinum was investigated. All four enzymes were produced during growth of the fungus on (1 → 3)-, (1 → 6)-, and (1 → 3)(1 → 6)-β-glucans as well as β-linked oligoglucosides. However, only one (1 → 3)-β-glucanase and the (1 → 6)-β-glucanase were detected during growth on a range of other carbon sources including glucose, carboxymethylcellulose, and the α-glucan pullulan. The presence of glucose in the medium markedly decreased the production of all four glucanases, although the concentration required to effect complete repression of enzyme levels varied for the different enzymes. Similar repressive effects were also observed with sucrose, fructose, and galactose. The most likely explanations for these observations are that the synthesis of the (1 → 6)-β-glucanase and one of the (1 → 3)-β-glucanases is controlled by carbon catabolite repression, while the remaining two (1 → 3)-β-glucanases are inducible enzymes subject to carbon catabolite repression.Key words: (1 → 3)-β-glucanase, (1 → 6)-β-glucanase, Acremonium persicinum, regulation of synthesis, fungal β-glucanases.
Collapse
|
6
|
Fontaine T, Hartland RP, Diaquin M, Simenel C, Latgé JP. Differential patterns of activity displayed by two exo-beta-1,3-glucanases associated with the Aspergillus fumigatus cell wall. J Bacteriol 1997; 179:3154-63. [PMID: 9150209 PMCID: PMC179092 DOI: 10.1128/jb.179.10.3154-3163.1997] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Two exo-beta-1,3-glucanases (herein designated exoG-I and exoG-II) were isolated from the cell wall autolysate of the filamentous fungus Aspergillus fumigatus and purified by ion-exchange, hydrophobic-interaction, and gel filtration chromatographies. Molecular masses estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration chromatography were 82 kDa for the monomeric exoG-I and 230 kDa for the dimeric exoG-II. exoG-I and exoG-II were glycosylated, and N glycans accounted, respectively, for 2 and 44 kDa. Their pH optimum is 5.0. Their optimum temperatures are 55 degrees C for exoG-I and 65 degrees C for exoG-II. By a sensitive colorimetric method and high-performance anion-exchange chromatography for product analysis, two patterns of exo-beta-1,3-glucanase activities were found. The 230-kDa exoG-II enzyme acts on p-nitrophenyl-beta-D-glucoside, beta-1,6-glucan, and beta-1,3-glucan. This activity, which retains the anomeric configuration of glucose released, presented a multichain pattern of attack of the glucan chains and a decrease in the maximum initial velocity (Vm) with the increasing size of the substrate. In contrast, the 82-kDa exoG-I, which inverts the anomeric configuration of the glucose released, hydrolyzed exclusively the beta-1,3-glucan chain with a minimal substrate size of 4 glucose residues. This enzyme presented a repetitive-attack pattern, characterized by an increase in Vm with an increase in substrate size and by a degradation of the glucan chain until it reached laminaritetraose, the limit substrate size. The 82-kDa exoG-I and 230-kDa exoG-II enzymes correspond to a beta-1,3-glucan-glucohydrolase (EC 3.2.1.58) and to a beta-D-glucoside-glucohydrolase (EC 3.2.1.21), respectively. The occurrence and functions of these two classes of exo-beta-1,3-glucanases in other fungal species are discussed.
Collapse
Affiliation(s)
- T Fontaine
- Laboratoire des Aspergillus, Institut Pasteur, Paris, France.
