1
|
Stentz R, Wegmann U, Parker M, Bongaerts R, Lesaint L, Gasson M, Shearman C. CsiA is a bacterial cell wall synthesis inhibitor contributing to DNA translocation through the cell envelope. Mol Microbiol 2010; 72:779-94. [PMID: 19400771 DOI: 10.1111/j.1365-2958.2009.06683.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Conjugation is a widely spread mechanism allowing bacteria to adapt and evolve by acquiring foreign DNA. The chromosome of Lactococcus lactis MG 1363 contains a 60 kb conjugative element called the sex factor capable of high-frequency DNA transfer. Yet, little is known about the proteins involved in this process. Comparative genomics revealed a close relationship between the sex factor and elements found in Gram-positive pathogenic cocci. Among the conserved gene products, CsiA is a large protein that contains a highly conserved domain (HCD) and a C-terminal cysteine, histidine-dependent amidohydrolases/peptidases (CHAP) domain in its C-terminal moiety. Here, we show that CsiA is required for DNA transfer. Surprisingly, increased expression of CsiA affects cell viability and the cells become susceptible to lysis. Point mutagenesis of HCD reveals that this domain is responsible for the observed phenotypes. Growth studies and electron microscope observations suggest that CsiA is acting as a cell wall synthesis inhibitor. In vitro experiments reveal the capacity of CsiA to bind d-Ala-d-Ala analogues and to prevent the action of penicillin binding proteins. Our results strongly suggest that CsiA sequesters the peptidoglycan precursor and prevents the final stage of cell wall biosynthesis to enable the localized assembly of the DNA transfer machinery through the cell wall.
Collapse
Affiliation(s)
- Régis Stentz
- Commensals and Microflora (G2), Institute of Food Research, Norwich, UK.
| | | | | | | | | | | | | |
Collapse
|
2
|
|
3
|
Fontana R, Cornaglia G, Ligozzi M, Mazzariol A. The final goal: penicillin-binding proteins and the target of cephalosporins. Clin Microbiol Infect 2001; 6 Suppl 3:34-40. [PMID: 11449647 DOI: 10.1111/j.1469-0691.2000.tb02038.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- R Fontana
- Istituto di Microbiologia, Università degli Studi di Verona, Strada Le Grazie, 8, 37134 Verona, Italy
| | | | | | | |
Collapse
|
4
|
Fontana R, Ligozzi M, Pittaluga F, Satta G. Intrinsic penicillin resistance in enterococci. Microb Drug Resist 2000; 2:209-13. [PMID: 9158761 DOI: 10.1089/mdr.1996.2.209] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Penicillin resistance development in enterococci has been associated with overproduction of a low-affinity penicillin-binding protein (PBP) that is a normal component of the PBP pattern of these bacteria and is apparently able to substitute the functions of the other PBPs. In resistant mutants of Enterococcus hirae ATCC 9790 the low-affinity PBP (PBP5) overproduction was associated with a deletion in a genetic element, located 1 kb upstream of the pbp5 gene, which negatively controlled PBP5 synthesis. Hypersusceptibility to penicillin was associated with a point mutation in the pbp5 gene, which causes premature termination of translation. Structural homologies between low-affinity PBPs of the different enterococcal species have been suggested by cross-reactivity of antibodies raised against E. hirae PBP5 with PBP5 of Enterococcus faecium and Enterococcus faecalis. Acquisition of a high-level ampicillin resistance in E. faecium was associated with overproduction of PBP5, which, compared with PBP5 of moderately resistant strains, appeared to be modified in its penicillin-binding capability. The modified phenotype of PBP5 was found to be associated to some amino acid substitutions in the region between the SDN and KTG motifs. In particular, the substitution converting a polar residue (T) in a nonpolar one (A or I) could play an important role in remodeling the penicillin-binding domain and determining the decrease in penicillin affinity.
