1
|
A Sporulation-Specific sRNA Bvs196 Contributing to the Developing Spore in Bacillus velezensis. Microorganisms 2022; 10:microorganisms10051015. [PMID: 35630459 PMCID: PMC9147052 DOI: 10.3390/microorganisms10051015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/07/2022] [Accepted: 05/11/2022] [Indexed: 02/01/2023] Open
Abstract
Many putative sRNAs have been characterized using bioinformatic analysis and high-throughput sequencing in Gram-positive Bacillus strains, but there are only a few functional studies on the sRNAs involved in the spore formation developmental process. In particular, there is no sRNA confirmed experimentally to regulate the late stages of sporulation. Bvs196 is an sRNA with a length of 294 nucleotides that is abundantly expressed in the stationary phase of several media and independently transcribed in Bacillus velezensis strain PEBA20, as validated by RNA-seq and Northern blot,. It is also confirmed, by qRT-PCR, that Bvs196 is transcribed abundantly throughout the intermediate and late stages of sporulation. Using the gfpmut3a gene transcriptional reporter demonstrates that Bvs196 is expressed specifically in the forespore during sporulation and controlled by σF and σG (mainly by σG). This was observed by fluorescence microscopy and multi-function microplate reader. Further evolutionary conservation analysis found that Bvs196 is widely present in Bacillus with a strongly conserved and stable secondary structure. Resistance phenotypic assays of spores formed from the Bvs196 deletion mutant, the overexpressed Bvs196 mutant, and the wild-type strain revealed that the absence of Bvs196 led to reduced heat and UV resistance and enhanced formaldehyde resistance. We determined, by MST analysis, that Bvs196 can directly interact with spo0A and sspN-tlp mRNAs in vitro, and that short incomplete complementary paired bases affect the binding affinity of Bvs196 to target mRNAs. Our results suggest that Bvs196 is a novel sporulation-specific sRNA of B. velezensis, 294 nt in length, independently transcribed under the control of σF and σG in the forespore during sporulation, and that it affects spore resistance, and is able to directly interact with spo0A and sspN-tlp mRNAs. The remarkable conservation and impressive expression level of Bvs196 imply that it acts as an important conservative regulator, presumably by interacting with many other unknown targets in the forespore, and therefore contributing to spore properties. This work provides new clues for further understanding of the spore formation regulatory network.
Collapse
|
2
|
Wetzel D, Fischer RJ. Small acid-soluble spore proteins of Clostridium acetobutylicum are able to protect DNA in vitro and are specifically cleaved by germination protease GPR and spore protease YyaC. MICROBIOLOGY-SGM 2015; 161:2098-109. [PMID: 26362088 DOI: 10.1099/mic.0.000162] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Small acid-soluble proteins (SASPs) play an important role in protection of DNA in dormant bacterial endospores against damage by heat, UV radiation or enzymic degradation. In the genome of the strict anaerobe Clostridium acetobutylicum, five genes encoding SASPs have been annotated and here a further sixth candidate is suggested. The ssp genes are expressed in parallel dependent upon Spo0A, a master regulator of sporulation. Analysis of the transcription start points revealed a σG or a σF consensus promoter upstream of each ssp gene, confirming a forespore-specific gene expression. SASPs were termed SspA (Cac2365), SspB (Cac1522), SspD (Cac1620), SspF (Cac2372), SspH (Cac1663) and Tlp (Cac1487). Here it is shown that with the exception of Tlp, every purified recombinant SASP is able to bind DNA in vitro thereby protecting it against enzymic degradation by DNase I. Moreover, SspB and SspD were specifically cleaved by the two germination-specific proteases GPR (Cac1275) and YyaC (Cac2857), which were overexpressed in Escherichia coli and activated by an autocleavage reaction. Thus, for the first time to our knowledge, GPR-like activity and SASP specificity could be demonstrated for a YyaC-like protein. Collectively, the results assign SspA, SspB, SspD, SspF and SspH of C. acetobutylicum as members of α/β-type SASPs, whereas Tlp seems to be a non-DNA-binding spore protein of unknown function. In acetic acid-extracted proteins of dormant spores of C. acetobutylicum, SspA was identified almost exclusively, indicating its dominant biological role as a major α/β-type SASP in vivo.
