1
|
Nerber HN, Sorg JA. The small acid-soluble proteins of spore-forming organisms: similarities and differences in function. Anaerobe 2024; 87:102844. [PMID: 38582142 DOI: 10.1016/j.anaerobe.2024.102844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/08/2024]
Abstract
The small acid-soluble proteins are found in all endospore-forming organisms and are a major component of spores. Through their DNA binding capabilities, the SASPs shield the DNA from outside insults (e.g., UV and genotoxic chemicals). The absence of the major SASPs results in spores with reduced viability when exposed to UV light and, in at least one case, the inability to complete sporulation. While the SASPs have been characterized for decades, some evidence suggests that using newer technologies to revisit the roles of the SASPs could reveal novel functions in spore regulation.
Collapse
Affiliation(s)
- Hailee N Nerber
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Joseph A Sorg
- Department of Biology, Texas A&M University, College Station, TX, United States.
| |
Collapse
|
2
|
Meaney CA, Cartman ST, McClure PJ, Minton NP. The role of small acid-soluble proteins (SASPs) in protection of spores of Clostridium botulinum against nitrous acid. Int J Food Microbiol 2015; 216:25-30. [PMID: 26386202 DOI: 10.1016/j.ijfoodmicro.2015.08.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 07/16/2015] [Accepted: 08/30/2015] [Indexed: 11/28/2022]
Abstract
Mutant strains of Clostridium botulinum ATCC 3502 were generated using the ClosTron in four genes (CBO1789, CBO1790, CBO3048, CBO3145) identified as encoding α/β-type SASP homologues. The spores of mutant strains in which CBO1789 or CBO1790 was inactivated demonstrated a significant increase in sensitivity to the damaging agent nitrous acid (P<0.01), a phenotype that was partially restored to wild-type in complementation studies. In contrast to nitrous acid, the spores of the CBO1789 and CBO1790 mutants showed no change in their resistance to formaldehyde and hydrogen peroxide (P>0.05), two other chemicals commonly used as components of disinfection regimes. These data indicate that the SASPs CBO1789 or CBO1790 play a significant role in resistance to nitrous acid, but not in resistance to formaldehyde or hydrogen peroxide.
Collapse
Affiliation(s)
- Carolyn A Meaney
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Stephen T Cartman
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | | | - Nigel P Minton
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|
3
|
Chenau J, Fenaille F, Caro V, Haustant M, Diancourt L, Klee SR, Junot C, Ezan E, Goossens PL, Becher F. Identification and validation of specific markers of Bacillus anthracis spores by proteomics and genomics approaches. Mol Cell Proteomics 2013; 13:716-32. [PMID: 24379445 DOI: 10.1074/mcp.m113.032946] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Bacillus anthracis is the causative bacteria of anthrax, an acute and often fatal disease in humans. The infectious agent, the spore, represents a real bioterrorism threat and its specific identification is crucial. However, because of the high genomic relatedness within the Bacillus cereus group, it is still a real challenge to identify B. anthracis spores confidently. Mass spectrometry-based tools represent a powerful approach to the efficient discovery and identification of such protein markers. Here we undertook comparative proteomics analyses of Bacillus anthracis, cereus and thuringiensis spores to identify proteoforms unique to B. anthracis. The marker discovery pipeline developed combined peptide- and protein-centric approaches using liquid chromatography coupled to tandem mass spectrometry experiments using a high resolution/high mass accuracy LTQ-Orbitrap instrument. By combining these data with those from complementary bioinformatics approaches, we were able to highlight a dozen novel proteins consistently observed across all the investigated B. anthracis spores while being absent in B. cereus/thuringiensis spores. To further demonstrate the relevance of these markers and their strict specificity to B. anthracis, the number of strains studied was extended to 55, by including closely related strains such as B. thuringiensis 9727, and above all the B. cereus biovar anthracis CI, CA strains that possess pXO1- and pXO2-like plasmids. Under these conditions, the combination of proteomics and genomics approaches confirms the pertinence of 11 markers. Genes encoding these 11 markers are located on the chromosome, which provides additional targets complementary to the commonly used plasmid-encoded markers. Last but not least, we also report the development of a targeted liquid chromatography coupled to tandem mass spectrometry method involving the selection reaction monitoring mode for the monitoring of the 4 most suitable protein markers. Within a proof-of-concept study, we demonstrate the value of this approach for the further high throughput and specific detection of B. anthracis spores within complex samples.
