1
|
Lengeler J, Vogler A. Molecular mechanisms of bacterial chemotaxis towards PTS-carbohydrates. FEMS Microbiol Lett 2013. [DOI: 10.1111/j.1574-6968.1989.tb14103.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
2
|
Aboulwafa M, Saier MH. In vitro interconversion of the soluble and membrane- integrated forms of the Escherichia coli glucose enzyme II of the phosphoenolpyruvate-dependent sugar-transporting phosphotransferase system. J Mol Microbiol Biotechnol 2007; 12:263-8. [PMID: 17587874 DOI: 10.1159/000099647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In previous publications, we have shown that integral membrane sugar permeases of the bacterial phosphotransferase system can exist in a 'soluble' (probably micellar) monomeric form (SII) as well as a membrane-integrated dimeric form (MII). We here show that the two forms of the his-tagged glucose permease of Escherichia coli can be interconverted in vitro. Conversion of MII to SII is promoted by (1) low protein concentration, (2) detergent, (3) high pH, and (4) phospholipase A(2) treatment. Conversion of SII to MII is promoted by: (1) high protein concentration, (2) adherence to and elution from an Ni(2+) column, (3) neutral pH, and (4) incorporation into phospholipid liposomes.
Collapse
Affiliation(s)
- Mohammad Aboulwafa
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | | |
Collapse
|
3
|
Aboulwafa M, Saier MH. Characterization of soluble enzyme II complexes of the Escherichia coli phosphotransferase system. J Bacteriol 2005; 186:8453-62. [PMID: 15576795 PMCID: PMC532404 DOI: 10.1128/jb.186.24.8453-8462.2004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasmid-encoded His-tagged glucose permease of Escherichia coli, the enzyme IIBCGlc (IIGlc), exists in two physical forms, a membrane-integrated oligomeric form and a soluble monomeric form, which separate from each other on a gel filtration column (peaks 1 and 2, respectively). Western blot analyses using anti-His tag monoclonal antibodies revealed that although IIGlc from the two fractions migrated similarly in sodium dodecyl sulfate gels, the two fractions migrated differently on native gels both before and after Triton X-100 treatment. Peak 1 IIGlc migrated much more slowly than peak 2 IIGlc. Both preparations exhibited both phosphoenolpyruvate-dependent sugar phosphorylation activity and sugar phosphate-dependent sugar transphosphorylation activity. The kinetics of the transphosphorylation reaction catalyzed by the two IIGlc fractions were different: peak 1 activity was subject to substrate inhibition, while peak 2 activity was not. Moreover, the pH optima for the phosphoenolpyruvate-dependent activities differed for the two fractions. The results provide direct evidence that the two forms of IIGlc differ with respect to their physical states and their catalytic activities. These general conclusions appear to be applicable to the His-tagged mannose permease of E. coli. Thus, both phosphoenolpyruvate-dependent phosphotransferase system enzymes exist in soluble and membrane-integrated forms that exhibit dissimilar physical and kinetic properties.
Collapse
Affiliation(s)
- Mohammad Aboulwafa
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | | |
Collapse
|
4
|
Aboulwafa M, Saier MH. Soluble sugar permeases of the phosphotransferase system in Escherichia coli: evidence for two physically distinct forms of the proteins in vivo. Mol Microbiol 2003; 48:131-41. [PMID: 12657050 DOI: 10.1046/j.1365-2958.2003.03394.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The bacterial phosphoenolpyruvate-dependent phosphotransferase system (PTS) consists of a set of cytoplasmic energy-coupling proteins and various integral membrane permeases/sugar phosphotransferases, each specific for a different sugar. We have conducted biochemical analyses of three PTS permeases (enzymes II), the glucose permease (IIGlc), the mannitol permease (IIMtl) and the mannose permease (IIMan). These enzymes each catalyse two vectorial/chemical reactions, sugar phosphorylation using phosphoenolpyruvate (PEP) as the phosphoryl donor, dependent on enzyme I, HPr and IIA as well as IIBC (the PEP reaction), and transphosphorylation using a sugar phosphate (glucose-6-P for IIGlc and IIMan; mannitol-1-P for IIMtl) as the phosphoryl donor, dependent only on IIBC (the TP reaction). When crude extracts of French-pressed or osmotically shocked Escherichia coli cells are centrifuged in an ultracentrifuge at high speed, 5-20% of the enzyme II activity remains in the high-speed supernatant, and passage through a gel filtration column gives two activity peaks, one in the void volume exhibiting high PEP-dependent and TP activities, and a second included peak with high PEP-dependent activity and high (IIMan), moderate (IIGlc) or negligible (IIMtl) TP activities. Both log and stationary phase cells exhibit comparable relative amounts of pelletable and soluble enzyme II activities, but long-term exposure of cells to chloramphenicol results in selective loss of the soluble fraction with retention of much of the pelleted activity concomitant with extensive protein degradation. Short-term exposure of cells to chloramphenicol results in increased activities in both fractions, possibly because of increased lipid association, with more activation in the soluble fraction than in the pelleted fraction. Western blot analyses show that the soluble IIGlc exhibits a subunit size of about 45 kDa, and all three soluble enzymes II elute from the gel filtration column with apparent molecular weights of 40-50 kDa. We propose that enzymes II of the PTS exist in two physically distinct forms in the E. coli cell, one tightly integrated into the membrane and one either soluble or loosely associated with the membrane. We also propose that the membrane-integrated enzymes II are largely dimeric, whereas the soluble enzymes II, retarded during passage through a gel filtration column, are largely monomeric.