Collapse
Affiliation(s)
- Daniela Wetzel
- Abteilung für Mikrobiologie, Institut für Biowissenschaften, Universität Rostock, Albert-Einstein-Str. 3, D-18051 Rostock, Germany
| | - Ralf-Jörg Fischer
- Abteilung für Mikrobiologie, Institut für Biowissenschaften, Universität Rostock, Albert-Einstein-Str. 3, D-18051 Rostock, Germany
| |
Collapse
|
3
|
Kawai M, Uchiyama I, Takami H, Inagaki F. Low frequency of endospore-specific genes in subseafloor sedimentary metagenomes. ENVIRONMENTAL MICROBIOLOGY REPORTS 2015; 7:341-350. [PMID: 25472775 DOI: 10.1111/1758-2229.12254] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 11/04/2014] [Accepted: 11/23/2014] [Indexed: 06/04/2023]
Abstract
Spore formation is considered to be one of the microbial strategies for long-term survival in subseafloor sedimentary habitats. However, our knowledge of the genetic and physiological characteristics of subseafloor microbes is limited. Here, we studied the distribution and frequency of genes that are related to endospore formation in 10 subseafloor sedimentary metagenomes from Site C9001 off Japan and Site 1229 off Peru. None or very low frequencies of endospore-specific genes (e.g. dpaA, dpaB, sspA, spo0A, spoIIGA, spoIIM, spoIIIAB, spoIVA, spoIVB, yabP, yunB, spoVM) were observed in the subseafloor metagenomes. Based on the number of universally conserved single copy genes, the frequency ratio of putative endospore-formers was estimated to be < 10%, which is consistent with the frequency of Clostridia-derived genomes (2-4%) but is lower than previous estimates based on the concentration of dipicolinic acid. Conceivable explanations for this discrepancy are as follows: the efficiency of lysis and DNA extraction of subseafloor endospore cells may have been lower than those of vegetative cells, conversion factor of dipicolinic acid content per cell may differ, and/or sporulation-related genes and other functional strategies for long-term survival in the deep subseafloor biosphere are evolutionarily distinct from known spore-forming gene repertoires.
Collapse
Affiliation(s)
- Mikihiko Kawai
- Geomicrobiology Group, Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Monobe B200, Nankoku, Kochi, 783-8502, Japan
| | | | | | | |
Collapse
|
4
|
Galperin MY, Mekhedov SL, Puigbo P, Smirnov S, Wolf YI, Rigden DJ. Genomic determinants of sporulation in Bacilli and Clostridia: towards the minimal set of sporulation-specific genes. Environ Microbiol 2012; 14:2870-90. [PMID: 22882546 PMCID: PMC3533761 DOI: 10.1111/j.1462-2920.2012.02841.x] [Citation(s) in RCA: 195] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Three classes of low-G+C Gram-positive bacteria (Firmicutes), Bacilli, Clostridia and Negativicutes, include numerous members that are capable of producing heat-resistant endospores. Spore-forming firmicutes include many environmentally important organisms, such as insect pathogens and cellulose-degrading industrial strains, as well as human pathogens responsible for such diseases as anthrax, botulism, gas gangrene and tetanus. In the best-studied model organism Bacillus subtilis, sporulation involves over 500 genes, many of which are conserved among other bacilli and clostridia. This work aimed to define the genomic requirements for sporulation through an analysis of the presence of sporulation genes in various firmicutes, including those with smaller genomes than B. subtilis. Cultivable spore-formers were found to have genomes larger than 2300 kb and encompass over 2150 protein-coding genes of which 60 are orthologues of genes that are apparently essential for sporulation in B. subtilis. Clostridial spore-formers lack, among others, spoIIB, sda, spoVID and safA genes and have non-orthologous displacements of spoIIQ and spoIVFA, suggesting substantial differences between bacilli and clostridia in the engulfment and spore coat formation steps. Many B. subtilis sporulation genes, particularly those encoding small acid-soluble spore proteins and spore coat proteins, were found only in the family Bacillaceae, or even in a subset of Bacillus spp. Phylogenetic profiles of sporulation genes, compiled in this work, confirm the presence of a common sporulation gene core, but also illuminate the diversity of the sporulation processes within various lineages. These profiles should help further experimental studies of uncharacterized widespread sporulation genes, which would ultimately allow delineation of the minimal set(s) of sporulation-specific genes in Bacilli and Clostridia.
Collapse
Affiliation(s)
- Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | | | | | | | | | | |
Collapse
|
5
|
Salimi-Moosavi H, Lee J, DeSilva B, Doellgast G. Novel approaches using alkaline or acid/guanidine treatment to eliminate therapeutic antibody interference in the measurement of total target ligand. J Pharm Biomed Anal 2010; 51:1128-33. [DOI: 10.1016/j.jpba.2009.11.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 11/17/2009] [Accepted: 11/23/2009] [Indexed: 10/20/2022]
|
6
|
Hecker M. Molekularbiologie der Keimung von Bacillus-Sporen. J Basic Microbiol 2007. [DOI: 10.1002/jobm.19830230814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Castanha ER, Fox A, Fox KF. Rapid discrimination of Bacillus anthracis from other members of the B. cereus group by mass and sequence of “intact” small acid soluble proteins (SASPs) using mass spectrometry. J Microbiol Methods 2006; 67:230-40. [PMID: 16730083 DOI: 10.1016/j.mimet.2006.03.024] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Accepted: 03/23/2006] [Indexed: 11/28/2022]
Abstract
The intentional contamination of buildings, e.g. anthrax in the bioterrorism attacks of 2001, demonstrated that the population can be affected rapidly and lethally if the appropriate treatment is not provided at the right time. Molecular approaches, primarily involving PCR, have proved useful in characterizing "white powders" used in these attacks as well as isolated organisms. However there is a need for a simpler approach, which does not involve temperamental reagents (e.g. enzymes and primers) which could potentially be used by first responders. It is demonstrated here that small acid-soluble proteins (SASPs), located in the core region of Bacillus spores, are reliable biomarkers for identification. The general strategy used in this study was to measure the molecular weight (MW) of an intact SASP by electrospray ionization mass spectrometry (ESI MS) followed by generation of sequence-specific information by ESI MS/MS (tandem mass spectrometry). A prominent SASP of mass 6679 was present in all B. anthracis strains. For B. cereus and B. thuringiensis strains the SASP had a mass of 6712. This represents a two amino acid substitution (serine to alanine; phenylalanine to tyrosine). The only SASP present in the B. anthracis genome consistent with this sequence is encoded by the gene ssB. This protein has a predicted mass of 6810, presumably post-translational processing leads to loss of methionine (mass 131) generating a SASP of mass 6679. This study showed that intact SASPs can be used as a biomarker for identification of B. anthracis; the protocol is simple and rapid. Extrapolation of this approach might prove important for real-time biodetection.
