1
|
Muskhelishvili G, Forquet R, Reverchon S, Meyer S, Nasser W. Coherent Domains of Transcription Coordinate Gene Expression During Bacterial Growth and Adaptation. Microorganisms 2019; 7:microorganisms7120694. [PMID: 31847191 PMCID: PMC6956064 DOI: 10.3390/microorganisms7120694] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/28/2019] [Accepted: 12/09/2019] [Indexed: 01/07/2023] Open
Abstract
Recent studies strongly suggest that in bacteria, both the genomic pattern of DNA thermodynamic stability and the order of genes along the chromosomal origin-to-terminus axis are highly conserved and that this spatial organization plays a crucial role in coordinating genomic transcription. In this article, we explore the relationship between genomic sequence organization and transcription in the commensal bacterium Escherichia coli and the plant pathogen Dickeya. We argue that, while in E. coli the gradient of DNA thermodynamic stability and gene order along the origin-to-terminus axis represent major organizational features orchestrating temporal gene expression, the genomic sequence organization of Dickeya is more complex, demonstrating extended chromosomal domains of thermodynamically distinct DNA sequences eliciting specific transcriptional responses to various kinds of stress encountered during pathogenic growth. This feature of the Dickeya genome is likely an adaptation to the pathogenic lifestyle utilizing differences in genomic sequence organization for the selective expression of virulence traits. We propose that the coupling of DNA thermodynamic stability and genetic function provides a common organizational principle for the coordinated expression of genes during both normal and pathogenic bacterial growth.
Collapse
Affiliation(s)
| | - Raphaël Forquet
- INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, Univ. Lyon, Université Lyon 1, F-69622 Villeurbanne, France; (R.F.); (S.R.); (S.M.)
| | - Sylvie Reverchon
- INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, Univ. Lyon, Université Lyon 1, F-69622 Villeurbanne, France; (R.F.); (S.R.); (S.M.)
| | - Sam Meyer
- INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, Univ. Lyon, Université Lyon 1, F-69622 Villeurbanne, France; (R.F.); (S.R.); (S.M.)
| | - William Nasser
- INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, Univ. Lyon, Université Lyon 1, F-69622 Villeurbanne, France; (R.F.); (S.R.); (S.M.)
- Correspondence:
| |
Collapse
|
2
|
Spatial organization of RNA polymerase and its relationship with transcription in Escherichia coli. Proc Natl Acad Sci U S A 2019; 116:20115-20123. [PMID: 31527272 DOI: 10.1073/pnas.1903968116] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent studies have shown that RNA polymerase (RNAP) is organized into distinct clusters in Escherichia coli and Bacillus subtilis cells. Spatially organized molecular components in prokaryotic systems imply compartmentalization without the use of membranes, which may offer insights into unique functions and regulations. It has been proposed that the formation of RNAP clusters is driven by active ribosomal RNA (rRNA) transcription and that RNAP clusters function as factories for highly efficient transcription. In this work, we examined these hypotheses by investigating the spatial organization and transcription activity of RNAP in E. coli cells using quantitative superresolution imaging coupled with genetic and biochemical assays. We observed that RNAP formed distinct clusters that were engaged in active rRNA synthesis under a rich medium growth condition. Surprisingly, a large fraction of RNAP clusters persisted in the absence of high rRNA transcription activities or when the housekeeping σ70 was sequestered, and was only significantly diminished when all RNA transcription was inhibited globally. In contrast, the cellular distribution of RNAP closely followed the morphology of the underlying nucleoid under all conditions tested irrespective of the corresponding transcription activity, and RNAP redistributed into dispersed, smaller clusters when the supercoiling state of the nucleoid was perturbed. These results suggest that RNAP was organized into active transcription centers under the rich medium growth condition; its spatial arrangement at the cellular level, however, was not dependent on rRNA synthesis activity and was likely organized by the underlying nucleoid.
Collapse
|
3
|
Muskhelishvili G, Travers A. The regulatory role of DNA supercoiling in nucleoprotein complex assembly and genetic activity. Biophys Rev 2016; 8:5-22. [PMID: 28510220 PMCID: PMC5425797 DOI: 10.1007/s12551-016-0237-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 10/21/2016] [Indexed: 01/06/2023] Open
Abstract
We argue that dynamic changes in DNA supercoiling in vivo determine both how DNA is packaged and how it is accessed for transcription and for other manipulations such as recombination. In both bacteria and eukaryotes, the principal generators of DNA superhelicity are DNA translocases, supplemented in bacteria by DNA gyrase. By generating gradients of superhelicity upstream and downstream of their site of activity, translocases enable the differential binding of proteins which preferentially interact with respectively more untwisted or more writhed DNA. Such preferences enable, in principle, the sequential binding of different classes of protein and so constitute an essential driver of chromatin organization.