Collapse
Affiliation(s)
- Mohammad Aboulwafa
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | | |
Collapse
|
5
|
Aboulwafa M, Saier MH. Dependency of sugar transport and phosphorylation by the phosphoenolpyruvate-dependent phosphotransferase system on membranous phosphatidyl glycerol in Escherichia coli: studies with a pgsA mutant lacking phosphatidyl glycerophosphate synthase. Res Microbiol 2002; 153:667-77. [PMID: 12558186 DOI: 10.1016/s0923-2508(02)01376-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
It has been reported that phosphatidyl glycerol (PG) is specifically required for the in vitro activities of the hexose-phosphorylating Enzymes II of the Escherichia coli phosphoenolpyruvate-dependent sugar transporting phosphotransferase system (PTS). We have examined this possibility by measuring the properties of a null pgsA mutant that lacks detectable PG. The mutant showed lower in vitro phosphorylation activities towards several sugars when both PEP-dependent and sugar-phosphate-dependent [14C]sugar phosphorylation reactions were measured. The order of dependency on PG for the different enzymes II was: IIMannose > IIGlucose > IIFructose > IIMannitol. Nonsedimentable (40000 rpm for 2 h) Enzymes II exhibited a greater dependency on PG than pelletable Enzymes II. Western blot analyses showed that the glucose Enzyme II is present in normal amounts. Transport and fermentation measurements revealed diminished activities for all Enzymes II. Thermal stability of all of these enzymes except the mannitol-specific Enzyme II was significantly decreased by the pgsA mutation, and sensitivity to detergent treatments was enhanced. Sugar transport proved to be the most sensitive indicator of proper Enzyme II-phospholipid association. Our results show that PG stimulates but is not required for Enzyme II function in E. coli.
Collapse
Affiliation(s)
- Mohammad Aboulwafa
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | | |
Collapse
|
6
|
Abstract
The mannitol operon of Escherichia coli, encoding the mannitol-specific enzyme II of the phosphotransferase system (Mt1A) and mannitol phosphate dehydrogenase (Mt1D), is here shown to contain a single additional downstream open reading frame which encodes the mannitol repressor (Mt1R). Mt1R contains 195 amino acids and has a calculated molecular weight of 21,990 and a calculated pI of 4.5. It is homologous to the product of an open reading frame (URF2D) upstream of the E. coli gapB gene but represents a novel type of transcriptional regulatory protein.