Collapse
Affiliation(s)
- R Fontana
- Istituto di Microbiologia, Università di Verona, Italy
| | | | | | | |
Collapse
|
5
|
Mainardi JL, Billot-Klein D, Coutrot A, Legrand R, Schoot B, Gutmann L. Resistance to cefotaxime and peptidoglycan composition in Enterococcus faecalis are influenced by exogenous sodium chloride. MICROBIOLOGY (READING, ENGLAND) 1998; 144(Pt 10):2679-2685. [PMID: 9802009 DOI: 10.1099/00221287-144-10-2679] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The influence of NaCl on the susceptibility of Enterococcus faecalis to cefotaxime was tested with JH2-2, a laboratory strain, and 20 clinical strains grown on tryptic soy agar supplemented with 5% horse blood. Growth with 3% NaCl in the medium resulted in an increase in cefotaxime resistance and the appearance of a heterogeneous resistance phenotype: for the majority of the strains, the MICs of cefotaxime increased from 4 to 512 micrograms ml-1. By a competition assay using cefotaxime and [3H]benzylpenicillin, it was shown for strain JH2-2 that at the MIC penicillin-binding protein (PBP) 2 and PBP3 were the apparent essential PBPs in medium without NaCl, whilst the low-affinity PBPs 4 and 1 were the apparent essential PBPs for cell growth in medium containing 3% NaCl. Analysis of JH2-2 peptidoglycan by HPLC and MS after growth in the presence of 3% NaCl showed a relative increase in unsubstituted monomers and a relative decrease in alanine- and dialanine-substituted monomers. It is therefore hypothesized that modification of the number of alanine-substituted precursors in the presence of NaCl could interfere with the functions of the different PBPs and thus play a role in cefotaxime resistance in E. faecalis.
Collapse
Affiliation(s)
- Jean-Luc Mainardi
- LRMA, Universite Paris VI, 15, rue de I'Ecole de MCdecine, 75270 Paris Cedex 06,France
- HBpital Saint-Joseph, Service de Microbiologie Clinique, 185 rue Raymond Losserand,75674 Paris Cedex 14,France
| | - Daniele Billot-Klein
- LRMA, Universite Paris VI, 15, rue de I'Ecole de MCdecine, 75270 Paris Cedex 06,France
| | - Anne Coutrot
- HBpital Saint-Joseph, Service de Microbiologie Clinique, 185 rue Raymond Losserand,75674 Paris Cedex 14,France
| | | | - Bernard Schoot
- Physics Department, Roussel UCLAF,93230 Romainville,France
| | - Laurent Gutmann
- LRMA, Universite Paris VI, 15, rue de I'Ecole de MCdecine, 75270 Paris Cedex 06,France
| |
Collapse
|
6
|
Satta G, Cornaglia G, Mazzariol A, Golini G, Valisena S, Fontana R. Target for bacteriostatic and bactericidal activities of beta-lactam antibiotics against Escherichia coli resides in different penicillin-binding proteins. Antimicrob Agents Chemother 1995; 39:812-8. [PMID: 7785976 PMCID: PMC162634 DOI: 10.1128/aac.39.4.812] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The relationship between cell-killing kinetics and penicillin-binding protein (PBP) saturation has been evaluated in the permeability mutant Escherichia coli DC2 in which the antimicrobial activity of beta-lactams has been described as being directly related to the extent of saturation of the PBP target(s). Saturation of a single PBP by cefsulodin (PBP 1s), mecillinam (PBP 2), and aztreonam (PBP 3) resulted in a slow rate of killing (2.5-, 1.5-, and 0.8-log-unit decreases in the number of CFU per milliliter, respectively, in 6 h). Saturation of two of the three essential PBPs resulted in a marked increase in the rate of killing, which reached the maximum value when PBPs 1s and 2 were simultaneously saturated by a combination of cefsulodin and mecillinam (4.7-log-unit decrease in the number of CFU per milliliter in 6 h). Inactivation of all three essential PBPs by the combination of cefsulodin, mecillinam, and aztreonam further increased the killing kinetics (5.5-log-unit decrease in the number of CFU per milliliter), and this was not significantly changed upon additional saturation of the nonessential PBPs 5 and 6 by cefoxitin. Similar relationships between PBP saturation and killing kinetics were obtained with imipenem and meropenem at concentrations which inhibited only one PBP (PBP 2), only two PBPs (PBP 1s and 2), or all three essential PBPs. Saturation of one or more PBPs also resulted in a different rate of bacteriolysis, the highest rate being obtained by the cefsulodin-mecillinam combination and by 5 micrograms of either imipenem or meropenem per ml. All of these conditions caused saturation of PBP 2 and saturation or extensive binding of PBP 1s. However, none of these conditions caused determined the fastest possible rate of killing, which occurred only when all three essential PBPs were saturated. It was concluded that the actual killing effect of beta-lactams is reflected by killing rates that approach the fastest possible rate for the given microorganism and that the targets for the bactericidal activity are precisely those PBPs whose saturation or binding occurs under conditions.
