1
|
Matsui D, Yamada T, Hayashi J, Toyotake Y, Takeda Y, Wakayama M. Biochemical characterization of l-asparagine synthetase from Streptococcus thermophilus and its application in the enzymatic synthesis of β-aspartyl compounds. J Biosci Bioeng 2024:S1389-1723(24)00164-6. [PMID: 38981802 DOI: 10.1016/j.jbiosc.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 07/11/2024]
Abstract
β-Aspartyl compounds, such as β-aspartyl hydroxamate (serine racemase inhibitor), β-aspartyl-l-lysine (moisture retention), and β-aspartyl-l-tryptophan (immunomodulator) are physiologically active compounds. There is limited literature on the development of effective methods of production of β-aspartyl compounds. In this study, we describe the biochemical characterization of asparagine synthetase (AS) from Streptococcus thermophilus NBRC 13957 (StAS) and the enzymatic synthesis of β-aspartyl compounds using StAS. Recombinant StAS was expressed in Escherichia coli BL21(DE3) and it displayed activity towards hydroxylamine, methylamine, ethylamine, and ammonia, as acceptors of the β-aspartyl moiety. StAS exhibited higher activity toward hydroxylamine and ethylamine as acceptor substrates compared with the enzymes from Lactobacillus delbrueckii NBRC 13953, Lactobacillus reuteri NBRC 15892, and E. coli. The coupling of the synthesis of β-aspartyl compounds by StAS with an ATP-regeneration system using polyphosphate kinase from Deinococcus proteoliticus NBRC 101906 displayed an approximately 2.5-fold increase in the production of β-aspartylhydroxamate from 1.06 mM to 2.53 mM after a 76-h reaction.
Collapse
Affiliation(s)
- Daisuke Matsui
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Taizo Yamada
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Junji Hayashi
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 770-8513, Japan
| | - Yosuke Toyotake
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Yoichi Takeda
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Mamoru Wakayama
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.
| |
Collapse
|
2
|
Panwar P, Williams TJ, Allen MA, Cavicchioli R. Population structure of an Antarctic aquatic cyanobacterium. MICROBIOME 2022; 10:207. [PMID: 36457105 PMCID: PMC9716671 DOI: 10.1186/s40168-022-01404-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/29/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Ace Lake is a marine-derived, stratified lake in the Vestfold Hills of East Antarctica with an upper oxic and lower anoxic zone. Cyanobacteria are known to reside throughout the water column. A Synechococcus-like species becomes the most abundant member in the upper sunlit waters during summer while persisting annually even in the absence of sunlight and at depth in the anoxic zone. Here, we analysed ~ 300 Gb of Ace Lake metagenome data including 59 Synechococcus-like metagenome-assembled genomes (MAGs) to determine depth-related variation in cyanobacterial population structure. Metagenome data were also analysed to investigate viruses associated with this cyanobacterium and the host's capacity to defend against or evade viruses. RESULTS A single Synechococcus-like species was found to exist in Ace Lake, Candidatus Regnicoccus frigidus sp. nov., consisting of one phylotype more abundant in the oxic zone and a second phylotype prevalent in the oxic-anoxic interface and surrounding depths. An important aspect of genomic variation pertained to nitrogen utilisation, with the capacity to perform cyanide assimilation and asparagine synthesis reflecting the depth distribution of available sources of nitrogen. Both specialist (host specific) and generalist (broad host range) viruses were identified with a predicted ability to infect Ca. Regnicoccus frigidus. Host-virus interactions were characterised by a depth-dependent distribution of virus type (e.g. highest abundance of specialist viruses in the oxic zone) and host phylotype capacity to defend against (e.g. restriction-modification, retron and BREX systems) and evade viruses (cell surface proteins and cell wall biosynthesis and modification enzymes). CONCLUSION In Ace Lake, specific environmental factors such as the seasonal availability of sunlight affects microbial abundances and the associated processes that the microbial community performs. Here, we find that the population structure for Ca. Regnicoccus frigidus has evolved differently to the other dominant phototroph in the lake, Candidatus Chlorobium antarcticum. The geography (i.e. Antarctica), limnology (e.g. stratification) and abiotic (e.g. sunlight) and biotic (e.g. microbial interactions) factors determine the types of niches that develop in the lake. While the lake community has become increasingly well studied, metagenome-based studies are revealing that niche adaptation can take many paths; these paths need to be determined in order to make reasonable predictions about the consequences of future ecosystem perturbations. Video Abstract.
Collapse
Affiliation(s)
- Pratibha Panwar
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, 2052, Australia
| | - Timothy J Williams
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, 2052, Australia
| | - Michelle A Allen
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, 2052, Australia
| | - Ricardo Cavicchioli
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, 2052, Australia.
| |
Collapse
|
3
|
In-solution behavior and protective potential of asparagine synthetase A from Trypanosoma cruzi. Mol Biochem Parasitol 2019; 230:1-7. [PMID: 30885794 DOI: 10.1016/j.molbiopara.2019.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 03/11/2019] [Accepted: 03/11/2019] [Indexed: 11/24/2022]
Abstract
l-Asparagine synthetase (AS) acts in asparagine formation and can be classified into two families: AS-A or AS-B. AS-A is mainly found in prokaryotes and can synthetize asparagine from ammonia. Distinct from other eukaryotes, Trypanosoma cruzi produces an AS-A. AS-A from Trypanosoma cruzi (Tc-AS-A) differs from prokaryotic AS-A due to its ability to catalyze asparagine synthesis using both glutamine and ammonia as nitrogen sources. Regarding these peculiarities, this work uses several biophysical techniques to provide data concerning the Tc-AS-A in-solution behavior. Tc-AS-A was produced as a recombinant and purified by three chromatography steps. Circular dichroism, dynamic light scattering, and analytical size exclusion chromatography showed that Tc-AS-A has the same fold and quaternary arrangement of prokaryotic AS-A. Despite the tendency of protein to aggregate, stable dimers were obtained when solubilization occurred at pH ≤ 7.0. We also demonstrate the protective efficacy against T. cruzi infection in mice immunized with Tc-AS-A. Our results indicate that immunization with Tc-AS-A might confer partial protection to infective forms of T. cruzi in this particular model.