Collapse
Affiliation(s)
- Jérôme Chenau
- CEA, iBiTec-S, Service de Pharmacologie et d'Immunoanalyse, 91191 Gif-sur-Yvette, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Extremely variable conservation of γ-type small, acid-soluble proteins from spores of some species in the bacterial order Bacillales. J Bacteriol 2011; 193:1884-92. [PMID: 21317325 DOI: 10.1128/jb.00018-11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
γ-Type small, acid-soluble spore proteins (SASP) are the most abundant proteins in spores of at least some members of the bacterial order Bacillales, yet they remain an enigma from both functional and phylogenetic perspectives. Current work has shown that the γ-type SASP or their coding genes (sspE genes) are present in most spore-forming members of Bacillales, including at least some members of the Paenibacillus genus, although they are apparently absent from Clostridiales species. We have applied a new method of searching for sspE genes, which now appear to also be absent from a clade of Bacillales species that includes Alicyclobacillus acidocaldarius and Bacillus tusciae. In addition, no γ-type SASP were found in A. acidocaldarius spores, although several of the DNA-binding α/β-type SASP were present. These findings have elucidated the phylogenetic origin of the sspE gene, and this may help in determining the precise function of γ-type SASP.
Collapse
|
5
|
Castanha ER, Fox A, Fox KF. Rapid discrimination of Bacillus anthracis from other members of the B. cereus group by mass and sequence of “intact” small acid soluble proteins (SASPs) using mass spectrometry. J Microbiol Methods 2006; 67:230-40. [PMID: 16730083 DOI: 10.1016/j.mimet.2006.03.024] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Accepted: 03/23/2006] [Indexed: 11/28/2022]
Abstract
The intentional contamination of buildings, e.g. anthrax in the bioterrorism attacks of 2001, demonstrated that the population can be affected rapidly and lethally if the appropriate treatment is not provided at the right time. Molecular approaches, primarily involving PCR, have proved useful in characterizing "white powders" used in these attacks as well as isolated organisms. However there is a need for a simpler approach, which does not involve temperamental reagents (e.g. enzymes and primers) which could potentially be used by first responders. It is demonstrated here that small acid-soluble proteins (SASPs), located in the core region of Bacillus spores, are reliable biomarkers for identification. The general strategy used in this study was to measure the molecular weight (MW) of an intact SASP by electrospray ionization mass spectrometry (ESI MS) followed by generation of sequence-specific information by ESI MS/MS (tandem mass spectrometry). A prominent SASP of mass 6679 was present in all B. anthracis strains. For B. cereus and B. thuringiensis strains the SASP had a mass of 6712. This represents a two amino acid substitution (serine to alanine; phenylalanine to tyrosine). The only SASP present in the B. anthracis genome consistent with this sequence is encoded by the gene ssB. This protein has a predicted mass of 6810, presumably post-translational processing leads to loss of methionine (mass 131) generating a SASP of mass 6679. This study showed that intact SASPs can be used as a biomarker for identification of B. anthracis; the protocol is simple and rapid. Extrapolation of this approach might prove important for real-time biodetection.