Collapse
Affiliation(s)
- R M Figge
- Department of Biology, University of California at San Diego, La Jolla 92093-0116
| | | | | |
Collapse
|
7
|
Postma PW, Lengeler JW, Jacobson GR. Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 1993; 57:543-94. [PMID: 8246840 PMCID: PMC372926 DOI: 10.1128/mr.57.3.543-594.1993] [Citation(s) in RCA: 850] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Numerous gram-negative and gram-positive bacteria take up carbohydrates through the phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS). This system transports and phosphorylates carbohydrates at the expense of PEP and is the subject of this review. The PTS consists of two general proteins, enzyme I and HPr, and a number of carbohydrate-specific enzymes, the enzymes II. PTS proteins are phosphoproteins in which the phospho group is attached to either a histidine residue or, in a number of cases, a cysteine residue. After phosphorylation of enzyme I by PEP, the phospho group is transferred to HPr. The enzymes II are required for the transport of the carbohydrates across the membrane and the transfer of the phospho group from phospho-HPr to the carbohydrates. Biochemical, structural, and molecular genetic studies have shown that the various enzymes II have the same basic structure. Each enzyme II consists of domains for specific functions, e.g., binding of the carbohydrate or phosphorylation. Each enzyme II complex can consist of one to four different polypeptides. The enzymes II can be placed into at least four classes on the basis of sequence similarity. The genetics of the PTS is complex, and the expression of PTS proteins is intricately regulated because of the central roles of these proteins in nutrient acquisition. In addition to classical induction-repression mechanisms involving repressor and activator proteins, other types of regulation, such as antitermination, have been observed in some PTSs. Apart from their role in carbohydrate transport, PTS proteins are involved in chemotaxis toward PTS carbohydrates. Furthermore, the IIAGlc protein, part of the glucose-specific PTS, is a central regulatory protein which in its nonphosphorylated form can bind to and inhibit several non-PTS uptake systems and thus prevent entry of inducers. In its phosphorylated form, P-IIAGlc is involved in the activation of adenylate cyclase and thus in the regulation of gene expression. By sensing the presence of PTS carbohydrates in the medium and adjusting the phosphorylation state of IIAGlc, cells can adapt quickly to changing conditions in the environment. In gram-positive bacteria, it has been demonstrated that HPr can be phosphorylated by ATP on a serine residue and this modification may perform a regulatory function.
Collapse
Affiliation(s)
- P W Postma
- E. C. Slater Institute, University of Amsterdam, The Netherlands
| | | | | |
Collapse
|
8
|
Weng Q, Elder J, Jacobson G. Site-specific mutagenesis of residues in the Escherichia coli mannitol permease that have been suggested to be important for its phosphorylation and chemoreception functions. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)41807-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
9
|
Schlaepfer D, Fisher D, Brandt M, Bode H, Jones J, Haigler H. Identification of a novel annexin in Hydra vulgaris. Characterization, cDNA cloning, and protein kinase C phosphorylation of annexin XII. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50123-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
10
|
Manayan R, Tenn G, Yee HB, Desai JD, Yamada M, Saier MH. Genetic analyses of the mannitol permease of Escherichia coli: isolation and characterization of a transport-deficient mutant which retains phosphorylation activity. J Bacteriol 1988; 170:1290-6. [PMID: 3277953 PMCID: PMC210905 DOI: 10.1128/jb.170.3.1290-1296.1988] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Three positive selection procedures were developed for the isolation of plasmid-encoded mutants which were defective in the mannitol enzyme II (IIMtl) of the phosphotransferase system (mtlA mutants). The mutants were characterized with respect to the following properties: (i) fermentation, (ii) transport, (iii) phosphoenolpyruvate(PEP)-dependent phosphorylation, and (iv) mannitol-1-phosphate-dependent transphosphorylation of mannitol. Cell lysis in response to indole acrylic acid, which causes the lethal overexpression of the plasmid-encoded mtlA gene, was also scored. No correlation was noted between residual IIMtl activity in the mutants and sensitivity to the toxic effect of indole acrylic acid. Plasmid-encoded mutants were isolated with (i) total or partial loss of all activities assayed, (ii) nearly normal rates of transphosphorylation but reduced rates of PEP-dependent phosphorylation, (iii) nearly normal rates of PEP-dependent phosphorylation but reduced rates of transphosphorylation, and (iv) total loss of transport activity but substantial retention of both phosphorylation activities in vitro. A mutant of this fourth class was extensively characterized. The mutant IIMtl was shown to be more thermolabile than the wild-type enzyme, it exhibited altered kinetic behavior, and it was shown to arise by a single nucleotide substitution (G-895----A) in the mtlA gene, causing a single amino acyl substitution (Gly-253----Glu) in the permease. The results show that a single amino acyl substitution can abolish transport function without abolishing phosphorylation activity. This work serves to identify a site which is crucial to the transport function of the enzyme.