Collapse
|
4
|
Gaufichon L, Rothstein SJ, Suzuki A. Asparagine Metabolic Pathways in Arabidopsis. PLANT & CELL PHYSIOLOGY 2016; 57:675-89. [PMID: 26628609 DOI: 10.1093/pcp/pcv184] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/18/2015] [Indexed: 05/03/2023]
Abstract
Inorganic nitrogen in the form of ammonium is assimilated into asparagine via multiple steps involving glutamine synthetase (GS), glutamate synthase (GOGAT), aspartate aminotransferase (AspAT) and asparagine synthetase (AS) in Arabidopsis. The asparagine amide group is liberated by the reaction catalyzed by asparaginase (ASPG) and also the amino group of asparagine is released by asparagine aminotransferase (AsnAT) for use in the biosynthesis of amino acids. Asparagine plays a primary role in nitrogen recycling, storage and transport in developing and germinating seeds, as well as in vegetative and senescence organs. A small multigene family encodes isoenzymes of each step of asparagine metabolism in Arabidopsis, except for asparagine aminotransferase encoded by a single gene. The aim of this study is to highlight the structure of the genes and encoded enzyme proteins involved in asparagine metabolic pathways; the regulation and role of different isogenes; and kinetic and physiological properties of encoded enzymes in different tissues and developmental stages.
Collapse
Affiliation(s)
- Laure Gaufichon
- INRA, IJPB, UMR1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026 Versailles, France
| | - Steven J Rothstein
- University of Guelph, Department of Molecular and Cellular Biology, Guelph, Ontario, Canada N1G 2W1
| | - Akira Suzuki
- INRA, IJPB, UMR1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026 Versailles, France
| |
Collapse
|
5
|
Faria J, Loureiro I, Santarém N, Macedo-Ribeiro S, Tavares J, Cordeiro-da-Silva A. Leishmania infantum Asparagine Synthetase A Is Dispensable for Parasites Survival and Infectivity. PLoS Negl Trop Dis 2016; 10:e0004365. [PMID: 26771178 PMCID: PMC4714757 DOI: 10.1371/journal.pntd.0004365] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 12/15/2015] [Indexed: 11/19/2022] Open
Abstract
A growing interest in asparagine (Asn) metabolism has currently been observed in cancer and infection fields. Asparagine synthetase (AS) is responsible for the conversion of aspartate into Asn in an ATP-dependent manner, using ammonia or glutamine as a nitrogen source. There are two structurally distinct AS: the strictly ammonia dependent, type A, and the type B, which preferably uses glutamine. Absent in humans and present in trypanosomatids, AS-A was worthy of exploring as a potential drug target candidate. Appealingly, it was reported that AS-A was essential in Leishmania donovani, making it a promising drug target. In the work herein we demonstrate that Leishmania infantum AS-A, similarly to Trypanosoma spp. and L. donovani, is able to use both ammonia and glutamine as nitrogen donors. Moreover, we have successfully generated LiASA null mutants by targeted gene replacement in L. infantum, and these parasites do not display any significant growth or infectivity defect. Indeed, a severe impairment of in vitro growth was only observed when null mutants were cultured in asparagine limiting conditions. Altogether our results demonstrate that despite being important under asparagine limitation, LiAS-A is not essential for parasite survival, growth or infectivity in normal in vitro and in vivo conditions. Therefore we exclude AS-A as a suitable drug target against L. infantum parasites.
Collapse
Affiliation(s)
- Joana Faria
- Parasite Disease Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Inês Loureiro
- Parasite Disease Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Nuno Santarém
- Parasite Disease Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Sandra Macedo-Ribeiro
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Protein Crystallography Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal
| | - Joana Tavares
- Parasite Disease Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Anabela Cordeiro-da-Silva
- Parasite Disease Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
6
|
Asparagine requirement in Plasmodium berghei as a target to prevent malaria transmission and liver infections. Nat Commun 2015; 6:8775. [PMID: 26531182 PMCID: PMC4659947 DOI: 10.1038/ncomms9775] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 09/29/2015] [Indexed: 01/29/2023] Open
Abstract
The proteins of Plasmodium, the malaria parasite, are strikingly rich in asparagine. Plasmodium depends primarily on host haemoglobin degradation for amino acids and has a rudimentary pathway for amino acid biosynthesis, but retains a gene encoding asparagine synthetase (AS). Here we show that deletion of AS in Plasmodium berghei (Pb) delays the asexual- and liver-stage development with substantial reduction in the formation of ookinetes, oocysts and sporozoites in mosquitoes. In the absence of asparagine synthesis, extracellular asparagine supports suboptimal survival of PbAS knockout (KO) parasites. Depletion of blood asparagine levels by treating PbASKO-infected mice with asparaginase completely prevents the development of liver stages, exflagellation of male gametocytes and the subsequent formation of sexual stages. In vivo supplementation of asparagine in mice restores the exflagellation of PbASKO parasites. Thus, the parasite life cycle has an absolute requirement for asparagine, which we propose could be targeted to prevent malaria transmission and liver infections. Malaria parasites obtain amino acids primarily from the host, but possess a gene encoding a putative asparagine synthetase. Here, the authors show that this enzyme is functional and that asparagine is crucial for the development of the parasite's sexual stages in mosquitoes and liver stages in mice.
Collapse
|
7
|
Abstract
This review considers the pathways for the degradation of amino acids and a few related compounds (agmatine, putrescine, ornithine, and aminobutyrate), along with their functions and regulation. Nitrogen limitation and an acidic environment are two physiological cues that regulate expression of several amino acid catabolic genes. The review considers Escherichia coli, Salmonella enterica serovar Typhimurium, and Klebsiella species. The latter is included because the pathways in Klebsiella species have often been thoroughly characterized and also because of interesting differences in pathway regulation. These organisms can essentially degrade all the protein amino acids, except for the three branched-chain amino acids. E. coli, Salmonella enterica serovar Typhimurium, and Klebsiella aerogenes can assimilate nitrogen from D- and L-alanine, arginine, asparagine, aspartate, glutamate, glutamine, glycine, proline, and D- and L-serine. There are species differences in the utilization of agmatine, citrulline, cysteine, histidine, the aromatic amino acids, and polyamines (putrescine and spermidine). Regardless of the pathway of glutamate synthesis, nitrogen source catabolism must generate ammonia for glutamine synthesis. Loss of glutamate synthase (glutamineoxoglutarate amidotransferase, or GOGAT) prevents utilization of many organic nitrogen sources. Mutations that create or increase a requirement for ammonia also prevent utilization of most organic nitrogen sources.
Collapse
|
8
|
Banerji J. Asparaginase treatment side-effects may be due to genes with homopolymeric Asn codons (Review-Hypothesis). Int J Mol Med 2015; 36:607-26. [PMID: 26178806 PMCID: PMC4533780 DOI: 10.3892/ijmm.2015.2285] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/15/2015] [Indexed: 12/14/2022] Open
Abstract
The present treatment of childhood T-cell leukemias involves the systemic administration of prokary-otic L-asparaginase (ASNase), which depletes plasma Asparagine (Asn) and inhibits protein synthesis. The mechanism of therapeutic action of ASNase is poorly understood, as are the etiologies of the side-effects incurred by treatment. Protein expression from genes bearing Asn homopolymeric coding regions (N-hCR) may be particularly susceptible to Asn level fluctuation. In mammals, N-hCR are rare, short and conserved. In humans, misfunctions of genes encoding N-hCR are associated with a cluster of disorders that mimic ASNase therapy side-effects which include impaired glycemic control, dislipidemia, pancreatitis, compromised vascular integrity, and neurological dysfunction. This paper proposes that dysregulation of Asn homeostasis, potentially even by ASNase produced by the microbiome, may contribute to several clinically important syndromes by altering expression of N-hCR bearing genes. By altering amino acid abundance and modulating ribosome translocation rates at codon repeats, the microbiomic environment may contribute to genome decoding and to shaping the proteome. We suggest that impaired translation at poly Asn codons elevates diabetes risk and severity.