Collapse
Affiliation(s)
- Elisangela R Castanha
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, United States.
| | | | | |
Collapse
|
8
|
Schmidt L, Preston J, Dickson D, Rice J, Hewlett T. Environmental quantification of Pasteuria penetrans endospores using in situ antigen extraction and immunodetection with a monoclonal antibody. FEMS Microbiol Ecol 2003; 44:17-26. [DOI: 10.1111/j.1574-6941.2003.tb01086.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
9
|
Hathout Y, Setlow B, Cabrera-Martinez RM, Fenselau C, Setlow P. Small, acid-soluble proteins as biomarkers in mass spectrometry analysis of Bacillus spores. Appl Environ Microbiol 2003; 69:1100-7. [PMID: 12571035 PMCID: PMC143666 DOI: 10.1128/aem.69.2.1100-1107.2003] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The use of 1 N HCl for extraction of small, acid-soluble proteins (SASP) from different Bacillus spore species was examined. The extracts were analyzed by high-performance liquid chromatography and matrix-assisted laser desorption mass spectrometry and were found to be both qualitatively and quantitatively superior to extraction by acetonitrile-5% trifluoroacetic acid (70:30, vol/vol). Both major and minor alpha/beta- and gamma-type SASP were characterized by their molecular masses or tryptic peptide maps and by searches of both protein and unannotated genome databases. For all but 1 pair (B. cereus T and B. thuringiensis subsp. Kurstaki) among the 11 variants studied the suites of SASP masses are distinctive, consistent with the use of these proteins as potential biomarkers for spore identification by mass spectrometry.
Collapse
Affiliation(s)
- Yetrib Hathout
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20704, USA.
| | | | | | | | | |
Collapse
|
10
|
Bagyan I, Setlow B, Setlow P. New small, acid-soluble proteins unique to spores of Bacillus subtilis: identification of the coding genes and regulation and function of two of these genes. J Bacteriol 1998; 180:6704-12. [PMID: 9852018 PMCID: PMC107777 DOI: 10.1128/jb.180.24.6704-6712.1998] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/1998] [Accepted: 10/09/1998] [Indexed: 11/20/2022] Open
Abstract
Eleven small, acid-soluble proteins (SASP) which are present in spores but not in growing cells of Bacillus subtilis were identified by sequence analysis of proteins separated by acrylamide gel electrophoresis of acid extracts from spores which lack the three major SASP (alpha, beta, and gamma). Six of these proteins are encoded by open reading frames identified previously or by analysis of the complete sequence of the B. subtilis genome, including two minor alpha/beta-type SASP (SspC and SspD) and a putative spore coat protein (CotK). Five proteins are encoded by short open reading frames that were not identified as coding regions in the analysis of the complete B. subtilis genomic sequence. Studies of the regulation of two of the latter genes, termed sspG and sspJ, showed that both are expressed only in sporulation. The sspG gene is transcribed in the mother cell compartment by RNA polymerase with the mother cell-specific sigma factor for RNA polymerase, sigmaK, and is cotranscribed with a downstream gene, yurS; sspG transcription also requires the DNA binding protein GerE. In contrast, sspJ is transcribed in the forespore compartment by RNA polymerase with the forespore-specific sigmaG and appears to give a monocistronic transcript. A mutation eliminating SspG had no effect on sporulation or spore properties, while loss of SspJ caused a slight decrease in the rate of spore outgrowth in an otherwise wild-type background.