Collapse
Affiliation(s)
- Elisangela R Castanha
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, United States.
| | | | | |
Collapse
|
6
|
Cucchi A, Sanchez de Rivas C. ssp genes and spore osmotolerance in Bacillus thuringiensis israelensis and Bacillus sphaericus. Curr Microbiol 1995; 31:228-33. [PMID: 7549769 DOI: 10.1007/bf00298379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
It was shown previously that spores and vegetative cells of Bacillus sphaericus (Bf) and Bacillus thuringiensis israelensis (Bti) are very sensitive to osmotic variations. Since spore osmotolerance has been associated with their SASP (small acid soluble spore proteins) content coded by ssp genes, hybridization assays were performed with sspE and sspA genes from B. subtilis as probes and showed that Bti and Bf strains could lack an sspE-like gene. The B. subtilis sspE gene was then introduced into Bti 4Q2 strain; spores were obtained and showed a 65 to 650 times higher level of osmotolerance to NaCl, without affecting other important properties: hypoosmotic resistance in vegetative cells, spore UV resistance, and larvicidal activity against diptera larvae.
Collapse
Affiliation(s)
- A Cucchi
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria Pabellón II 4 degrees Piso (1428), Buenos Aires, Argentina
| | | |
Collapse
|
7
|
Fairhead H, Setlow P. Binding of DNA to alpha/beta-type small, acid-soluble proteins from spores of Bacillus or Clostridium species prevents formation of cytosine dimers, cytosine-thymine dimers, and bipyrimidine photoadducts after UV irradiation. J Bacteriol 1992; 174:2874-80. [PMID: 1569018 PMCID: PMC205939 DOI: 10.1128/jb.174.9.2874-2880.1992] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Small, acid-soluble proteins (SASP) of the alpha/beta-type from spores of Bacillus and Clostridium species bind to DNA; this binding prevents formation of cyclobutane-type thymine dimers upon UV irradiation, but promotes formation of the spore photoproduct, an adduct between adjacent thymine residues. alpha/beta-Type SASP also bound to poly(dG).poly(dC) and poly(dA-dG).poly(dC-dT). While UV irradiation of poly(dG).poly(dC) produced cyclobutane-type cytosine dimers as well as fluorescent bipyrimidine adducts, the yields of both types of photoproduct were greatly reduced upon irradiation of alpha/beta-type SASP-poly(dG).poly(dC) complexes. UV irradiation of poly(dA-dG).poly(dC-dT) produced a significant amount of a cyclobutane dimer between cytosine and thymine, as well as a 6-4 bipyrimidine adduct. Again, binding of alpha/beta-type SASP to poly(dA-dG).poly(dC-dT) greatly reduced formation of these two photoproducts, although formation of the cytosine-thymine analog of the spore photoproduct was not observed. These data provide further evidence for the dramatic change in DNA structure and photoreactivity which takes place on binding of alpha/beta-type SASP and suggest that binding of these proteins to DNA in vivo prevents formation of most deleterious photoproducts upon UV irradiation.