Collapse
Affiliation(s)
- Julian Banerji
- Center for Computational and Integrative Biology, MGH, Simches Research Center, Boston, MA 02114, USA
| |
Collapse
|
9
|
Manhas R, Tripathi P, Khan S, Sethu Lakshmi B, Lal SK, Gowri VS, Sharma A, Madhubala R. Identification and functional characterization of a novel bacterial type asparagine synthetase A: a tRNA synthetase paralog from Leishmania donovani. J Biol Chem 2014; 289:12096-12108. [PMID: 24610810 DOI: 10.1074/jbc.m114.554642] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Asparagine is formed by two structurally distinct asparagine synthetases in prokaryotes. One is the ammonia-utilizing asparagine synthetase A (AsnA), and the other is asparagine synthetase B (AsnB) that uses glutamine or ammonia as a nitrogen source. In a previous investigation using sequence-based analysis, we had shown that Leishmania spp. possess asparagine-tRNA synthetase paralog asparagine synthetase A (LdASNA) that is ammonia-dependent. Here, we report the cloning, expression, and kinetic analysis of ASNA from Leishmania donovani. Interestingly, LdASNA was both ammonia- and glutamine-dependent. To study the physiological role of ASNA in Leishmania, gene deletion mutations were attempted via targeted gene replacement. Gene deletion of LdASNA showed a growth delay in mutants. However, chromosomal null mutants of LdASNA could not be obtained as the double transfectant mutants showed aneuploidy. These data suggest that LdASNA is essential for survival of the Leishmania parasite. LdASNA enzyme was recalcitrant toward crystallization so we instead crystallized and solved the atomic structure of its close homolog from Trypanosoma brucei (TbASNA) at 2.2 Å. A very significant conservation in active site residues is observed between TbASNA and Escherichia coli AsnA. It is evident that the absence of an LdASNA homolog from humans and its essentiality for the parasites make LdASNA a novel drug target.
Collapse
Affiliation(s)
- Reetika Manhas
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Pankaj Tripathi
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sameena Khan
- Structural and Computational Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | | | - Shambhu Krishan Lal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | | | - Amit Sharma
- Structural and Computational Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Rentala Madhubala
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
10
|
Loureiro I, Faria J, Clayton C, Ribeiro SM, Roy N, Santarém N, Tavares J, Cordeiro-da-Silva A. Knockdown of asparagine synthetase A renders Trypanosoma brucei auxotrophic to asparagine. PLoS Negl Trop Dis 2013; 7:e2578. [PMID: 24340117 PMCID: PMC3854871 DOI: 10.1371/journal.pntd.0002578] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 10/25/2013] [Indexed: 11/29/2022] Open
Abstract
Asparagine synthetase (AS) catalyzes the ATP-dependent conversion of aspartate into asparagine using ammonia or glutamine as nitrogen source. There are two distinct types of AS, asparagine synthetase A (AS-A), known as strictly ammonia-dependent, and asparagine synthetase B (AS-B), which can use either ammonia or glutamine. The absence of AS-A in humans, and its presence in trypanosomes, suggested AS-A as a potential drug target that deserved further investigation. We report the presence of functional AS-A in Trypanosoma cruzi (TcAS-A) and Trypanosoma brucei (TbAS-A): the purified enzymes convert L-aspartate into L-asparagine in the presence of ATP, ammonia and Mg2+. TcAS-A and TbAS-A use preferentially ammonia as a nitrogen donor, but surprisingly, can also use glutamine, a characteristic so far never described for any AS-A. TbAS-A knockdown by RNAi didn't affect in vitro growth of bloodstream forms of the parasite. However, growth was significantly impaired when TbAS-A knockdown parasites were cultured in medium with reduced levels of asparagine. As expected, mice infections with induced and non-induced T. brucei RNAi clones were similar to those from wild-type parasites. However, when induced T. brucei RNAi clones were injected in mice undergoing asparaginase treatment, which depletes blood asparagine, the mice exhibited lower parasitemia and a prolonged survival in comparison to similarly-treated mice infected with control parasites. Our results show that TbAS-A can be important under in vivo conditions when asparagine is limiting, but is unlikely to be suitable as a drug target. The amino acid asparagine is important not only for protein biosynthesis, but also for nitrogen homeostasis. Asparagine synthetase catalyzes the synthesis of this amino acid. There are two forms of asparagine synthetase, A and B. The presence of type A in trypanosomes, and its absence in humans, makes this protein a potential drug target. Trypanosomes are responsible for serious parasitic diseases that rely on limited drug therapeutic options for control. In our study we present a functional characterization of trypanosomes asparagine synthetase A. We describe that Trypanosoma brucei and Trypanosoma cruzi type A enzymes are able to use either ammonia or glutamine as a nitrogen donor, within the conversion of aspartate into asparagine. Furthermore, we show that asparagine synthetase A knockdown renders Trypanosoma brucei auxotrophic to asparagine. Overall, this study demonstrates that interfering with asparagine metabolism represents a way to control parasite growth and infectivity.