Collapse
Affiliation(s)
- G Satta
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | | | | | | | | |
Collapse
|
7
|
Fontana R, Aldegheri M, Ligozzi M, Lopez H, Sucari A, Satta G. Overproduction of a low-affinity penicillin-binding protein and high-level ampicillin resistance in Enterococcus faecium. Antimicrob Agents Chemother 1994; 38:1980-3. [PMID: 7811006 PMCID: PMC284671 DOI: 10.1128/aac.38.9.1980] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Five ampicillin-resistant clinical isolates of Enterococcus faecium were analyzed for a correlation between overproduction of the low-affinity penicillin-binding protein (PBP 5) and the level of ampicillin resistance. Comparison was made with one susceptible clinical isolate and its ampicillin-resistant derivative obtained in the laboratory by selection with increasing concentrations of penicillin. Overproduction of the low-affinity PBP relative to the susceptible isolate was noted in moderately resistant strains (MIC, 32 micrograms/ml) but not in highly resistant strains (MIC, 128 micrograms/ml). Polyclonal antibodies specifically reacting with the low-affinity PBP of Enterococcus hirae, Enterococcus faecalis, and Enterococcus faecium (M. Ligozzi, M. Aldegheri, S. C. Predari, and R. Fontana, FEMS Microbiol. Lett. 83:335-340, 1991) were used to determine the amount of this PBP in the E. faecium isolates. In all strains, the antibody preparation reacted with a membrane protein of the same molecular mass as PBP 5. The amount of this protein was very small in the susceptible strain but large in all of the resistant strains. These results suggest that the highly resistant strains also overproduced the low-affinity PBP, which, compared with PBP 5 of moderately resistant strains, appeared to be modified in its penicillin-binding capability.
Collapse
Affiliation(s)
- R Fontana
- Instituto di Microbiologia, Università di Verona, Italy
| | | | | | | | | | | |
Collapse
|
8
|
Satta G, Fontana R, Canepari P. The two-competing site (TCS) model for cell shape regulation in bacteria: the envelope as an integration point for the regulatory circuits of essential physiological events. Adv Microb Physiol 1994; 36:181-245. [PMID: 7942315 DOI: 10.1016/s0065-2911(08)60180-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- G Satta
- Institute of Microbiology, Catholic University of Sacred Heart, Rome, Italy
| | | | | |
Collapse
|
9
|
Ligozzi M, Pittaluga F, Fontana R. Identification of a genetic element (psr) which negatively controls expression of Enterococcus hirae penicillin-binding protein 5. J Bacteriol 1993; 175:2046-51. [PMID: 8458847 PMCID: PMC204297 DOI: 10.1128/jb.175.7.2046-2051.1993] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Enterococcus hirae ATCC 9790 produces a penicillin-binding protein (PBP5) of low penicillin affinity which under certain conditions can take over the functions of all the other PBPs. The 7.1-kb EcoRI fragment containing the pbp5 gene of this strain and of two mutants, of which one (E. hirae R40) overproduces PBP5 and the other (E. hirae Rev14) does not produce PBP5, was cloned in pUC18 and sequenced. In the 7.1-kb EcoRI fragment cloned from strain ATCC 9790, an open reading frame (psr) potentially encoding a 19-kDa protein was identified 1 kb upstream of the pbp5 gene. An 87-bp deletion in this element was found in the 7.1-kb EcoRI fragment cloned from strains R40 and Rev14. In addition, several base substitutions were found in the pbp5 genes of strains R40 and Rev14. One of these converted the 42nd codon, TCA, to the stop codon, TAA, in the pbp5 gene of Rev14. Escherichia coli strains were transformed with plasmids carrying the 7.1-kb EcoRI insert or a 2.6-kb HincII insert containing only the pbp5 gene of the three strains. Immunoblotting analysis of proteins expressed by these transformants showed that the 87-bp deletion in psr was associated with the PBP5 overproducer phenotype of strain R40 and the conversion of the TCA codon to the stop codon was associated with the PBP5 nonproducer phenotype of strain Rev14. None of the other nucleotide substitutions had any apparent effect on the level of PBP5 synthesized.