Collapse
Affiliation(s)
| | - Andrew Travers
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK.
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK.
| |
Collapse
|
4
|
Crozat E, Philippe N, Lenski RE, Geiselmann J, Schneider D. Long-term experimental evolution in Escherichia coli. XII. DNA topology as a key target of selection. Genetics 2005; 169:523-32. [PMID: 15489515 PMCID: PMC1449116 DOI: 10.1534/genetics.104.035717] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2004] [Accepted: 10/29/2004] [Indexed: 11/18/2022] Open
Abstract
The genetic bases of adaptation are being investigated in 12 populations of Escherichia coli, founded from a common ancestor and serially propagated for 20,000 generations, during which time they achieved substantial fitness gains. Each day, populations alternated between active growth and nutrient exhaustion. DNA supercoiling in bacteria is influenced by nutritional state, and DNA topology helps coordinate the overall pattern of gene expression in response to environmental changes. We therefore examined whether the genetic controls over supercoiling might have changed during the evolution experiment. Parallel changes in topology occurred in most populations, with the level of DNA supercoiling increasing, usually in the first 2000 generations. Two mutations in the topA and fis genes that control supercoiling were discovered in a population that served as the focus for further investigation. Moving the mutations, alone and in combination, into the ancestral background had an additive effect on supercoiling, and together they reproduced the net change in DNA topology observed in this population. Moreover, both mutations were beneficial in competition experiments. Clonal interference involving other beneficial DNA topology mutations was also detected. These findings define a new class of fitness-enhancing mutations and indicate that the control of DNA supercoiling can be a key target of selection in evolving bacterial populations.
Collapse
Affiliation(s)
- Estelle Crozat
- Laboratoire Adaptation et Pathogénie des Microorganismes, Université Joseph Fourier, Institut Jean Roget, CNRS UMR 5163, F-38041 Grenoble, France
| | | | | | | | | |
Collapse
|
5
|
Auner H, Buckle M, Deufel A, Kutateladze T, Lazarus L, Mavathur R, Muskhelishvili G, Pemberton I, Schneider R, Travers A. Mechanism of transcriptional activation by FIS: role of core promoter structure and DNA topology. J Mol Biol 2003; 331:331-44. [PMID: 12888342 DOI: 10.1016/s0022-2836(03)00727-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Escherichia coli DNA architectural protein FIS activates transcription from stable RNA promoters on entry into exponential growth and also reduces the level of negative supercoiling. Here we show that such a reduction decreases the activity of the tyrT promoter but that activation by FIS rescues tyrT transcription at non-optimal superhelical densities. Additionally we show that three different "up" mutations in the tyrT core promoter either abolish or reduce the dependence of tyrT transcription on both high negative superhelicity and FIS in vivo and infer that the specific sequence organisation of the core promoter couples the control of transcription initiation by negative superhelicity and FIS. In vitro all the mutations potentiate FIS-independent untwisting of the -10 region while at the wild-type promoter FIS facilitates this step. We propose that this untwisting is a crucial limiting step in the initiation of tyrT RNA synthesis. The tyrT core promoter structure is thus optimised to combine high transcriptional activity with acute sensitivity to at least three major independent regulatory inputs: negative superhelicity, FIS and ppGpp.
Collapse
Affiliation(s)
- Helge Auner
- Institut für Genetik und Mikrobiologie, LMU, München, Maria-Ward-Str 1a, 80638, München, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Schneider R, Travers A, Kutateladze T, Muskhelishvili G. A DNA architectural protein couples cellular physiology and DNA topology in Escherichia coli. Mol Microbiol 1999; 34:953-64. [PMID: 10594821 DOI: 10.1046/j.1365-2958.1999.01656.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Escherichia coli, the transcriptional activity of many promoters is strongly dependent on the negative superhelical density of chromosomal DNA. This, in turn, varies with the growth phase, and is correlated with the overall activity of DNA gyrase, the major topoisomerase involved in the elevation of negative superhelicity. The DNA architectural protein FIS is a regulator of the metabolic reorganization of the cell during early exponential growth phase. We have previously shown that FIS modulates the superhelical density of plasmid DNA in vivo, and on binding reshapes the supercoiled DNA in vitro. Here, we show that, in addition, FIS represses the gyrA and gyrB promoters and reduces DNA gyrase activity. Our results indicate that FIS determines DNA topology both by regulation of topoisomerase activity and, as previously inferred, by directly reshaping DNA. We propose that FIS is involved in coupling cellular physiology to the topology of the bacterial chromosome.