Collapse
Affiliation(s)
- Inês Loureiro
- Parasite Disease Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal
| | - Joana Faria
- Parasite Disease Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal
| | - Christine Clayton
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Sandra Macedo Ribeiro
- Protein Crystallography Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal
| | - Nilanjan Roy
- Ashok and Rita Patel Institute of Integrated Study and Research in Biotechnology and Allied Sciences, New Vallabh Vidyanagar, Gujarat, India
| | - Nuno Santarém
- Parasite Disease Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal
| | - Joana Tavares
- Parasite Disease Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal
- * E-mail: (JT); (ACdS)
| | - Anabela Cordeiro-da-Silva
- Parasite Disease Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal
- Departamento de Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto, Porto, Portugal
- * E-mail: (JT); (ACdS)
| |
Collapse
|
11
|
Qian G, Liu C, Wu G, Yin F, Zhao Y, Zhou Y, Zhang Y, Song Z, Fan J, Hu B, Liu F. AsnB, regulated by diffusible signal factor and global regulator Clp, is involved in aspartate metabolism, resistance to oxidative stress and virulence in Xanthomonas oryzae pv. oryzicola. MOLECULAR PLANT PATHOLOGY 2013; 14:145-57. [PMID: 23157387 PMCID: PMC6638903 DOI: 10.1111/j.1364-3703.2012.00838.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Xanthomonas oryzae pv. oryzicola (Xoc) causes bacterial leaf streak in rice, which is a destructive disease worldwide. Xoc virulence factors are regulated by diffusible signal factor (DSF) and the global regulator Clp. In this study, we have demonstrated that asnB (XOC_3054), encoding an asparagine synthetase, is a novel virulence-related gene regulated by both DSF and Clp in Xoc. A sequence analysis revealed that AsnB is highly conserved in Xanthomonas. An asnB mutation in Xoc dramatically impaired pathogen virulence and growth rate in host rice, but did not affect the ability to trigger the hypersensitive response in nonhost (plant) tobacco. Compared with the wild-type strain, the asnB deletion mutant was unable to grow in basic MMX (-) medium (a minimal medium without ammonium sulphate as the nitrogen source) with or without 10 tested nitrogen sources, except asparagine. The disruption of asnB impaired pathogen resistance to oxidative stress and reduced the transcriptional expression of oxyR, katA and katG, which encode three important proteins responsible for hydrogen peroxide (H(2)O(2)) sensing and detoxification in Xanthomonas in the presence of H(2)O(2), and nine important known Xoc virulence-related genes in plant cell-mimicking medium. Furthermore, the asnB mutation did not affect extracellular protease activity, extracellular polysaccharide production, motility or chemotaxis. Taken together, our results demonstrate the role of asnB in Xanthomonas for the first time.
Collapse
Affiliation(s)
- Guoliang Qian
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Gaufichon L, Masclaux-Daubresse C, Tcherkez G, Reisdorf-Cren M, Sakakibara Y, Hase T, Clément G, Avice JC, Grandjean O, Marmagne A, Boutet-Mercey S, Azzopardi M, Soulay F, Suzuki A. Arabidopsis thaliana ASN2 encoding asparagine synthetase is involved in the control of nitrogen assimilation and export during vegetative growth. PLANT, CELL & ENVIRONMENT 2013; 36:328-42. [PMID: 22789031 DOI: 10.1111/j.1365-3040.2012.02576.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We investigated the function of ASN2, one of the three genes encoding asparagine synthetase (EC 6.3.5.4), which is the most highly expressed in vegetative leaves of Arabidopsis thaliana. Expression of ASN2 and parallel higher asparagine content in darkness suggest that leaf metabolism involves ASN2 for asparagine synthesis. In asn2-1 knockout and asn2-2 knockdown lines, ASN2 disruption caused a defective growth phenotype and ammonium accumulation. The asn2 mutant leaves displayed a depleted asparagine and an accumulation of alanine, GABA, pyruvate and fumarate, indicating an alanine formation from pyruvate through the GABA shunt to consume excess ammonium in the absence of asparagine synthesis. By contrast, asparagine did not contribute to photorespiratory nitrogen recycle as photosynthetic net CO(2) assimilation was not significantly different between lines under both 21 and 2% O(2). ASN2 was found in phloem companion cells by in situ hybridization and immunolocalization. Moreover, lack of asparagine in asn2 phloem sap and lowered (15) N flux to sinks, accompanied by the delayed yellowing (senescence) of asn2 leaves, in the absence of asparagine support a specific role of asparagine in phloem loading and nitrogen reallocation. We conclude that ASN2 is essential for nitrogen assimilation, distribution and remobilization (via the phloem) within the plant.
Collapse
Affiliation(s)
- Laure Gaufichon
- INRA, UMR1318, Institut Jean-Pierre Bourgin, Département Adaptation des Plantes à l'Environnement, RD10, F-78000 Versailles, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ge S, Danino V, He Q, Hinton JCD, Granfors K. Microarray analysis of response of Salmonella during infection of HLA-B27- transfected human macrophage-like U937 cells. BMC Genomics 2010; 11:456. [PMID: 20670450 PMCID: PMC3091652 DOI: 10.1186/1471-2164-11-456] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 07/30/2010] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Human leukocyte antigen (HLA)-B27 is strongly associated with the development of reactive arthritis (ReA) in humans after salmonellosis. Human monocytic U937 cells transfected with HLA-B27 are less able to eliminate intracellular Salmonella enterica serovar Enteritidis than those transfected with control HLA antigens (e.g. HLA-A2). To investigate further the mechanisms by which HLA-B27-transfected cells allow increased replication of these bacteria, a DNA-based microarray was used for comparative genomic analysis of S. Enteritidis grown in HLA-B27- or HLA-A2-transfected cells. The microarray consisted of 5080 oligonucleotides from different serovars of Salmonella including S. Enteritidis PT4-specific genes. Bacterial RNA was isolated from the infected HLA-B27- or HLA-A2-transfected cells, reverse-transcribed to cDNA, and hybridized with the oligonucleotides on the microarrays. Some microarray results were confirmed by RT-PCR. RESULTS When gene expression was compared between Salmonella grown in HLA-B27 cells and in HLA-A2 cells, 118 of the 4610 S. Enteritidis-related genes differed in expression at 8 h after infection, but no significant difference was detectable at 2 h after infection. These differentially expressed genes are mainly involved in Salmonella virulence, DNA replication, energy conversion and metabolism, and uptake and metabolism of nutrient substances, etc. The difference suggests HLA-B27-dependent modulation of Salmonella gene expression, resulting in increased Salmonella replication in HLA-B27-positive cells. Among the up-regulated genes were those located in Salmonella pathogenicity island (SPI)-2, which play a central role in intracellular survival and replication of Salmonella. CONCLUSIONS This is the first report to show the regulation of Salmonella gene expression by HLA-B27 during infection of host cells. This regulation probably leads to increased Salmonella survival and replication in HLA-B27-positive cells. SPI-2 genes seem to contribute significantly to the increased replication.
Collapse
Affiliation(s)
- Shichao Ge
- Department of Infectious Disease Surveillance and Control, National Institute for Health and Welfare, Turku, Finland
| | | | | | | | | |
Collapse
|
14
|
Reitzer LJ, Magasanik B. Isolation of the nitrogen assimilation regulator NR(I), the product of the glnG gene of Escherichia coli. Proc Natl Acad Sci U S A 2010; 80:5554-8. [PMID: 16593366 PMCID: PMC384296 DOI: 10.1073/pnas.80.18.5554] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The product of the glnG gene, a member of the complex glnALG operon, is an essential component in the response of Escherichia coli K-12 and other enteric bacteria to nitrogen-limited growth. We have purified this protein which we propose to call "NR(I)," for nitrogen regulator I, to about 95% purity from an overproducing strain. Purified NR(I) was identified as a dimer by gel filtration. NR(I) specifically inhibited initiation of transcription from a DNA fragment containing the glnL promoter but was without effect on lacZ transcription. We determined the intracellular concentration of NR(I) under different growth conditions by using immunological techniques. The ratio of glutamine synthetase polypeptides, the product of the glnA gene, to NR(I) polypeptides was about 80:1. NR(I) was not rapidly degraded after ammonia shock, even though the ability to activate nitrogen-controlled systems was lost.