Collapse
Affiliation(s)
- H Fairhead
- Department of Biochemistry, University of Connecticut Health Center, Farmington 06030
| | | |
Collapse
|
8
|
Setlow B, Sun D, Setlow P. Interaction between DNA and alpha/beta-type small, acid-soluble spore proteins: a new class of DNA-binding protein. J Bacteriol 1992; 174:2312-22. [PMID: 1313001 PMCID: PMC205853 DOI: 10.1128/jb.174.7.2312-2322.1992] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
DNA in spores of Bacillus and Clostridium species is associated with small, acid-soluble proteins (SASP) of the alpha/beta type; the presence of these proteins is a major factor in causing spore resistance to UV light, alpha/beta-type SASP did not bind to single-stranded DNA, single- or double-stranded RNA, or DNA-RNA hybrids in vitro. However, these proteins bound a variety of double-stranded DNAs and conferred protection against DNase cleavage. The binding of alpha/beta-type SASP to DNA saturated at a protein/DNA ratio (wt/wt) of 4:1 to 5:1, which is approximately 1 SASP per 4 bp. alpha/beta-type SASP-DNA interaction did not require divalent cations, was independent of pH between 6 and 8, and, for some SASP-DNA pairs, was relatively insensitive to salt up to 0.3 M. The relative affinity of alpha/beta-type SASP for different DNAs was poly(dG).poly(dC) greater than poly(dG-dC).poly(dG-dC) greater than plasmid pUC19 greater than poly(dA-dT).poly(dA-dT), with poly(dA).poly(dT) giving no detectable binding. This order in alpha/beta-type SASP-DNA affinities parallels the facility with which the DNAs adopt an A-like conformation, the conformation in alpha/beta-type SASP-DNA complexes. An oligo(dG).oligo(dC) of 12 bp was bound by alpha/beta-type SASP. While a 26-bp oligo(dG).oligo(dC) bound more tightly than the 12-mer, there was no significant increase in affinity for alpha/beta-type SASP with further increase in size of oligo(dG).oligo(dC). In contrast, binding of alpha/beta-type SASP to oligo(dA-dT).oligo(dA-dT) was minimal up to at least a 70-mer, and binding to poly(dA-dT).poly(dA-dT) was very cooperative. In addition to blocking DNase digestion, binding of alpha/beta-type SASP to DNA blocked (i) cleavage of the DNA backbone by hydroxyl radicals and orthophenanthroline-Cu2+, (ii) DNA cleavage by restriction enzymes, in particular those with specificity for GC-rich sequences; and (iii) in vitro transcription of some but not all genes. However, methylation of dG residues by dimethyl sulfate was not affected by alpha/beta-type SASP binding.
Collapse
Affiliation(s)
- B Setlow
- Department of Biochemistry, University of Connecticut Health Center, Farmington 06030
| | | | | |
Collapse
|
9
|
Nicholson WL, Setlow B, Setlow P. Ultraviolet irradiation of DNA complexed with alpha/beta-type small, acid-soluble proteins from spores of Bacillus or Clostridium species makes spore photoproduct but not thymine dimers. Proc Natl Acad Sci U S A 1991; 88:8288-92. [PMID: 1924287 PMCID: PMC52493 DOI: 10.1073/pnas.88.19.8288] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
UV irradiation of complexes of DNA and an alpha/beta-type small, acid-soluble protein (SASP) from Bacillus subtilis spores gave decreasing amounts of pyrimidine dimers and increasing amounts of spore photoproduct as the SASP/DNA ratio was increased. The yields of pyrimidine dimers and spore photoproduct were less than 0.2% and 8% of total thymine, respectively, when DNA saturated with SASP was irradiated at 254 nm with 30 kJ/m2; in the absence of SASP the yields were reversed-4.5% and 0.3%, respectively. Complexes of DNA with alpha/beta-type SASP from Bacillus cereus, Bacillus megaterium, or Clostridium bifermentans spores also gave spore photoproduct upon UV irradiation. However, incubation of these SASPs with DNA under conditions preventing complex formation or use of mutant SASPs that do not form complexes did not affect the photoproducts formed in vitro. These results suggest that the UV photochemistry of bacterial spore DNA in vivo is due to the binding of alpha/beta-type SASP, a binding that is known to cause a change in DNA conformation in vitro from the B form to the A form. The yields of spore photoproduct in vitro were significantly lower than in vivo, perhaps because of the presence of substances other than SASP in spores. It is suggested that as these factors diffuse out in the first minutes of spore germination, spore photoproduct yields become similar to those observed for irradiation of SASP/DNA complexes in vitro.