Collapse
MESH Headings
- Base Sequence
- Blotting, Northern
- Blotting, Western
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- DNA Footprinting
- DNA Gyrase
- DNA Topoisomerases, Type II/genetics
- DNA Topoisomerases, Type II/metabolism
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- DNA, Superhelical/chemistry
- DNA, Superhelical/genetics
- DNA, Superhelical/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- DNA-Directed RNA Polymerases/metabolism
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Escherichia coli/physiology
- Escherichia coli Proteins
- Factor For Inversion Stimulation Protein
- Gene Expression Regulation, Bacterial
- Integration Host Factors
- Molecular Sequence Data
- Promoter Regions, Genetic
- Transcription, Genetic
Collapse
Affiliation(s)
- R Schneider
- Institut für Genetik und Mikrobiologie, LMU München, Maria-Ward-Str. 1a, 80638 München, Germany
| | | | | | | |
Collapse
|
7
|
Jensen PR, Loman L, Petra B, van der Weijden C, Westerhoff HV. Energy buffering of DNA structure fails when Escherichia coli runs out of substrate. J Bacteriol 1995; 177:3420-6. [PMID: 7768851 PMCID: PMC177044 DOI: 10.1128/jb.177.12.3420-3426.1995] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
To study how changes in the [ATP]/[ADP] ratio affect the level of DNA supercoiling in Escherichia coli, the cellular content of H(+)-ATPase was modulated around the wild-type level. A relatively large drop in the [ATP]/[ADP] ratio from the normal ratio resulted in a small increase in the linking number of our reporter plasmid (corresponding to a small decrease in negative supercoiling). However, when cells depleted their carbon and energy source, the ensuing drop in energy state was accompanied by a strong increase in linking number. This increase was not due to reduced transcription of the DNA in the absence of growth substrate, since rifampin had virtually no effect on the plasmid linking number. To examine whether DNA supercoiling depends more strongly on the cellular energy state at low [ATP]/[ADP] ratios than at high ratios, we used cells that were already at a low energy state after substrate depletion; after the addition of an uncoupler to these cells, the [ATP]/[ADP] ratio decreased further, which resulted in a strong increase in plasmid linking number. Our results suggest that the strong thermodynamic control of DNA supercoiling takes over at low [ATP]/[ADP] ratios, whereas at high ratios homeostatic control mechanisms attenuate thermodynamic control.
Collapse
Affiliation(s)
- P R Jensen
- Division of Molecular Biology, The Netherlands Cancer Institute, Amsterdam
| | | | | | | | | |
Collapse
|
8
|
Free A, Dorman CJ. Escherichia coli tyrT gene transcription is sensitive to DNA supercoiling in its native chromosomal context: effect of DNA topoisomerase IV overexpression on tyrT promoter function. Mol Microbiol 1994; 14:151-61. [PMID: 7830553 DOI: 10.1111/j.1365-2958.1994.tb01275.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have investigated the in vivo DNA supercoiling sensitivity of the Escherichia coli tRNA(1tyr) gene (tyrT) promoter in its normal chromosomal location. Here, the native tyrT promoter is found to be exquisitely sensitive to mutations and to drugs which alter the level of DNA supercoiling. We show that the response of the tyrT promoter to supercoiling is qualitatively similar to that of a known supercoiling-sensitive tRNA gene promoter, hisR. Specifically, treatments which increase in vivo DNA supercoiling levels enhance transcription of these tRNA genes. Particularly striking is the strong enhancement of expression from both promoters by a transposon insertion mutation in the topA gene encoding DNA toposisomerase I. This phenotypic effect can be complemented by providing active topoisomerase I in trans from a recombinant plasmid. Interestingly, it can also be complemented by overexpression of the genes encoding the subunits of DNA topoisomerase IV. We believe that this is the first demonstration that DNA topoisomerase IV can influence gene expression and it suggests that DNA topoisomerase I is partially redundant, at least in E. coli.