Collapse
Affiliation(s)
- R Manayan
- Department of Biology, University of California at San Diego, La Jolla 92093
| | | | | | | | | | | |
Collapse
|
11
|
HPr/HPr-P phosphoryl exchange reaction catalyzed by the mannitol specific enzyme II of the bacterial phosphotransferase system. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)61553-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
12
|
|
13
|
Novotny MJ, Reizer J, Esch F, Saier MH. Purification and properties of D-mannitol-1-phosphate dehydrogenase and D-glucitol-6-phosphate dehydrogenase from Escherichia coli. J Bacteriol 1984; 159:986-90. [PMID: 6384188 PMCID: PMC215757 DOI: 10.1128/jb.159.3.986-990.1984] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
D-Mannitol-1-phosphate dehydrogenase (EC 1.1.1.17) and D-glucitol-6-phosphate dehydrogenase (EC 1.1.1.140) were purified to apparent homogeneity in good yields from Escherichia coli. The amino acid compositions, N-terminal amino acid sequences, sensitivities to chemical reagents, and catalytic properties of the two enzymes were determined. Both enzymes showed absolute specificities for their substrates. The subunit molecular weights of mannitol-1-phosphate and glucitol-6-phosphate dehydrogenases were 40,000 and 26,000, respectively; the apparent molecular weights of the native proteins, determined by gel filtration, were 40,000 and 117,000, respectively. It is therefore concluded that whereas mannitol-1-phosphate dehydrogenase is a monomer, glucitol-6-phosphate dehydrogenase is probably a tetramer. These two proteins differed in several fundamental respects.
Collapse
|
14
|
Sarno MV, Tenn LG, Desai A, Chin AM, Grenier FC, Saier MH. Genetic evidence for glucitol-specific enzyme III, an essential phosphocarrier protein of the Salmonella typhimurium glucitol phosphotransferase system. J Bacteriol 1984; 157:953-5. [PMID: 6365895 PMCID: PMC215355 DOI: 10.1128/jb.157.3.953-955.1984] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Positive selection procedures were developed for the isolation of mutants defective in components of the glucitol-specific catabolic enzyme system in Salmonella typhimurium. gutA (enzyme IIgut-negative), gutB (enzyme IIIgut-negative), and gutC (constitutive for the glucitol operon) mutants were isolated and characterized biochemically and genetically. The gene order was shown to be gutCAB.
Collapse
|
15
|
Lee CA, Saier MH. Mannitol-specific enzyme II of the bacterial phosphotransferase system. III. The nucleotide sequence of the permease gene. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(17)44522-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
16
|
|
17
|
Leonard JE, Saier MH. Mannitol-specific enzyme II of the bacterial phosphotransferase system. II. Reconstitution of vectorial transphosphorylation in phospholipid vesicles. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(17)44521-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
18
|
Mannitol-specific enzyme II of the bacterial phosphotransferase system. I. Properties of the purified permease. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(17)44520-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
19
|
The intramembrane topography of the mannitol-specific enzyme II of the Escherichia coli phosphotransferase system. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(18)32813-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
20
|
Lee CA, Saier MH. Use of cloned mtl genes of Escherichia coli to introduce mtl deletion mutations into the chromosome. J Bacteriol 1983; 153:685-92. [PMID: 6401703 PMCID: PMC221685 DOI: 10.1128/jb.153.2.685-692.1983] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The Escherichia coli mtl operon, which contains the cis-dominant regulatory region mtlC, the mannitol-specific enzyme II structural gene mtlA, and the D-mannitol-1-phosphate dehydrogenase structural gene mtlD, was cloned into plasmid pBR322. A 2-kilobase pair fragment of the mtl operon DNA containing the mtlA gene was subcloned into plasmid pACYC184. The direction of transcription of the cloned mtlA gene was determined. Localization of the mtlA gene on the cloned mtl operon DNA allowed in vitro construction of plasmid derivatives containing specific deletions in the mtl region. These plasmid derivatives were used to generate the corresponding mtl chromosomal deletions by homologous recombination at frequencies greater than 10(-4).
Collapse
|
21
|
Boesman-Finkelstein M, Finkelstein RA. Protection in rabbits induced by the Texas Star-SR attenuated A-B+ mutant candidate live oral cholera vaccine. Infect Immun 1982; 36:221-6. [PMID: 7076295 PMCID: PMC351207 DOI: 10.1128/iai.36.1.221-226.1982] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The avirulent, A-B+, streptomycin-resistant mutant designated Texas Star-SR, isolated from a virulent, hypertoxinogenic, colonizing strain of Vibrio cholerae (Ogawa serotype, El Tor biotype) and administered intragastrically or intraduodenally in adult rabbits, has been found to induce substantial immunity to subsequent challenge (in ligated intestinal loops) with virulent wild-type cholera vibrios (of both homologous and heterologous biotype and serotype). Significant resistance to challenge with one strain of human heat-labile enterotoxin (LT)-producing Escherichia coli was also demonstrated, but resistance against two other human LT-producing strains was either nil or marginal under these experimental conditions. Significant, but not striking, resistance against challenge with purified choleragen was obtained, whereas protection against a bolus challenge of purified porcine LT was not statistically significant.
Collapse
|