Collapse
Affiliation(s)
- W L Nicholson
- Department of Biochemistry, University of Connecticut Health Center, Farmington 06030
| | | | | |
Collapse
|
10
|
Hackett RH, Setlow P. Properties of spores of Bacillus subtilis strains which lack the major small, acid-soluble protein. J Bacteriol 1988; 170:1403-4. [PMID: 3125155 PMCID: PMC210926 DOI: 10.1128/jb.170.3.1403-1404.1988] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Bacillus subtilis strains containing a deletion in the gene coding for the major small, acid-soluble, spore protein (SASP-gamma) grew and sporulated, and their spores initiated germination normally, but outgrowth of SASP-gamma- spores was significantly slower than that of wild-type spores. The absence of SASP-gamma had no effect on spore protoplast density or spore resistance to heat or radiation. Consequently, SASP-gamma has a different function in spores than do the other major small, acid-soluble proteins.
Collapse
Affiliation(s)
- R H Hackett
- Department of Biochemistry, University of Connecticut Health Center, Farmington 06032
| | | |
Collapse
|
11
|
Sun DX, Setlow P. Cloning and nucleotide sequencing of genes for a second type of small, acid-soluble spore proteins of Bacillus cereus, Bacillus stearothermophilus, and "Thermoactinomyces thalpophilus". J Bacteriol 1987; 169:3088-93. [PMID: 3036769 PMCID: PMC212353 DOI: 10.1128/jb.169.7.3088-3093.1987] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The nucleotide sequences of the single genes coding for the B-type small, acid-soluble spore proteins (SASP) of Bacillus cereus, B. stearothermophilus, and "Thermoactinomyces thalpophilus" were determined, and the amino acid sequences of all B-type SASP were compared. While this type of SASP showed significant sequence conservation around the two spore protease cleavage sites, alignment of these sequences required the introduction of gaps, and even then only 19 of the residues were conserved exactly in all five proteins. However, all five B-type SASP did contain a large (27 to 35-residue), rather well-conserved amino acid sequence repeat, and four of the five proteins had well-conserved regions of 14 to 17 amino acids which appeared three times.
Collapse
|
12
|
Granum PE, Richardson M, Blom H. Isolation and amino acid sequence of an acid soluble protein fromClostridium perfringensspores. FEMS Microbiol Lett 1987. [DOI: 10.1111/j.1574-6968.1987.tb02077.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
13
|
Hackett RH, Setlow P. Cloning, nucleotide sequencing, and genetic mapping of the gene for small, acid-soluble spore protein gamma of Bacillus subtilis. J Bacteriol 1987; 169:1985-92. [PMID: 3106326 PMCID: PMC212067 DOI: 10.1128/jb.169.5.1985-1992.1987] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The Bacillus subtilis gene (sspE) which codes for small acid-soluble spore protein gamma (SASP-gamma) was cloned, and its chromosomal location (65 degrees, linked to glpD) and nucleotide sequence were determined. The amino acid sequence of SASP-gamma is similar to that of SASP-B of Bacillus megaterium, but these sequences are not as highly conserved across species as are those of other SASPs. The SASP-gamma gene is transcribed only in sporulation in parallel with other SASP genes and gives a single mRNA that is approximately 340 nucleotides long. The results of hybridization of an sspE gene probe to Southern blots of B. subtilis DNA suggested that there is only a single gene coding for the SASP-gamma type of protein in B. subtilis. This was confirmed by introducing a deletion mutation into the cloned sspE gene and transferring the deletion into the B. subtilis chromosome, with concomitant loss of the wild-type gene. This sspE deletion strain sporulated well, but lacked the SASP-gamma type of protein.