Collapse
Affiliation(s)
- L J Reitzer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | | |
Collapse
|
15
|
Wyatt K, White HE, Wang L, Bateman OA, Slingsby C, Orlova EV, Wistow G. Lengsin is a survivor of an ancient family of class I glutamine synthetases re-engineered by evolution for a role in the vertebrate lens. Structure 2007; 14:1823-34. [PMID: 17161372 PMCID: PMC1868402 DOI: 10.1016/j.str.2006.10.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 10/11/2006] [Accepted: 10/26/2006] [Indexed: 02/01/2023]
Abstract
Lengsin is a major protein of the vertebrate eye lens. It belongs to the hitherto purely prokaryotic GS I branch of the glutamine synthetase (GS) superfamily, but has no enzyme activity. Like the taxon-specific crystallins, Lengsin is the result of the recruitment of an ancient enzyme to a noncatalytic role in the vertebrate lens. Cryo-EM and modeling studies of Lengsin show a dodecamer structure with important similarities and differences with prokaryotic GS I structures. GS homology regions of Lengsin are well conserved, but the N-terminal domain shows evidence of dynamic evolutionary changes. Compared with birds and fish, most mammals have an additional exon corresponding to part of the N-terminal domain; however, in human, this is a nonfunctional pseudoexon. Genes related to Lengsin are also present in the sea urchin, suggesting that this branch of the GS I family, supplanted by GS II enzymes in vertebrates, has an ancient role in metazoans.
Collapse
Affiliation(s)
- Keith Wyatt
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Ren H, Liu J. AsnB is involved in natural resistance of Mycobacterium smegmatis to multiple drugs. Antimicrob Agents Chemother 2006; 50:250-5. [PMID: 16377694 PMCID: PMC1346815 DOI: 10.1128/aac.50.1.250-255.2006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacteria are naturally resistant to most common antibiotics and chemotherapeutic agents. The underlying molecular mechanisms are not fully understood. In this paper, we describe a hypersensitive mutant of Mycobacterium smegmatis, MS 2-39, which was isolated by screening for transposon insertion mutants of M. smegmatis mc2155 that exhibit increased sensitivity to rifampin, erythromycin, or novobiocin. The mutant MS 2-39 exhibited increased sensitivity to all three of the above mentioned antibiotics as well as fusidic acid, but its sensitivity to other antibiotics, including isoniazid, ethambutol, streptomycin, chloramphenicol, norfloxacin, tetracycline, and beta-lactams, remained unchanged. Uptake experiment with hydrophobic agents and cell wall lipid analysis suggest that the mutant cell wall is normal. The transposon insertion was localized within the asnB gene, which is predicted to encode a glutamine-dependent asparagine synthetase. Transformation of the mutant with wild-type asnB of mc2155 or asnB of Mycobacterium tuberculosis complemented the drug sensitivity phenotype. These results suggest that AsnB plays a role in the natural resistance of mycobacteria.
Collapse
Affiliation(s)
- Huiping Ren
- 4382 Medical Sciences Building, Department of Medical Genetics and Microbiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | | |
Collapse
|
17
|
Reitzer L. Biosynthesis of Glutamate, Aspartate, Asparagine, L-Alanine, and D-Alanine. EcoSal Plus 2004; 1. [PMID: 26443364 DOI: 10.1128/ecosalplus.3.6.1.3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2003] [Indexed: 06/05/2023]
Abstract
Glutamate, aspartate, asparagine, L-alanine, and D-alanine are derived from intermediates of central metabolism, mostly the citric acid cycle, in one or two steps. While the pathways are short, the importance and complexity of the functions of these amino acids befit their proximity to central metabolism. Inorganic nitrogen (ammonia) is assimilated into glutamate, which is the major intracellular nitrogen donor. Glutamate is a precursor for arginine, glutamine, proline, and the polyamines. Glutamate degradation is also important for survival in acidic environments, and changes in glutamate concentration accompany changes in osmolarity. Aspartate is a precursor for asparagine, isoleucine, methionine, lysine, threonine, pyrimidines, NAD, and pantothenate; a nitrogen donor for arginine and purine synthesis; and an important metabolic effector controlling the interconversion of C3 and C4 intermediates and the activity of the DcuS-DcuR two-component system. Finally, L- and D-alanine are components of the peptide of peptidoglycan, and L-alanine is an effector of the leucine responsive regulatory protein and an inhibitor of glutamine synthetase (GS). This review summarizes the genes and enzymes of glutamate, aspartate, asparagine, L-alanine, and D-alanine synthesis and the regulators and environmental factors that control the expression of these genes. Glutamate dehydrogenase (GDH) deficient strains of E. coli, K. aerogenes, and S. enterica serovar Typhimurium grow normally in glucose containing (energy-rich) minimal medium but are at a competitive disadvantage in energy limited medium. Glutamate, aspartate, asparagine, L-alanine, and D-alanine have multiple transport systems.
Collapse
|
18
|
Abstract
Nitrogen limitation in Escherichia coli controls the expression of about 100 genes of the nitrogen regulated (Ntr) response, including the ammonia-assimilating glutamine synthetase. Low intracellular glutamine controls the Ntr response through several regulators, whose activities are modulated by a variety of metabolites. Ntr proteins assimilate ammonia, scavenge nitrogen-containing compounds, and appear to integrate ammonia assimilation with other aspects of metabolism, such as polyamine metabolism and glutamate synthesis. The leucine-responsive regulatory protein (Lrp) controls the synthesis of glutamate synthase, which controls the Ntr response, presumably through its effect on intracellular glutamine. Some Ntr proteins inhibit the expression of some Lrp-activated genes. Guanosine tetraphosphate appears to control Lrp synthesis. In summary, a network of interacting global regulators that senses different aspects of metabolism integrates nitrogen assimilation with other metabolic processes.