Collapse
Affiliation(s)
- I Bagyan
- Department of Biochemistry, University of Connecticut Health Center, Farmington, Connecticut 06032, USA
| | | | | |
Collapse
|
11
|
Cucchi A, Sanchez de Rivas C. ssp genes and spore osmotolerance in Bacillus thuringiensis israelensis and Bacillus sphaericus. Curr Microbiol 1995; 31:228-33. [PMID: 7549769 DOI: 10.1007/bf00298379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
It was shown previously that spores and vegetative cells of Bacillus sphaericus (Bf) and Bacillus thuringiensis israelensis (Bti) are very sensitive to osmotic variations. Since spore osmotolerance has been associated with their SASP (small acid soluble spore proteins) content coded by ssp genes, hybridization assays were performed with sspE and sspA genes from B. subtilis as probes and showed that Bti and Bf strains could lack an sspE-like gene. The B. subtilis sspE gene was then introduced into Bti 4Q2 strain; spores were obtained and showed a 65 to 650 times higher level of osmotolerance to NaCl, without affecting other important properties: hypoosmotic resistance in vegetative cells, spore UV resistance, and larvicidal activity against diptera larvae.
Collapse
Affiliation(s)
- A Cucchi
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria Pabellón II 4 degrees Piso (1428), Buenos Aires, Argentina
| | | |
Collapse
|
12
|
Sanchez-Salas JL, Santiago-Lara ML, Setlow B, Sussman MD, Setlow P. Properties of Bacillus megaterium and Bacillus subtilis mutants which lack the protease that degrades small, acid-soluble proteins during spore germination. J Bacteriol 1992; 174:807-14. [PMID: 1732215 PMCID: PMC206157 DOI: 10.1128/jb.174.3.807-814.1992] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
During germination of spores of Bacillus species the degradation of the spore's pool of small, acid-soluble proteins (SASP) is initiated by a protease termed GPR, the product of the gpr gene. Bacillus megaterium and B. subtilis mutants with an inactivated gpr gene grew, sporulated, and triggered spore germination as did gpr+ strains. However, SASP degradation was very slow during germination of gpr mutant spores, and in rich media the time taken for spores to return to vegetative growth (defined as outgrowth) was much longer in gpr than in gpr+ spores. Not surprisingly, gpr spores had much lower rates of RNA and protein synthesis during outgrowth than did gpr+ spores, although both types of spores had similar levels of ATP. The rapid decrease in the number of negative supertwists in plasmid DNA seen during germination of gpr+ spores was also much slower in gpr spores. Additionally, UV irradiation of gpr B. subtilis spores early in germination generated significant amounts of spore photoproduct and only small amounts of thymine dimers (TT); in contrast UV irradiation of germinated gpr+ spores generated almost no spore photoproduct and three to four times more TT. Consequently, germinated gpr spores were more UV resistant than germinated gpr+ spores. Strikingly, the slow outgrowth phenotype of B. subtilis gpr spores was suppressed by the absence of major alpha/beta-type SASP. These data suggest that (i) alpha/beta-type SASP remain bound to much, although not all, of the chromosome in germinated gpr spores; (ii) the alpha/beta-type SASP bound to the chromosome in gpr spores alter this DNA's topology and UV photochemistry; and (iii) the presence of alpha/beta-type SASP on the chromosome is detrimental to normal spore outgrowth.
Collapse
Affiliation(s)
- J L Sanchez-Salas
- Department of Biochemistry, University of Connecticut Health Center, Farmington 06030
| | | | | | | | | |
Collapse
|
13
|
Nicholson WL, Setlow B, Setlow P. Ultraviolet irradiation of DNA complexed with alpha/beta-type small, acid-soluble proteins from spores of Bacillus or Clostridium species makes spore photoproduct but not thymine dimers. Proc Natl Acad Sci U S A 1991; 88:8288-92. [PMID: 1924287 PMCID: PMC52493 DOI: 10.1073/pnas.88.19.8288] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
UV irradiation of complexes of DNA and an alpha/beta-type small, acid-soluble protein (SASP) from Bacillus subtilis spores gave decreasing amounts of pyrimidine dimers and increasing amounts of spore photoproduct as the SASP/DNA ratio was increased. The yields of pyrimidine dimers and spore photoproduct were less than 0.2% and 8% of total thymine, respectively, when DNA saturated with SASP was irradiated at 254 nm with 30 kJ/m2; in the absence of SASP the yields were reversed-4.5% and 0.3%, respectively. Complexes of DNA with alpha/beta-type SASP from Bacillus cereus, Bacillus megaterium, or Clostridium bifermentans spores also gave spore photoproduct upon UV irradiation. However, incubation of these SASPs with DNA under conditions preventing complex formation or use of mutant SASPs that do not form complexes did not affect the photoproducts formed in vitro. These results suggest that the UV photochemistry of bacterial spore DNA in vivo is due to the binding of alpha/beta-type SASP, a binding that is known to cause a change in DNA conformation in vitro from the B form to the A form. The yields of spore photoproduct in vitro were significantly lower than in vivo, perhaps because of the presence of substances other than SASP in spores. It is suggested that as these factors diffuse out in the first minutes of spore germination, spore photoproduct yields become similar to those observed for irradiation of SASP/DNA complexes in vitro.