Collapse
|
14
|
Loshon CA, Fliss ER, Setlow B, Foerster HF, Setlow P. Cloning and nucleotide sequencing of genes for small, acid-soluble spore proteins of Bacillus cereus, Bacillus stearothermophilus, and "Thermoactinomyces thalpophilus". J Bacteriol 1986; 167:168-73. [PMID: 3087949 PMCID: PMC212856 DOI: 10.1128/jb.167.1.168-173.1986] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
As found previously with other Bacillus species, spores of B. stearothermophilus and "Thermoactinomyces thalpophilus" contained significant levels of small, acid-soluble spore proteins (SASP) which were rapidly degraded during spore germination and which reacted with antibodies raised against B. megaterium SASP. Genes coding for a B. stearothermophilus and a "T. thalpophilus" SASP as well as for two B. cereus SASP were cloned, their nucleotide sequences were determined, and the amino acid sequences of the SASP coded for were compared. Strikingly, all of the amino acid residues previously found to be conserved in this group of SASP both within and between two other Bacillus species (B. megaterium and B. subtilis) were also conserved in the SASP coded for by the B. cereus genes as well as those coded for by the genes from the more distantly related organisms B. stearothermophilus and "T. thalpophilus." This finding strongly suggests that there is significant selective pressure to conserve SASP primary sequence and thus that these proteins serve some function other than simply amino acid storage.
Collapse
|
15
|
Connors MJ, Mason JM, Setlow P. Cloning and nucleotide sequencing of genes for three small, acid-soluble proteins from Bacillus subtilis spores. J Bacteriol 1986; 166:417-25. [PMID: 3009398 PMCID: PMC214621 DOI: 10.1128/jb.166.2.417-425.1986] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Three Bacillus subtilis genes (termed sspA, sspB, and sspD) which code for small, acid-soluble spore proteins (SASPs) have been cloned, and their complete nucleotide sequence has been determined. The amino acid sequences of the SASPs coded for by these genes are similar to each other and to those of the SASP-1 of B. subtilis (coded for by the sspC gene) and the SASP-A/C family of B. megaterium. The sspA and sspB genes are expressed only in sporulation, in parallel with each other and with the sspC gene. Two regions upstream of the postulated transcription start sites for the sspA and B genes have significant homology with the analogous regions of the sspC gene and the SASP-A/C gene family. Purification of two of the three major B, subtilis SASPs (alpha and beta) and determination of their amino-terminal sequences indicated that the sspA gene codes for SASP-alpha and that the sspB gene codes for SASP-beta. This was confirmed by the introduction of deletion mutations into the cloned sspA and sspB genes and transfer of these deletions into the B. subtilis chromosome with concomitant loss of the wild-type gene.
Collapse
|
16
|
Johnson WC, Mahler I, Phillips K, Tipper DJ. Transcriptional control of synthesis of acid-soluble proteins in sporulating Bacillus subtilis. J Bacteriol 1985; 163:543-51. [PMID: 3926748 PMCID: PMC219156 DOI: 10.1128/jb.163.2.543-551.1985] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The major acid-soluble spore proteins (ASSPs) isolated from mature spores of Bacillus subtilis are designated alpha, beta, and gamma (about 60, 60, and 100 amino acids in length, respectively). Alpha and beta are very similar, and gamma is very similar to a less predominant ASSP called delta (about 115 amino acids). A minor and very basic ASSP called epsilon is the same size as alpha and beta but is unrelated antigenically. These and several minor ASSPs comprise at least three related families of sporulation-specific gene products. Expression of the alpha and beta genes, detectable as functional mRNA in vitro, coincides with the time of synthesis of all of the major ASSPs in vivo. This apparently coordinate expression is dependent on at least the spo0A, spoIIA, and spoIIIA loci, but not on the spoIVA or spoVA loci, consistent with the late stage of this expression (initiating at 3.5 h after the start of sporulation and peaking at 5 h after start of sporulation). A few minor ASSPs may be asynchronously expressed.
Collapse
|
17
|
Fliss ER, Setlow P. Bacillus megaterium spore protein C-3: nucleotide sequence of its gene and the amino acid sequence at its spore protease cleavage site. Gene 1984; 30:167-72. [PMID: 6439604 DOI: 10.1016/0378-1119(84)90117-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The nucleotide sequence of the Bacillus megaterium gene coding for spore-specific protein C-3 has been determined. The gene codes for 65 amino acids and the coding sequence is preceded by an efficient ribosome-binding site. The predicted protein C-3 sequence agrees with both the amino acid composition and the amino terminal sequence of protein C-3, and shows homology (approx. 65% of all residues are identical) with the sequences of the analogous proteins A and C of B. megaterium. Protein C-3 is cleaved by the sequence-specific B. megaterium spore protease, and the amino acid sequence at the new amino-terminus generated is identical to that predicted from the gene sequence, and homologous to the spore protease cleavage sites in the A and C proteins. The protein C-3 gene also shares a number of features with the previously sequenced protein C gene in both upstream and downstream flanking sequence.