Collapse
Affiliation(s)
- Larry Reitzer
- Department of Molecular and Cell Biology, The University of Texas at Dallas, Richardson, Texas 75080-0688, USA.
| |
Collapse
|
19
|
Boyce JD, Wilkie I, Harper M, Paustian ML, Kapur V, Adler B. Genomic scale analysis of Pasteurella multocida gene expression during growth within the natural chicken host. Infect Immun 2002; 70:6871-9. [PMID: 12438364 PMCID: PMC133079 DOI: 10.1128/iai.70.12.6871-6879.2002] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Little is known about the genomic-scale transcriptional responses of bacteria during natural infections. We used whole-genome microarray analysis to assess the transcriptional state of the gram-negative pathogen Pasteurella multocida, the causative agent of fowl cholera, during infection in the natural chicken host. We compared the expression profiles of bacteria harvested from the blood of septicemic chickens experiencing late-stage fowl cholera with those from bacteria grown in rich medium. Independent analysis of bacterial expression profiles from the infection of three individual chickens indicated that 40 genes were differentially expressed in all three individuals, 126 were differentially expressed in two of the three individuals, and another 372 were differentially expressed in one individual. Real-time reverse transcription-PCR assays were used to confirm the expression ratios for a number of genes. Of the 40 genes differentially expressed in all three individuals, 17 were up-regulated and 23 were down-regulated in the host compared with those grown in rich medium. The majority (10 of 17) of the up-regulated genes were involved in amino acid transport and metabolism and energy production and conversion, clearly indicating how P. multocida alters its biosynthetic and energy production pathways to cope with the host environment. In contrast, the majority (15 of 23) of down-regulated genes were of unknown or poorly characterized functions. There were clear differences in gene expression between the bacteria isolated from each of the three chickens, a finding consistent with individual host variation being an important factor in determining pathogen gene expression. Interestingly, bacteria from only two of the three infected animals had a gene expression profile highly similar to that observed during growth under iron-limiting conditions, suggesting that severe iron starvation may not always occur during P. multocida infection.
Collapse
Affiliation(s)
- John D Boyce
- Bacterial Pathogenesis Research Group, Department of Microbiology, School of Biomedical Sciences, Monash University, Victoria 3800, Australia
| | | | | | | | | | | |
Collapse
|
20
|
Saguir FM, Manca de Nadra MC. Effect of L-malic and citric acids metabolism on the essential amino acid requirements for Oenococcus oeni growth. J Appl Microbiol 2002; 93:295-301. [PMID: 12147078 DOI: 10.1046/j.1365-2672.2002.01698.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS The purpose of this work was to study the effect of L-malic and/or citric acids on Oenococcus oeni m growth in deficient nutritional conditions, and their roles as possible biosynthetic precursors of the essential amino acids. METHODS AND RESULTS Bacterial cultures were performed in synthetic media. Bacterial growth rate was reduced or annulled when one amino acid was omitted from basal medium, especially for members of aspartate family, except lysine. The organic acids increased or restored the growth rates to the respective reference values. In each medium deficient in one essential amino acid, the L-malic acid utilization was accompanied by an increase of L-lactic acid concentration and accounted for approximately 100%l-malic acid consumed. D-lactic acid formation from glucose decreased in the medium without cysteine. Except for tyrosine, the recovery of glucose-citrate as D-lactic acid was lower than in the complete medium when asparagine, isoleucine or cysteine were excluded. The ethanol and acetate production was not modified. CONCLUSIONS L-malic and citric acids favoured Oenococcus oeni m growth in nutritional stress conditions. Specifically citric acid was involved in the biosynthesis of the aspartate-derived essential amino acids and glucose in the cysteine biosynthesis. SIGNIFICANCE AND IMPACT OF THE STUDY Such beneficial effect of l-malic and citric acids on amino acids requirements of Oenococcus oeni m have great significance considering the low amino acids concentration in wine.
Collapse
Affiliation(s)
- F M Saguir
- Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | | |
Collapse
|
21
|
Min B, Pelaschier JT, Graham DE, Tumbula-Hansen D, Söll D. Transfer RNA-dependent amino acid biosynthesis: an essential route to asparagine formation. Proc Natl Acad Sci U S A 2002; 99:2678-83. [PMID: 11880622 PMCID: PMC122407 DOI: 10.1073/pnas.012027399] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Biochemical experiments and genomic sequence analysis showed that Deinococcus radiodurans and Thermus thermophilus do not possess asparagine synthetase (encoded by asnA or asnB), the enzyme forming asparagine from aspartate. Instead these organisms derive asparagine from asparaginyl-tRNA, which is made from aspartate in the tRNA-dependent transamidation pathway [Becker, H. D. & Kern, D. (1998) Proc. Natl. Acad. Sci. USA 95, 12832-12837; and Curnow, A. W., Tumbula, D. L., Pelaschier, J. T., Min, B. & Söll, D. (1998) Proc. Natl. Acad. Sci. USA 95, 12838-12843]. A genetic knockout disrupting this pathway deprives D. radiodurans of the ability to synthesize asparagine and confers asparagine auxotrophy. The organism's capacity to make asparagine could be restored by transformation with Escherichia coli asnB. This result demonstrates that in Deinococcus, the only route to asparagine is via asparaginyl-tRNA. Analysis of the completed genomes of many bacteria reveal that, barring the existence of an unknown pathway of asparagine biosynthesis, a wide spectrum of bacteria rely on the tRNA-dependent transamidation pathway as the sole route to asparagine.
Collapse
Affiliation(s)
- Bokkee Min
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | | | | | | | | |
Collapse
|
22
|
Poggio S, Domeinzain C, Osorio A, Camarena L. The nitrogen assimilation control (Nac) protein represses asnC and asnA transcription in Escherichia coli. FEMS Microbiol Lett 2002; 206:151-6. [PMID: 11814655 DOI: 10.1111/j.1574-6968.2002.tb11001.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
In this work, we show that the expression of the asnA and asnC genes is regulated by the availability of ammonium in the growth medium. Our results suggest that, under nitrogen-limiting growth conditions, the nitrogen assimilation control (Nac) protein is involved in the repression of the asnC gene, whose product is required to activate the transcription of asnA. We also show that asparagine negatively affects the expression of asnA, independently of the presence of Nac. These results allow us to conclude that asnA transcription is regulated by two different mechanisms that respond to different effectors: nitrogen and asparagine availability.
Collapse
Affiliation(s)
- Sebastian Poggio
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ap. Postal 70-228, 04510, México, D.F., Mexico
| | | | | | | |
Collapse
|
23
|
Bergès H, Checroun C, Guiral S, Garnerone AM, Boistard P, Batut J. A glutamine-amidotransferase-like protein modulates FixT anti-kinase activity in Sinorhizobium meliloti. BMC Microbiol 2001; 1:6. [PMID: 11389771 PMCID: PMC32199 DOI: 10.1186/1471-2180-1-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2001] [Accepted: 05/22/2001] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nitrogen fixation gene expression in Sinorhizobium meliloti, the alfalfa symbiont, depends on a cascade of regulation that involves both positive and negative control. On top of the cascade, the two-component regulatory system FixLJ is activated under the microoxic conditions of the nodule. In addition, activity of the FixLJ system is inhibited by a specific anti-kinase protein, FixT. The physiological significance of this negative regulation by FixT was so far unknown. RESULTS We have isolated by random Tn5 mutagenesis a S. meliloti mutant strain that escapes repression by FixT. Complementation test and DNA analysis revealed that inactivation of an asparagine synthetase-like gene was responsible for the phenotype of the mutant. This gene, that was named asnO, encodes a protein homologous to glutamine-dependent asparagine synthetases. The asnO gene did not appear to affect asparagine biosynthesis and may instead serve a regulatory function in S. meliloti. We provide evidence that asnO is active during symbiosis. CONCLUSIONS Isolation of the asnO mutant argues for the existence of a physiological regulation associated with fixT and makes it unlikely that fixT serves a mere homeostatic function in S. meliloti. Our data suggest that asnO might control activity of the FixT protein, in a way that remains to be elucidated. A proposed role for asnO might be to couple nitrogen fixation gene expression in S. meliloti to the nitrogen needs of the cells.