Collapse
Affiliation(s)
- W L Nicholson
- Department of Biochemistry, University of Connecticut Health Center, Farmington 06030
| | | | | |
Collapse
|
14
|
Mohr SC, Sokolov NV, He CM, Setlow P. Binding of small acid-soluble spore proteins from Bacillus subtilis changes the conformation of DNA from B to A. Proc Natl Acad Sci U S A 1991; 88:77-81. [PMID: 1898779 PMCID: PMC50751 DOI: 10.1073/pnas.88.1.77] [Citation(s) in RCA: 95] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Small acid-soluble spore proteins (SASPs) appear 3-4 hr after the onset of sporulation in Gram-positive bacteria and constitute up to 20% of the protein of mature spores. Previous studies using Bacillus subtilis deletion mutants lacking SASP-alpha and -beta have shown that such mutations abolish the elevated resistance of spores to UV radiation. Analyses using circular dichroism and Fourier-transform infrared spectroscopy now demonstrate that binding alpha/beta-type SASPs to DNA in vitro causes a structural change in DNA, from the B to the A conformation. This may provide the basis whereby alpha/beta-type SASPs confer increased spore UV resistance in vivo--by changing spore DNA conformation, they alter DNA photochemistry such that UV irradiation produces spore photoproduct instead of the more lethal cyclobutane-type thymine dimers.
Collapse
Affiliation(s)
- S C Mohr
- Department of Chemistry, Boston University, MA 02215
| | | | | | | |
Collapse
|
15
|
Loshon CA, Tovar-Rojo F, Goldrick SE, Setlow P. The expression of a highly expressedBacillus subtilisgene is not reduced by introduction of multiple codons normally not present in such genes. FEMS Microbiol Lett 1989. [DOI: 10.1111/j.1574-6968.1989.tb03597.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
16
|
Mason JM, Fajardo-Cavazos P, Setlow P. Levels of mRNAs which code for small, acid-soluble spore proteins and their LacZ gene fusions in sporulating cells of Bacillus subtilis. Nucleic Acids Res 1988; 16:6567-83. [PMID: 2456528 PMCID: PMC338314 DOI: 10.1093/nar/16.14.6567] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The levels of mRNAs from genes (sspA, B and E) which code for major small, acid-soluble, spore proteins of Bacillus subtilis have been determined, as well as the levels of mRNAs from ssp-lacZ gene fusions. Increasing the gene dosage of ssp-lacZ fusions resulted in parallel increases in both the ssp-lacZ mRNA level and the rate of b-galactosidase accumulation. Similarly, an 11-fold increase in sspE gene dosage gave a comparable increase in sspE mRNA, but at most a 1.5-fold increase in the amount of sspE gene product accumulated. In contrast, an 11-fold increase in the dosage of the sspA or B genes had no significant effect on the level of total sspA plus sspB mRNA, but did alter the ratios of these mRNAs as well as the amount of their gene products, to reflect the altered ratio of the two genes. These results suggest that intact ssp genes, but not ssp-lacZ gene fusions, are subject to feedback regulation of gene expression, with this regulation of the sspA and B genes effected by modulation of mRNA levels, while the feedback regulation of the sspE gene is at the post-transcriptional level.
Collapse
Affiliation(s)
- J M Mason
- Department of Biochemistry, University of Connecticut Health Center, Farmington 06032
| | | | | |
Collapse
|
17
|
Hackett RH, Setlow P. Properties of spores of Bacillus subtilis strains which lack the major small, acid-soluble protein. J Bacteriol 1988; 170:1403-4. [PMID: 3125155 PMCID: PMC210926 DOI: 10.1128/jb.170.3.1403-1404.1988] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Bacillus subtilis strains containing a deletion in the gene coding for the major small, acid-soluble, spore protein (SASP-gamma) grew and sporulated, and their spores initiated germination normally, but outgrowth of SASP-gamma- spores was significantly slower than that of wild-type spores. The absence of SASP-gamma had no effect on spore protoplast density or spore resistance to heat or radiation. Consequently, SASP-gamma has a different function in spores than do the other major small, acid-soluble proteins.