Collapse
|
18
|
Goldrick S, Setlow P. Expression of a Bacillus megaterium sporulation-specific gene during sporulation of Bacillus subtilis. J Bacteriol 1983; 155:1459-62. [PMID: 6411694 PMCID: PMC217851 DOI: 10.1128/jb.155.3.1459-1462.1983] [Citation(s) in RCA: 74] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The gene for the Bacillus megaterium spore C protein, a sporulation-specific gene, has been transferred into Bacillus subtilis. The B. megaterium gene was expressed little, if at all, during log-phase and early-stationary-phase growth, but was expressed during sporulation with the same kinetics as and at a level similar to that of the analogous B. subtilis genes. This finding is most consistent with the regulation of this class of genes by a mechanism of positive control.
Collapse
|
19
|
Curiel-Quesada E, Setlow B, Setlow P. Cloning of the gene for C protein, a low molecular weight spore-specific protein from Bacillus megaterium. Proc Natl Acad Sci U S A 1983; 80:3250-4. [PMID: 6304701 PMCID: PMC394018 DOI: 10.1073/pnas.80.11.3250] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The structural gene for C protein, a low molecular weight spore-specific protein from Bacillus megaterium, has been cloned in Escherichia coli. Expression of the C-protein gene in E. coli requires an external transcription promoter and prevention of termination of transcription prior to transcription of all or part of the sequence coding for the C protein. The gene for the C protein is within a 5-kilobase DNA fragment, but this fragment does not code for either of the other two major low molecular weight spore proteins, suggesting that the structural genes for these proteins are not tightly linked.
Collapse
|
20
|
Sastry KJ, Srivastava OP, Millet J, FitzJames PC, Aronson AI. Characterization of Bacillus subtilis mutants with a temperature-sensitive intracellular protease. J Bacteriol 1983; 153:511-9. [PMID: 6401288 PMCID: PMC217400 DOI: 10.1128/jb.153.1.511-519.1983] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
A colony screening procedure was devised to detect Bacillus subtilis mutants containing temperature-sensitive trypsin-like intracellular protease activity. The enzyme was characterized as a non-sulfhydryl serine protease on the basis of inhibitor studies. It was also inhibited by D- or L-histidine but not by any other amino acid tested. The long-term survival at 45 degrees C of these mutants in a minimal salts medium was decreased, with rapid lysis occurring within 24 h. A D-histidine function in long-term survival and inhibition accounted for the presence of additional protease mutants among survivors of histidine auxotrophs selected for their ability to utilize D-histidine. In addition to being lysed when incubated at 45 degrees C under nongrowth conditions, all of the protease mutants had a decreased rate of protein turnover and produced spores deficient in a major low-molecular-weight spore coat polypeptide. The morphology of the undercoat layers was altered, but there was no effect on spore heat resistance or on germination. The missing spore coat polypeptide appeared to be processed from a larger precursor by cleavage to produce N-terminal histidine. A defect in this protease could account for the lack of processing and thus the absence of this polypeptide in spore coats.