Collapse
Affiliation(s)
- A Free
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin, Republic of Ireland
| | | |
Collapse
|
9
|
Affiliation(s)
- R Wagner
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Germany
| |
Collapse
|
10
|
Menzel R, Gellert M. The biochemistry and biology of DNA gyrase. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1994; 29A:39-69. [PMID: 7826864 DOI: 10.1016/s1054-3589(08)60539-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- R Menzel
- Bristol-Myers Squibb Pharmaceutical Institute, Princeton, New Jersey 08540
| | | |
Collapse
|
11
|
Krohn M, Pardon B, Wagner R. Effects of template topology on RNA polymerase pausing during in vitro transcription of the Escherichia coli rrnB leader region. Mol Microbiol 1992; 6:581-9. [PMID: 1552858 DOI: 10.1111/j.1365-2958.1992.tb01504.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Transcription elongation catalysed by DNA-dependent RNA polymerase does not occur at a constant rate. Instead, during the transcription of many genes pausing occurs at defined template positions. Pausing is known to be influenced by the intracellular NTP concentration, the secondary structure of the growing transcript or by transcription factors like NusA. We have investigated the effects of the template topology of transcriptional pauses in the presence and absence on purified NusA protein. Taking advantage of a method for quantifying transcriptional pauses we have studied pausing behaviour during in vitro transcription of the early region of a plasmid-encoded ribosomal RNA operon. Plasmid templates with different superhelical densities (sigma between +0.0017 and -0.055) were employed in transcription elongation assays. If linearized or relaxed templates are used, some of the characteristic pauses can no longer be detected. For the stronger pauses we could demonstrate a direct correlation between pause strength and the negative superhelical densities of the templates used. This correlation is observed regardless of whether or not pauses are dependent upon NusA. Changes in the average transcription elongation rate, caused by variations in the NTP concentration or the temperature, do not appear to have a comparable effect on transcription pausing. The results are consistent with the assumption that the template topology has a regulatory function in transcription elongation of rRNA genes in Escherichia coli.
Collapse
Affiliation(s)
- M Krohn
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Germany
| | | | | |
Collapse
|
12
|
DNA supercoiling and environmental regulation of gene expression in pathogenic bacteria. Infect Immun 1991; 59:745-9. [PMID: 1997427 PMCID: PMC258322 DOI: 10.1128/iai.59.3.745-749.1991] [Citation(s) in RCA: 116] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
13
|
Abstract
A DNA structure is defined as paranemic if the participating strands can be separated without mutual rotation of the opposite strands. The experimental methods employed to detect paranemic, unwound, DNA regions is described, including probing by single-strand specific nucleases (SNN), conformation-specific chemical probes, topoisomer analysis, NMR, and other physical methods. The available evidence for the following paranemic structures is surveyed: single-stranded DNA, slippage structures, cruciforms, alternating B-Z regions, triplexes (H-DNA), paranemic duplexes and RNA, protein-stabilized paranemic DNA. The problem of DNA unwinding during gene copying processes is analyzed; the possibility that extended paranemic DNA regions are transiently formed during replication, transcription, and recombination is considered, and the evidence supporting the participation of paranemic DNA forms in genes committed to or undergoing copying processes is summarized.