Collapse
Affiliation(s)
- R H Hackett
- Department of Biochemistry, University of Connecticut Health Center, Farmington 06032
| | | |
Collapse
|
18
|
Granum PE, Richardson M, Blom H. Isolation and amino acid sequence of an acid soluble protein fromClostridium perfringensspores. FEMS Microbiol Lett 1987. [DOI: 10.1111/j.1574-6968.1987.tb02077.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
19
|
Hackett RH, Setlow P. Cloning, nucleotide sequencing, and genetic mapping of the gene for small, acid-soluble spore protein gamma of Bacillus subtilis. J Bacteriol 1987; 169:1985-92. [PMID: 3106326 PMCID: PMC212067 DOI: 10.1128/jb.169.5.1985-1992.1987] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The Bacillus subtilis gene (sspE) which codes for small acid-soluble spore protein gamma (SASP-gamma) was cloned, and its chromosomal location (65 degrees, linked to glpD) and nucleotide sequence were determined. The amino acid sequence of SASP-gamma is similar to that of SASP-B of Bacillus megaterium, but these sequences are not as highly conserved across species as are those of other SASPs. The SASP-gamma gene is transcribed only in sporulation in parallel with other SASP genes and gives a single mRNA that is approximately 340 nucleotides long. The results of hybridization of an sspE gene probe to Southern blots of B. subtilis DNA suggested that there is only a single gene coding for the SASP-gamma type of protein in B. subtilis. This was confirmed by introducing a deletion mutation into the cloned sspE gene and transferring the deletion into the B. subtilis chromosome, with concomitant loss of the wild-type gene. This sspE deletion strain sporulated well, but lacked the SASP-gamma type of protein.
Collapse
|
20
|
Loshon CA, Fliss ER, Setlow B, Foerster HF, Setlow P. Cloning and nucleotide sequencing of genes for small, acid-soluble spore proteins of Bacillus cereus, Bacillus stearothermophilus, and "Thermoactinomyces thalpophilus". J Bacteriol 1986; 167:168-73. [PMID: 3087949 PMCID: PMC212856 DOI: 10.1128/jb.167.1.168-173.1986] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
As found previously with other Bacillus species, spores of B. stearothermophilus and "Thermoactinomyces thalpophilus" contained significant levels of small, acid-soluble spore proteins (SASP) which were rapidly degraded during spore germination and which reacted with antibodies raised against B. megaterium SASP. Genes coding for a B. stearothermophilus and a "T. thalpophilus" SASP as well as for two B. cereus SASP were cloned, their nucleotide sequences were determined, and the amino acid sequences of the SASP coded for were compared. Strikingly, all of the amino acid residues previously found to be conserved in this group of SASP both within and between two other Bacillus species (B. megaterium and B. subtilis) were also conserved in the SASP coded for by the B. cereus genes as well as those coded for by the genes from the more distantly related organisms B. stearothermophilus and "T. thalpophilus." This finding strongly suggests that there is significant selective pressure to conserve SASP primary sequence and thus that these proteins serve some function other than simply amino acid storage.
Collapse
|
21
|
Mason JM, Setlow P. Essential role of small, acid-soluble spore proteins in resistance of Bacillus subtilis spores to UV light. J Bacteriol 1986; 167:174-8. [PMID: 3087950 PMCID: PMC212857 DOI: 10.1128/jb.167.1.174-178.1986] [Citation(s) in RCA: 152] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Bacillus subtilis strains containing deletions in the genes coding for one or two of the major small, acid-soluble spore proteins (SASP; termed SASP-alpha and SASP-beta) were constructed. These mutants sporulated normally, but the spores lacked either SASP-alpha, SASP-beta, or both proteins. The level of minor SASP did not increase in these mutants, but the level of SASP-alpha increased about twofold in the SASP-beta- mutant, and the level of SASP-beta increased about twofold in the SASP-alpha- mutant. The growth rates of the deletion strains were identical to that of the wild-type strain in rich or poor growth media, as was the initiation of spore germination. However, outgrowth of spores of the SASP-alpha(-)-beta- strain was significantly slower than that of wild-type spores in all media tested. The heat resistance of SASP-beta- spores was identical to that of wild-type spores but slightly greater than that of SASP-alpha- and SASP-alpha(-)-beta- spores. However, the SASP-alpha- and SASP-alpha(-)-beta- spores were much more heat resistant than vegetative cells. The UV light resistances of SASP-beta- and wild-type spores were also identical. However, SASP-alpha(-)-beta- spores were slightly more sensitive to UV light than were log-phase cells of the wild-type or SASP-alpha(-)-beta- strain (the latter have identical UV light resistances); SASP-alpha- spores were slightly more UV light resistant than SASP-alpha(-)-beta- spores. These data strongly implicate SASP, in particular SASP-alpha, in the UV light resistance of B. subtilis spores.
Collapse
|
22
|
Connors MJ, Mason JM, Setlow P. Cloning and nucleotide sequencing of genes for three small, acid-soluble proteins from Bacillus subtilis spores. J Bacteriol 1986; 166:417-25. [PMID: 3009398 PMCID: PMC214621 DOI: 10.1128/jb.166.2.417-425.1986] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Three Bacillus subtilis genes (termed sspA, sspB, and sspD) which code for small, acid-soluble spore proteins (SASPs) have been cloned, and their complete nucleotide sequence has been determined. The amino acid sequences of the SASPs coded for by these genes are similar to each other and to those of the SASP-1 of B. subtilis (coded for by the sspC gene) and the SASP-A/C family of B. megaterium. The sspA and sspB genes are expressed only in sporulation, in parallel with each other and with the sspC gene. Two regions upstream of the postulated transcription start sites for the sspA and B genes have significant homology with the analogous regions of the sspC gene and the SASP-A/C gene family. Purification of two of the three major B, subtilis SASPs (alpha and beta) and determination of their amino-terminal sequences indicated that the sspA gene codes for SASP-alpha and that the sspB gene codes for SASP-beta. This was confirmed by the introduction of deletion mutations into the cloned sspA and sspB genes and transfer of these deletions into the B. subtilis chromosome with concomitant loss of the wild-type gene.