Collapse
|
21
|
Abstract
The major acid-soluble spore proteins (ASSPs) of Bacillus subtilis were detected by immunoprecipitation of radioactively labeled in vitro- and in vivo-synthesized proteins. ASSP synthesis in vivo began 2 h after the initiation of sporulation (t2) and reached its maximum rate at t7. This corresponded to the time of synthesis of mRNA that stimulated the maximum rate of ASSP synthesis in vitro. Under the set of conditions used in these experiments, protease synthesis began near t0, alkaline phosphatase synthesis began at about t2, and refractile spores were first observed between t7 and t8. In vivo- and in vitro-synthesized ASSPs comigrated in sodium dodecyl sulfate-polyacrylamide gels. Their molecular weights were 4,600 (alpha and beta) and 11,000 (gamma). The average half-life of the ASSP messages was 11 min when either rifampin (10 micrograms/ml) or actinomycin D (1 microgram/ml) was used to inhibit RNA synthesis.
Collapse
|
22
|
Bacillus megaterium spore protease. Synthesis and processing of precursor forms during sporulation and germination. J Biol Chem 1982. [DOI: 10.1016/s0021-9258(18)33901-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
23
|
Yeh WK, Shih C, Ornston LN. Overlapping evolutionary affinities revealed by comparison of amino acid compositions. Proc Natl Acad Sci U S A 1982; 79:3794-7. [PMID: 6954523 PMCID: PMC346514 DOI: 10.1073/pnas.79.12.3794] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Comparison of the amino acid compositions of purified proteins indicates the presence of overlapping evolutionary affinities among enzymes of the beta-ketoadipate pathway. Isofunctional enzymes from different bacterial genera share a common evolutionary origin. Moreover, enzymes that mediate isofunctional or chemically analogous reactions within an organism appear to be evolutionarily homologous. Most remarkably, closely similar amino acid compositions are found in enzymes that mediate the following consecutive metabolic steps: lactonization, decarboxylation, hydrolysis, and transfer of a thioester bond.
Collapse
|
24
|
Setlow B, Hackett RH, Setlow P. Noninvolvement of the spore cortex in acquisition of low-molecular-weight basic proteins and UV light resistance during Bacillus sphaericus sporulation. J Bacteriol 1982; 149:494-8. [PMID: 7056695 PMCID: PMC216533 DOI: 10.1128/jb.149.2.494-498.1982] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Two major low-molecular weight, acid-soluble proteins (termed A and B proteins) were purified from Bacillus sphaericus spores and had properties similar to those of the analogous proteins from spores of other Bacillus species. These proteins were accumulated late in sporulation, when the developing spores became resistant to UV light, and were degraded during spore germination by a spore protease. A mutant of B. sphaericus unable to make spore cortex because of a block in diaminopimelic acid (DAP) biosynthesis accumulated and maintained levels of the A and B proteins similar to those in the DAP+ parent or the DAP- strain in which cortex formation was restored by growth with DAP. In addition, the DAP- strain grown without DAP acquired a level of UV light resistance identical to that of wild-type spores and at the time of appearance of the A and B proteins. These findings indicate that formation of little, if any, spore cortex is required for acquisition of UV light resistance or maintenance of high levels of A and B proteins. The data provide further support for a role of the A and B proteins in the spore's UV light resistance.
Collapse
|
25
|
Abstract
Acid-soluble spore proteins (ASSPs) comprise about 5% of the total protein of mature spores of different Bacillus subtilis strains. They consist of three abundant species, alpha, beta, and gamma, four less abundant species, and several minor species, alpha, beta, and gamma make up about 18, 18 and 36%, respectively, of the total ASSPs of strain 168, have molecular weights of 5,900, 5,9000, and 11,000, respectively, and resemble the major (A, C, and B) components of Bacillus megaterium ASSPs in several respects, including sensitivity to a specific B. megaterium spore endopeptidase. However, they have pI's of 6.58, 6.67, and 7.96, all lower than those of any of the B. megaterium ASSPs. Although strains varied in the proportions of different ASSPs, to overall patterns seen on gel electrophoresis are constant. ASSPs are located interior to the cortex, presumably in the spore cytoplasm, and are synthesized during sporulation and degraded during germination.
Collapse
|