| | | | | | | | | |
Collapse
|
7
|
Pitson SM, Seviour RJ, McDougall BM, Woodward JR, Stone BA. Purification and characterization of three extracellular (1-->3)-beta-D-glucan glucohydrolases from the filamentous fungus Acremonium persicinum. Biochem J 1995; 308 ( Pt 3):733-41. [PMID: 8948426 PMCID: PMC1136786 DOI: 10.1042/bj3080733] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Three (1-->3)-beta-D-glucanases (GNs) were isolated from the culture filtrates of the filamentous fungus Acremonium persicinum and purified by (NH4)2SO4 precipitation followed by anion-exchange and gel-filtration chromatography. Homogeneity of the purified proteins was confirmed by SDS/PAGE, isoelectric focusing and N-terminal amino acid sequencing. All three GNs (GN I, II and III) are non-glycosylated, monomeric proteins with apparent molecular masses, estimated by SDS/PAGE, of 81, 85 and 89 kDa respectively. pI values for the three enzymes are 5.3, 5.1, and 4.4 respectively. The pH optimum for GN I is 6.5, and 5.0 for GN II and III. All three purified enzymes displayed stability over the pH range 4.5-10.0. Optimum activities for GN I, II and III were recorded at 65, 55 and 60 degrees C respectively, with both GN II and III having short-term stability up to 50 degrees C and GN I up to 55 degrees C. The purified GNs have high specificity for (1-->3)-beta-linkages and hydrolysed a range of (1-->3)-beta- and (1-->3)(1-->6)-beta-D-glucans, with laminarin from Laminaria digitata being the most rapidly hydrolysed substrate of those tested. K(m) values for GN I, II, and III against L. digitata laminarin were 0.1, 0.23 and 0.22 mg/ml respectively. D-Glucono-1,5-lactone does not inhibit any of the three GNs, some metals ions are mild inhibitors, and N-bromosuccinimide and KMnO4 are strong inhibitors. All three GNs acted in an exo-hydrolytic manner, determined by the release of alpha-glucose as the initial and major product of hydrolysis of (1-->3)-beta-D-glucans, and confirmed by viscometric analysis and the inability to cleave periodate-oxidized laminarin, and may be classified as (1-->3)-beta-D-glucan glucohydrolases (EC 3.2.1.58).
Collapse
Affiliation(s)
- S M Pitson
- Biotechnology Research Centre, La Trobe University, Bendigo, Victoria, Australia
| | | | | | | | | |
Collapse
|
8
|
Gaikwad JS, Maheshwari R. Localization and release of β-glucosidase in the thermophilic and cellulolytic fungus, Sporotrichum thermophile. ACTA ACUST UNITED AC 1994. [DOI: 10.1016/s0147-5975(06)80003-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Menezes JC, Alves SS, Lemos JM, de Azevedo SF. Mathematical modelling of industrial pilot-plant penicillin-G fed-batch fermentations. JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY (OXFORD, OXFORDSHIRE : 1986) 1994; 61:123-138. [PMID: 7765415 DOI: 10.1002/jctb.280610207] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Penicillin-G fermentation with industrial media in 1 m3 stirred tank bioreactors was studied. A model based on the Bajpai-Reuss model structure was developed. Under typical production conditions catabolite repression is nonidentifiable and extensive mycelium differentiation occurs. Thus, the original model was reformulated, neglecting glucose repression of penicillin production and including biomass autolysis. The multi-substrate nature of industrial media was critically analysed. By combining the two most important carbon substrates present, a simple and applicable model was obtained. Model predictions agreed well with experimental data and reproduced the general characteristics observed in the fermentations. The predictive power of the model was tested for fermentations with different sugar feed rate profiles and raw materials (corn-steep liquor and sugar syrup). Several aspects of parameter estimation and model development are discussed on the basis of direct experimental data inspection and a sensitivity analysis of model parameters.
Collapse
Affiliation(s)
- J C Menezes
- Department of Chemical Engineering, Technical University of Lisbon, Portugal
| | | | | | | |
Collapse
|
10
|
Carbon source control on β-glucanases, chitobiase and chitinase from Trichoderma harzianum. Arch Microbiol 1993. [DOI: 10.1007/bf00290913] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Pitson SM, Seviour RJ, McDougall BM. Noncellulolytic fungal beta-glucanases: their physiology and regulation. Enzyme Microb Technol 1993; 15:178-92. [PMID: 7763458 DOI: 10.1016/0141-0229(93)90136-p] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The occurrence, regulation, and action of fungal enzymes capable of degrading noncellulosic beta-glucans, especially 1,3-beta- and 1,6-beta-glucans, are reviewed. Special consideration is given to their roles in both metabolic and morphogenetic events in the fungal cell, including cell wall extension, hyphal branching, sporulation, budding, and autolysis. Also examined are the protocols currently available for their purification, with some of the properties of purified beta-glucanases discussed in terms of their potential applications in industrial, agricultural, and medical fields.