Collapse
|
23
|
Johnson WC, Mahler I, Phillips K, Tipper DJ. Transcriptional control of synthesis of acid-soluble proteins in sporulating Bacillus subtilis. J Bacteriol 1985; 163:543-51. [PMID: 3926748 PMCID: PMC219156 DOI: 10.1128/jb.163.2.543-551.1985] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The major acid-soluble spore proteins (ASSPs) isolated from mature spores of Bacillus subtilis are designated alpha, beta, and gamma (about 60, 60, and 100 amino acids in length, respectively). Alpha and beta are very similar, and gamma is very similar to a less predominant ASSP called delta (about 115 amino acids). A minor and very basic ASSP called epsilon is the same size as alpha and beta but is unrelated antigenically. These and several minor ASSPs comprise at least three related families of sporulation-specific gene products. Expression of the alpha and beta genes, detectable as functional mRNA in vitro, coincides with the time of synthesis of all of the major ASSPs in vivo. This apparently coordinate expression is dependent on at least the spo0A, spoIIA, and spoIIIA loci, but not on the spoIVA or spoVA loci, consistent with the late stage of this expression (initiating at 3.5 h after the start of sporulation and peaking at 5 h after start of sporulation). A few minor ASSPs may be asynchronously expressed.
Collapse
|
24
|
Cloning of a small, acid-soluble spore protein gene from Bacillus subtilis and determination of its complete nucleotide sequence. J Bacteriol 1985; 161:333-9. [PMID: 2981806 PMCID: PMC214876 DOI: 10.1128/jb.161.1.333-339.1985] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The first Bacillus subtilis small, acid-soluble spore protein (SASP) gene has been cloned by using previously cloned B. megaterium SASP genes as DNA-DNA hybridization probes. Determination of the DNA sequence of the B. subtilis SASP gene showed that it codes for a 72-residue protein (termed SASP-1) containing a single spore protease cleavage site as well as other sequences conserved in Bacillus megaterium SASPs A, C, C-1, C-2, and C-3. The B. subtilis SASP-1 genes's coding sequence is preceded by a potential Bacillus ribosome-binding site, and is followed by a sequence that could form a stem-and-loop structure characteristic of transcription termination sites. Upstream from the coding sequence there are no obvious homologies with other B. subtilis sporulation genes, but similarities with B. megaterium SASP genes are evident. SASP-1 mRNA (290 bases long) is absent from vegetative cells, but appears midway in sporulation and then disappears. The cloned SASP-1 gene hybridizes to three bands other than the SASP-1 gene itself in EcoRI or HindIII digests of B. subtilis DNA. Presumably these other bands represent SASP genes related to the SASP-1 gene, and we have been able to detect at least three such proteins in B. subtilis spores.
Collapse
|
25
|
Swerdlow RD, Setlow P. Isolation and characterization of two distinct fractions from the inner membrane of dormant Bacillus megaterium spores. J Bacteriol 1984; 158:9-15. [PMID: 6425272 PMCID: PMC215371 DOI: 10.1128/jb.158.1.9-15.1984] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Two distinct membrane bands were obtained after sucrose velocity gradient centrifugation of crude inner membranes from dormant Bacillus megaterium spores disrupted under conditions which minimized endogenous enzyme action. These two inner membrane fractions (termed LD and HD) contained similar amounts of total and individual phospholipid species. However, LD and HD differed significantly in phospholipid/protein ratios (4.3 and 0.47 mg/mg, respectively), equilibrium densities (1.12 and 1.18 g/cm3), NADH oxidase specific activity (less than 0.01 and 0.13 mumol/min X mg), and content of specific proteins. In contrast, crude membranes prepared in identical fashion from germinated spores gave only a single inner membrane band (termed G) on sucrose velocity gradients. G had a phospholipid/protein ratio of 0.98 mg/mg, an equilibrium density of 1.16 g/cm3, and an NADH oxidase specific activity of 2.1 mumol/min X mg. Essentially all of the proteins present in LD or HD or both were found in G, consistent with the latter membrane being derived from a mixture of LD and HD. No evidence was found suggesting that there is significant degradation of dormant spore inner membrane protein upon spore germination.