Collapse
Affiliation(s)
- Hélène Bergès
- Laboratoire de Biologie Moléculaire des Relations Plantes-Microorganismes, UMR215 CNRS-INRA, BP27, 31326 Castanet-Tolosan Cedex, France
| | - Claire Checroun
- Laboratoire de Biologie Moléculaire des Relations Plantes-Microorganismes, UMR215 CNRS-INRA, BP27, 31326 Castanet-Tolosan Cedex, France
| | - Sébastien Guiral
- Laboratoire de Biologie Moléculaire des Relations Plantes-Microorganismes, UMR215 CNRS-INRA, BP27, 31326 Castanet-Tolosan Cedex, France
| | - Anne-Marie Garnerone
- Laboratoire de Biologie Moléculaire des Relations Plantes-Microorganismes, UMR215 CNRS-INRA, BP27, 31326 Castanet-Tolosan Cedex, France
| | - Pierre Boistard
- Laboratoire de Biologie Moléculaire des Relations Plantes-Microorganismes, UMR215 CNRS-INRA, BP27, 31326 Castanet-Tolosan Cedex, France
| | - Jacques Batut
- Laboratoire de Biologie Moléculaire des Relations Plantes-Microorganismes, UMR215 CNRS-INRA, BP27, 31326 Castanet-Tolosan Cedex, France
| |
Collapse
|
24
|
Abstract
Three asparagine synthetase genes, asnB, asnH, and asnO (yisO), were predicted from the sequence of the Bacillus subtilis genome. We show here that the three genes are expressed differentially during cell growth. In a rich sporulation medium, expression of asnB was detected only during exponential growth, that of asnH was drastically elevated at the transition between exponential growth and stationary phase, and that of asnO was seen only later in sporulation. In a minimal medium, both asnB and asnH were expressed constitutively during exponential growth and in stationary phase, while the expression of asnO was not detected in either phase. However, when the minimal medium was supplemented with asparagine, only the expression of asnH was partially repressed. Transcription analyses revealed that asnB was possibly cotranscribed with a downstream gene, ytnA, while the asnH gene was transcribed as the fourth gene of an operon comprising yxbB, yxbA, yxnB, asnH, and yxaM. The asnO gene is a monocistronic operon, the expression of which was dependent on one of the sporulation sigma factors, sigma-E. Each of the three genes, carried on a low-copy-number plasmid, complemented the asparagine deficiency of an Escherichia coli strain lacking asparagine synthetases, indicating that all encode an asparagine synthetase. In B. subtilis, deletion of asnO or asnH, singly or in combination, had essentially no effect on growth rates in media with or without asparagine. In contrast, deletion of asnB led to a slow-growth phenotype, even in the presence of asparagine. A strain lacking all three genes still grew without asparagine, albeit very slowly, implying that B. subtilis might have yet another asparagine synthetase, not recognized by sequence analysis. The strains lacking asnO failed to sporulate, indicating an involvement of this gene in sporulation.
Collapse
Affiliation(s)
- K Yoshida
- Department of Biotechnology, Fukuyama University, Fukuyama, Hiroshima 729-0292, Japan.
| | | | | |
Collapse
|
25
|
Richards NG, Schuster SM. Mechanistic issues in asparagine synthetase catalysis. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 1998; 72:145-98. [PMID: 9559053 DOI: 10.1002/9780470123188.ch5] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The enzymatic synthesis of asparagine is an ATP-dependent process that utilizes the nitrogen atom derived from either glutamine or ammonia. Despite a long history of kinetic and mechanistic investigation, there is no universally accepted catalytic mechanism for this seemingly straightforward carboxyl group activating enzyme, especially as regards those steps immediately preceding amide bond formation. This chapter considers four issues dealing with the mechanism: (a) the structural organization of the active site(s) partaking in glutamine utilization and aspartate activation; (b) the relationship of asparagine synthetase to other amidotransferases; (c) the way in which ATP is used to activate the beta-carboxyl group; and (d) the detailed mechanism by which nitrogen is transferred.
Collapse
Affiliation(s)
- N G Richards
- Department of Chemistry, University of Florida, Gainesville 32611, USA
| | | |
Collapse
|
26
|
Boehlein SK, Walworth ES, Richards NG, Schuster SM. Mutagenesis and chemical rescue indicate residues involved in beta-aspartyl-AMP formation by Escherichia coli asparagine synthetase B. J Biol Chem 1997; 272:12384-92. [PMID: 9139684 DOI: 10.1074/jbc.272.19.12384] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Site-directed mutagenesis and kinetic studies have been employed to identify amino acid residues involved in aspartate binding and transition state stabilization during the formation of beta-aspartyl-AMP in the reaction mechanism of Escherichia coli asparagine synthetase B (AS-B). Three conserved amino acids in the segment defined by residues 317-330 appear particularly crucial for enzymatic activity. For example, when Arg-325 is replaced by alanine or lysine, the resulting mutant enzymes possess no detectable asparagine synthetase activity. The catalytic activity of the R325A AS-B mutant can, however, be restored to about 1/6 of that of wild-type AS-B by the addition of guanidinium HCl (GdmHCl). Detailed kinetic analysis of the rescued activity suggests that Arg-325 is involved in stabilization of a pentacovalent intermediate leading to the formation beta-aspartyl-AMP. This rescue experiment is the second example in which the function of a critical arginine residue that has been substituted by mutagenesis is restored by GdmHCl. Mutation of Thr-322 and Thr-323 also produces enzymes with altered kinetic properties, suggesting that these threonines are involved in aspartate binding and/or stabilization of intermediates en route to beta-aspartyl-AMP. These experiments are the first to identify residues outside of the N-terminal glutamine amide transfer domain that have any functional role in asparagine synthesis.