Collapse
Affiliation(s)
- S M Pitson
- Biotechnology Research Centre, La Trobe University College of Northern Victoria, Bendigo, Australia
| | | | | |
Collapse
|
12
|
Rapp P. Formation, separation and characterization of three beta-1,3-glucanases from Sclerotium glucanicum. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1117:7-14. [PMID: 1627595 DOI: 10.1016/0304-4165(92)90155-n] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The appearance of beta-1,3-glucanases in supernatants of Sclerotium glucanicum cultures was followed by SDS-PAGE and shown to be dependent on cultivation time. Three beta-1,3-glucanases were isolated and purified. Glucanase I and III appeared homogeneous on SDS-PAGE with molecular masses of 85 and 33.5 kDa, respectively. Enzyme I was an endo-splitting beta-1,3-glucanase. In hydrolyzing laminarin it released glucose, laminaritriose and laminaribiose as major endproducts and smaller amounts of higher oligosaccharides. Enzyme III was an exo-beta-1,3-glucanase removing glucose from laminarin and gentiobiose and glucose from scleroglucan. For laminarin as substrate the Km of enzyme I and III was 2.5 and 3.33 mg/ml, respectively. Enzyme II was only partially purified and found to be also an exo-beta-1,3-glucanase, releasing glucose as the only hydrolysis product from laminarin. It did not attack scleroglucan. Its molecular weight was determined to be 78 kDa. Optimum pH and temperature of the three enzymes were determined. The three activities were significantly inhibited by 1 mM Hg2+.
Collapse
Affiliation(s)
- P Rapp
- Institut für Biochemie und Biotechnologie, Technischen Universität Braunschweig, Germany
| |
Collapse
|
13
|
Pitson S, Seviour R, Bott J, Stasinopoulos S. Production and regulation of β-glucanases in Acremonium and Cephalosporium isolates. ACTA ACUST UNITED AC 1991. [DOI: 10.1016/s0953-7562(09)81247-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Copa-Patiño JL, Rodríguez J, Reyes F, Pérez-Leblic MI. Effect of beta-glucanases on Penicillium oxalicum cell wall fractions. FEMS Microbiol Lett 1990; 58:233-9. [PMID: 2121589 DOI: 10.1111/j.1574-6968.1990.tb13984.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The polysaccharidic effect of a purified 1,3-beta-glucanase, a purified beta-glucosidase, and of partially purified endo-1,3-beta-glucanase from autolysed Penicillium oxalicum cultures on cell wall isolate fractions from the same fungus were studied. Fractionation of 5-day-old cell wall gave rise to a series of fractions that were identified using infrared spectrophotometry. The fractions used were: F1, an alpha-glucan; F3, a beta-glucan; F4, a chitin-glucan; and F4b, a beta-glucan. The fractions were incubated with each of the enzymes and with a mixture of equal parts of the three enzymes and the products of the enzymatic hydrolysis were analyzed after 96 h incubation. The enzymes were found to degrade fraction F4b (beta-glucan); the greatest degree of hydrolysis was reached when the three enzymes were used together, suggesting the need for synergic action by these enzymes in the cell wall degradation process.