Collapse
|
26
|
Mason JM, Setlow P. Expression of Bacillus megaterium and Bacillus subtilis small acid-soluble spore protein genes during stationary-phase growth of asporogenous B. subtilis mutants. J Bacteriol 1984; 157:931-3. [PMID: 6421802 PMCID: PMC215348 DOI: 10.1128/jb.157.3.931-933.1984] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The small acid-soluble spore proteins alpha and beta were not detected during stationary-phase growth of asporogenous Bacillus subtilis mutants blocked in stages 0, II, or III, but mutants blocked in stages IV or V accumulated nearly wild-type levels of these small acid-soluble spore proteins. Similar results were obtained when production of Bacillus megaterium C protein (also a small acid-soluble spore protein), as well as alpha and beta, were monitored in these mutants containing a recombinant plasmid carrying the B. megaterium C protein gene. The only exception was a spo0H mutant which synthesized a small amount of C protein, but no alpha or beta.
Collapse
|
27
|
Goldrick S, Setlow P. Expression of a Bacillus megaterium sporulation-specific gene during sporulation of Bacillus subtilis. J Bacteriol 1983; 155:1459-62. [PMID: 6411694 PMCID: PMC217851 DOI: 10.1128/jb.155.3.1459-1462.1983] [Citation(s) in RCA: 74] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The gene for the Bacillus megaterium spore C protein, a sporulation-specific gene, has been transferred into Bacillus subtilis. The B. megaterium gene was expressed little, if at all, during log-phase and early-stationary-phase growth, but was expressed during sporulation with the same kinetics as and at a level similar to that of the analogous B. subtilis genes. This finding is most consistent with the regulation of this class of genes by a mechanism of positive control.
Collapse
|
28
|
Hecker M. [Molecular biology of the germination of Bacillus spores]. ZEITSCHRIFT FUR ALLGEMEINE MIKROBIOLOGIE 1983; 23:517-35. [PMID: 6362220 DOI: 10.1002/jobm.3630230814] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The review deals with recent results and problems of gene expression during germination of Bacillus spores. Three problems were selected: 1. The activation of metabolism as a prerequisite for the synthesis of nucleic acids and proteins. 2. The activation of nucleic acid and protein synthesis during germination. 3. The gene expression programme of germinating spores. Using the highly sensitive two-dimensional polyacrylamide gel analysis three major classes of proteins were distinguished, depending on the time of onset and duration of their syntheses: a) proteins made throughout germination (main class), b) proteins whose synthesis started only after a lag phase and then continued throughout germination, and c) proteins which are synthesized only during the early phases of germination. The programme of protein synthesis is an indicator for the control of gene expression during germination. The regulation of expression of these major gene groups during spore outgrowth is discussed.
Collapse
|
29
|
Abstract
The major acid-soluble spore proteins (ASSPs) of Bacillus subtilis were detected by immunoprecipitation of radioactively labeled in vitro- and in vivo-synthesized proteins. ASSP synthesis in vivo began 2 h after the initiation of sporulation (t2) and reached its maximum rate at t7. This corresponded to the time of synthesis of mRNA that stimulated the maximum rate of ASSP synthesis in vitro. Under the set of conditions used in these experiments, protease synthesis began near t0, alkaline phosphatase synthesis began at about t2, and refractile spores were first observed between t7 and t8. In vivo- and in vitro-synthesized ASSPs comigrated in sodium dodecyl sulfate-polyacrylamide gels. Their molecular weights were 4,600 (alpha and beta) and 11,000 (gamma). The average half-life of the ASSP messages was 11 min when either rifampin (10 micrograms/ml) or actinomycin D (1 microgram/ml) was used to inhibit RNA synthesis.
Collapse
|
30
|
Yuan K, Johnson WC, Tipper DJ, Setlow P. Comparison of various properties of low-molecular-weight proteins from dormant spores of several Bacillus species. J Bacteriol 1981; 146:965-71. [PMID: 6787019 PMCID: PMC216950 DOI: 10.1128/jb.146.3.965-971.1981] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Several properties of the major proteins degraded during germination of spores of Bacillus cereus, Bacillus megaterium, and Bacillus subtilis have been compared. All of the proteins had low molecular weights (6,000 to 13,000) and lacked cysteine, cystine, and tryptophan. The proteins could be subdivided into two groups: group I (B. megaterium A and C proteins, B. cereus A protein, and B. subtilis alpha and beta proteins) and group II (B. cereus and B. megaterium B proteins and B. subtilis gamma protein). Species in group II had lower levels of (or lacked) the amino acids isoleucine, leucine, methionine, and proline. Similarly, proteins in each group were more closely related immunologically. However, antisera against a B. megaterium group I protein cross-reacted more strongly with the B. megaterium group II protein than with group I proteins from other spore species, whereas antisera against the B. megaterium group II protein cross-reacted most strongly with B. megaterium group I proteins. Analysis of the primary sequences at the amino termini and in the regions of the B. cereus and B. subtilis proteins cleaved by the B. megaterium spore protease revealed that the B. cereus A protein was most similar to the B. megaterium A and C proteins, and the B. cereus B protein and the B. subtilis gamma protein were most similar to the B. megaterium B protein. However, amino terminal sequences within one group of proteins varied considerably, whereas the spore protease cleavage sites were more highly conserved.
Collapse
|