Collapse
Affiliation(s)
- S K Boehlein
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610, USA
| | | | | | | |
Collapse
|
27
|
Parr IB, Boehlein SK, Dribben AB, Schuster SM, Richards NG. Mapping the aspartic acid binding site of Escherichia coli asparagine synthetase B using substrate analogs. J Med Chem 1996; 39:2367-78. [PMID: 8691431 DOI: 10.1021/jm9601009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Novel inhibitors of asparagine synthetase, that will lower circulating levels of blood asparagine, have considerable potential in developing new protocols for the treatment of acute lymphoblastic leukemia. We now report the indirect characterization of the aspartate binding site of Escherichia coli asparagine synthetase B (AS-B) using a number of stereochemically, and conformationally, defined aspartic acid analogs. Two compounds, prepared using novel reaction conditions for the stereospecific beta-functionalization of aspartic acid diesters, have been found to be competitive inhibitors with respect to aspartate in kinetic studies on AS-B. Chemical modification experiments employing [(fluorosulfonyl)benzoyl]adenosine (FSBA), an ATP analog, demonstrate that both inhibitors bind to the aspartate binding site of AS-B. Our results reveal that large steric alterations in the substrate are not tolerated by the enzyme, consistent with the failure of previous efforts to develop AS inhibitors using random screening approaches, and that all of the ionizable groups are placed in close proximity in the bound conformation of aspartate.
Collapse
Affiliation(s)
- I B Parr
- Department of Chemistry, University of Florida, Gainesville 32611, USA
| | | | | | | | | |
Collapse
|
28
|
Goss TJ, Bender RA. The nitrogen assimilation control protein, NAC, is a DNA binding transcription activator in Klebsiella aerogenes. J Bacteriol 1995; 177:3546-55. [PMID: 7768865 PMCID: PMC177061 DOI: 10.1128/jb.177.12.3546-3555.1995] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A 32-kDa polypeptide corresponding to NAC, the product of the Klebsiella aerogenes nac gene, was overexpressed from a plasmid carrying a tac'-'nac operon fusion and purified to near homogeneity by taking advantage of its unusual solubility properties. NAC was able to shift the electrophoretic migration of DNA fragments carrying the NAC-sensitive promoters hutUp, putPp1, and ureDp. The interaction between NAC and hutUp was localized to a 26-bp region centered approximately 64 bp upstream of the hutUp transcription initiation site. Moreover, NAC protected this region from DNase I digestion. Mobility shift and DNase I protection studies utilizing the putP and ureD promoter regions identified NAC-binding regions of sizes and locations similar to those found in hutUp. Comparison of the DNA sequences which were protected from DNase I digestion by NAC suggests a minimal NAC-binding consensus sequence: 5'-ATA-N9-TAT-3'. In vitro transcription assays demonstrated that NAC was capable of activating the transcription of hutUp by sigma 70-RNA polymerase holoenzyme when this promoter was presented as either a linear or supercoiled DNA molecule. Thus, NAC displays the in vitro DNA-binding and transcription activation properties which have been predicted for the product of the nac gene.
Collapse
Affiliation(s)
- T J Goss
- Department of Biology, University of Michigan, Ann-Arbor 48109-1048, USA
| | | |
Collapse
|
29
|
Boehlein S, Richards N, Schuster S. Glutamine-dependent nitrogen transfer in Escherichia coli asparagine synthetase B. Searching for the catalytic triad. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37307-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
30
|
Shatters R, Liu Y, Kahn M. Isolation and characterization of a novel glutamine synthetase from Rhizobium meliloti. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)54175-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
31
|
Hinchman SK, Henikoff S, Schuster SM. A relationship between asparagine synthetase A and aspartyl tRNA synthetase. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)48471-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
32
|
Scofield MA, Lewis WS, Schuster SM. Nucleotide sequence of Escherichia coli asnB and deduced amino acid sequence of asparagine synthetase B. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38244-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
33
|
Abstract
In the last few years since the early NMR structural studies of small proteins such as glucagon (Braunet al.1983) andlacrepresser headpiece (Zuiderweget al.1984) the quality of the structure determinations have improved considerably. Of major importance has been the introduction of phase sensitive detection in the Tl dimension (Stateset al.1982; Marion & Wüthrich, 1983) which has allowed for absorption presentation of 2D data with the resulting enhancement in resolution, accuracy of coupling constant measurements and accuracy of peak volume integrations. Introduction of new pulse sequences, advances in instrumentation and further developments in the structure calculation algorithms have also helped improve the quality of NMR structural analyses of proteins.
Collapse
Affiliation(s)
- D M LeMaster
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208
| |
Collapse
|
34
|
de Wind N, de Jong M, Meijer M, Stuitje AR. Site-directed mutagenesis of the Escherichia coli chromosome near oriC: identification and characterization of asnC, a regulatory element in E. coli asparagine metabolism. Nucleic Acids Res 1985; 13:8797-811. [PMID: 3909107 PMCID: PMC318952 DOI: 10.1093/nar/13.24.8797] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We developed a new method for the specific mutagenization of the E. coli chromosome. This method takes advantage of the fact that a pBR322 plasmid containing chromosomal sequences is mobilizable during an Hfr-mediated conjugational transfer, due to an homologous recombination between the E. coli Hfr chromosome and the pBR322 derivative. Transconjugants are screened with a simple selection procedure for integration of mutant sequences in the chromosome and loss of pBR322 sequences. Using this method we specifically inactivated several genes near the E. coli replication origin oriC. We found that a gene coding for asparagine synthetase A. This regulatory mechanism was investigated in detail by determining in vivo regulation of asnA promoter activity by the 17kD protein under different growth conditions. Results obtained also suggest a general regulatory role of the 17kD protein in E. coli asparagine metabolism. Therefore the 17kD gene is proposed to be renamed asnC.
Collapse
|
35
|
Abstract
Neurospora crassa mutants deficient in asparagine synthetase were selected by using the procedure of inositol-less death. Complementation tests among the 100 mutants isolated suggested that their alterations were genetically allelic. Recombination analysis with strain S1007t, an asparagine auxotroph, indicated that the mutations were located near or within the asn gene on linkage group V. In vitro assays with a heterokaryon indicated that the mutation was dominant. Thermal instability of cell extracts from temperature-sensitive strains in an in vitro asparagine synthetase assay determined that the mutations were in the structural gene(s) for asparagine synthetase.
Collapse
|
36
|
Ow DW, Ausubel FM. Regulation of nitrogen metabolism genes by nifA gene product in Klebsiella pneumoniae. Nature 1983; 301:307-13. [PMID: 6337346 DOI: 10.1038/301307a0] [Citation(s) in RCA: 132] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The Klebsiella pneumoniae nifA gene product, which is known to activate expression of the nitrogen fixation (nif) structural genes, is shown here also to be able to substitute for the product of the gene glnG (ntrC) in the regulation of other nitrogen metabolism genes. An evolutionary relationship between the nifA and glnG genes is suggested.
Collapse
|