Collapse
Affiliation(s)
- J L Copa-Patiño
- Departamento de Microbiología y Parasitología, Universidad Alcalá de Henares, Madrid, Spain
| | | | | | | |
Collapse
|
15
|
Lahoz R, Reyes F, Alarcón G, Cribeiro L, Lahoz-Beltrá R. Behaviour of the cell walls ofAspergillus nigerduring the autolytic phase of growth. FEMS Microbiol Lett 1986. [DOI: 10.1111/j.1574-6968.1986.tb01707.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
16
|
Choline stimulates synthesis of extracellular proteins in Trichoderma reesei QM 9414. Arch Microbiol 1986. [DOI: 10.1007/bf00454954] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Kamada T, Fujii T, Nakagawa T, Takemaru T. Changes in (1→3)-β-glucanase activities during stipe elongation inCoprinus cinereus. Curr Microbiol 1985. [DOI: 10.1007/bf01567974] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Sandhu DK, Sidhu MS. Production, localization and glucose repression of beta-glucosidase in Trichoderma longibrachiatum. J Basic Microbiol 1985; 25:591-8. [PMID: 3936918 DOI: 10.1002/jobm.3620250908] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Optimal production of beta-glucosidase was obtained by incubating the culture at 27 degrees C in a growth medium that had an initial pH of 5.0 and contained cellobiose. The bulk of the enzyme (70%) was present in a cell-associated state (cell debris and cytosol) while only a small portion (30%) appeared in the culture filtrate. When cellulosic substrates were used, the major portion of the enzyme (70%) appeared in the extracellular fraction. A repression of the enzyme occurred in the presence of glucose. A drop of the pH of the medium during the exponential growth phase coincided with a rapid inactivation of the enzyme. The glucose effect was most likely mediated by adverse effects of low pH on the integrity of the enzyme.
Collapse
|
19
|
Reichelt BY, Fleet GH. Isolation, properties, function, and regulation of endo-(1 leads to 3)-beta-glucanases in Schizosaccharomyces pombe. J Bacteriol 1981; 147:1085-94. [PMID: 7275933 PMCID: PMC216149 DOI: 10.1128/jb.147.3.1085-1094.1981] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Cell-free extracts, membranous fractions, and cell wall preparations from Schizosaccharomyces pombe were examined for the presence of (1 --> 3)-beta-, (1 --> 3)-alpha-, and (1 --> 6)-beta-glucanase activities. The various glucanases were assayed in cells at different growth stages. Only (1 --> 3)-beta-glucanase activity was found, and this was associated with the cell wall fraction. Chromatographic fractionation of the crude enzyme revealed two endo-(1 --> 3)-beta-glucanases, designated as glucanase I and glucanase II. Glucanase I consisted of two subunits of molecular weights 78,500 and 82,000, and glucanase II was a single polypeptide of 75,000. Although both enzymes had similar substrate specificities and similar hydrolytic action on laminarin, glucanase II had much higher hydrolytic activity on isolated cell walls of S. pombe. On the basis of differential lytic activity on cell walls, glucanase II was shown to be present in conjugating cells and highest in sporulating cells. Glucanase II appeared to be specifically involved in conjugation and sporulation since vegetative cells and nonconjugating and nonsporulating cells did not contain this enzyme. The appearance of glucanase II in conjugating cells may be due to de novo enzyme synthesis since no activation could be demonstrated by combining extracts from vegetative and conjugating cells. Increased glucanase activity occurred when walls from conjugating cells were combined with walls from sporulating cells. Studies with trypsin and proteolytic inhibitors suggest that glucanase II exists as a zymogen in conjugating cells. A temperature-sensitive mutant of S. pombe was isolated which lysed at 37 degrees C. Glucanase activity was higher in vegetative cells held at 37 degrees C than cells held at 25 degrees C. Unlike the wild-type strain, this mutant contained glucanase II activity during vegetative growth and may be a regulatory mutant.
Collapse
|
20
|
Catley BJ, Hutchison A. Elaboration of pullulan by spheroplasts of Aureobasidium pullulans. ACTA ACUST UNITED AC 1981. [DOI: 10.1016/s0007-1536(81)80073-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|