Collapse
MESH Headings
- Animals
- Base Sequence
- Chromosomes/ultrastructure
- DNA/drug effects
- DNA/metabolism
- DNA/ultrastructure
- DNA Helicases/metabolism
- DNA Replication
- DNA Topoisomerases, Type I/metabolism
- DNA Topoisomerases, Type II/metabolism
- DNA, Single-Stranded/drug effects
- DNA, Single-Stranded/metabolism
- DNA, Single-Stranded/ultrastructure
- DNA, Superhelical/drug effects
- DNA, Superhelical/metabolism
- DNA, Superhelical/ultrastructure
- DNA-Binding Proteins/metabolism
- Endonucleases/metabolism
- Models, Genetic
- Molecular Sequence Data
- Nucleic Acid Conformation/drug effects
- Nucleic Acid Denaturation
- Plasmids
- Transcription, Genetic
Collapse
Affiliation(s)
- G Yagil
- Department of Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
14
|
Jemiolo DK, Steen R, Stark MJ, Dahlberg AE. Analysis of plasmid-coded ribosomal RNA maxicell techniques. Methods Enzymol 1988; 164:691-706. [PMID: 3071689 DOI: 10.1016/s0076-6879(88)64078-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
15
|
Balke VL, Gralla JD. Changes in the linking number of supercoiled DNA accompany growth transitions in Escherichia coli. J Bacteriol 1987; 169:4499-506. [PMID: 3308843 PMCID: PMC213814 DOI: 10.1128/jb.169.10.4499-4506.1987] [Citation(s) in RCA: 212] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The supercoiling levels of plasmid DNA were determined from Escherichia coli which was grown in ways that are known to alter global patterns of gene expression and metabolism. Changes in DNA supercoiling were shown to occur during several types of these nutrient upshifts and downshifts. The most dramatic change in supercoiling was seen in starved cells, in which two populations of differentially relaxed plasmids were shown to coexist. Thus, some changes in the external nutritional environment that cause the cells to reorganize their global metabolism also cause accompanying changes in DNA supercoiling. Results of experiments with dinitrophenol suggested that the observed relaxations were probably not due to reduced pools of ATP. When rifampin was used to release supercoils restrained by RNA polymerase, the cellular topoisomerases responded by removing these new, unrestrained supercoils. We interpret these results as implying that the cellular topological machinery maintains a constant superhelical energy in the DNA except during certain growth transitions, when changes in metabolism and gene expression are accompanied by changes in DNA supercoiling.
Collapse
MESH Headings
- 2,4-Dinitrophenol
- Acetates/metabolism
- Culture Media
- DNA, Bacterial/drug effects
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- DNA, Superhelical/drug effects
- DNA, Superhelical/genetics
- DNA, Superhelical/metabolism
- Dinitrophenols/pharmacology
- Electrophoresis, Agar Gel
- Escherichia coli/genetics
- Escherichia coli/growth & development
- Escherichia coli/metabolism
- Gene Expression Regulation
- Genes, Bacterial
- Genetic Linkage
- Glucose/metabolism
- Nucleic Acid Conformation
- Plasmids
- Rifampin/pharmacology
- Transcription, Genetic
Collapse
Affiliation(s)
- V L Balke
- Department of Chemistry and Biochemistry, University of California, Los Angeles 90024
| | | |
Collapse
|
16
|
Herrin GL, Bennett GN. The effect of nalidixic acid on expression from related E. coli promoters. Biochem Biophys Res Commun 1986; 135:411-8. [PMID: 3008718 DOI: 10.1016/0006-291x(86)90010-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The effect of the DNA gyrase inhibitor, nalidixic acid, on expression from E. coli promoters was studied using the pKO-1, galactokinase expression vector system. Expression from a series of related hybrid promoters, tet promoter variants and the trp promoter flanked by oligonucleotide blocks was measured after incubation with nalidixic acid. Expression from the pBR322 tet promoter and tet promoter mutants within the -10 region was reduced after the drug treatment. The lacUV5, trp, and tettrp promoters were essentially unaffected while the trplac and the trptet promoters were stimulated. Studies of the trp promoter flanked by upstream or downstream oligonucleotide blocks revealed similar responses to the trp promoter parent control plasmids.
Collapse
|
17
|
Steen R, Jemiolo DK, Skinner RH, Dunn JJ, Dahlberg AE. Expression of plasmid-coded mutant ribosomal RNA in E. coli: choice of plasmid vectors and gene expression systems. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1986; 33:1-18. [PMID: 3541039 DOI: 10.1016/s0079-6603(08)60018-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
18
|
Coupling between DNA replication and cell division mediated by the FtsA protein in Escherichia coli: a pathway independent of the SOS response, the "TER" pathway. J Bacteriol 1985; 164:950-3. [PMID: 2414272 PMCID: PMC214349 DOI: 10.1128/jb.164.2.950-953.1985] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Inhibition of DNA synthesis prevented the recovery of cell division in filaments of D-3R [ftsA3(Ts) recA56] returned to the permissive temperature. The FtsA protein may be a signal involved in the "TER" pathway, a series of events that coordinate cell division with DNA replication, that is independent of the SOS pathway.
Collapse
|
19
|
|
20
|
|
21
|
Stark MJ, Gourse RL, Dahlberg AE. Site-directed mutagenesis of ribosomal RNA. Analysis of ribosomal RNA deletion mutants using maxicells. J Mol Biol 1982; 159:417-39. [PMID: 6187923 DOI: 10.1016/0022-2836(82)90292-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|