Collapse
Affiliation(s)
- M Ligozzi
- Institute of Microbiology, University of Verona, Italy
| | | | | |
Collapse
|
10
|
al-Obeid S, Gutmann L, Williamson R. Correlation of penicillin-induced lysis of Enterococcus faecium with saturation of essential penicillin-binding proteins and release of lipoteichoic acid. Antimicrob Agents Chemother 1990; 34:1901-7. [PMID: 2291656 PMCID: PMC171962 DOI: 10.1128/aac.34.10.1901] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Clinical isolates of Enterococcus faecium that had a range of susceptibilities to penicillin were found to differ significantly in their responses to the antibiotic. In the penicillin-susceptible group (MIC, less than or equal to 4 micrograms/ml), the cessation of growth (bacteriostasis) at 10 x the MIC of penicillin appeared to correlate with the inhibition of penicillin-binding protein (PBP) 5*, whereas the onset of lysis (bactericidal effect) at higher antibiotic concentrations (100 x the MIC) was concomitant with the inhibition of the lower-affinity PBP 5. In contrast, in the resistant (MIC, greater than or equal to 8 micrograms/ml) group (in which most of the strains did not contain PBP 5*), the degree of saturation of PBP 5 seemed to determine the physiological response to the antibiotic: low levels of saturation caused growth inhibition, whereas almost complete saturation correlated with lysis. The penicillin-induced cell lysis of both penicillin-susceptible and -resistant strains was attributed, at least in part, to the extensive loss of acylated lipoteichoic acid into the growth medium.
Collapse
Affiliation(s)
- S al-Obeid
- Laboratoire de Microbiologie Médicale, Université Pierre et Marie Curie, France
| | | | | |
Collapse
|
11
|
Fontana R, Canepari P, Lleò MM, Satta G. Mechanisms of resistance of enterococci to beta-lactam antibiotics. Eur J Clin Microbiol Infect Dis 1990; 9:103-5. [PMID: 2180705 DOI: 10.1007/bf01963633] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Two mechanisms are responsible for resistance of enterococci to beta-lactam antibiotics: alterations of penicillin-binding proteins and production of a beta-lactamase. The latter has been found in a few clinical isolates of Enterococcus faecalis, whereas the former appears to account for resistance in most strains. A correlation has been established between the amount of a particular penicillin-binding protein which has a low affinity for penicillin and the level of resistance. The higher activity of some penicillins, as compared to cephalosporins, has been related to the relatively higher affinity for these penicillins of the penicillin-binding protein involved in the mechanism of resistance. Alterations in the autolytic enzyme pattern have been associated with the paradoxical response to bactericidal activity of penicillin often exhibited by Enterococcus faecalis clinical isolates.
Collapse
Affiliation(s)
- R Fontana
- Istituto di Microbiologia, Università degli Studi di Verona, Italy
| | | | | | | |
Collapse
|
12
|
Fontana R, Boaretti M, Grossato A, Tonin EA, Lleò MM, Satta G. Paradoxical response of Enterococcus faecalis to the bactericidal activity of penicillin is associated with reduced activity of one autolysin. Antimicrob Agents Chemother 1990; 34:314-20. [PMID: 2109578 PMCID: PMC171579 DOI: 10.1128/aac.34.2.314] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Ten clinical isolates of Enterococcus faecalis were examined for susceptibility to the bactericidal activity of penicillin. Four of these had MBCs of penicillin equal to 2 to 4 x the MIC, and six exhibited a paradoxical response to penicillin, i.e., the bactericidal activity of the antibiotic had a concentration optimum at 2 to 4 x the MIC and decreased significantly at concentrations above this. We found that the paradoxical response to penicillin was an intrinsic and stable property of a strain, but that its phenotypic expression was not homogeneous; only a fraction of the cell population that died at low concentrations was able to survive at high penicillin concentrations. The size of this fraction increased with increasing antibiotic concentration and reached a maximum in the late-log phase of growth. All 10 strains produced a lytic enzyme that was active on Micrococcus luteus heat-killed cells, whereas only some strains lysed E. faecalis heat-killed cells. Strains producing large amounts of the latter enzyme did not show the paradoxical response to penicillin, whereas mutants of these strains that lacked this enzymatic activity paradoxically responded to the antibiotic activity. In addition, from strains that showed paradoxical response to penicillin and produced only the enzyme that was active on M. luteus, it was possible to isolate mutants that were also capable of lysing E. faecalis cells and that were killed with similar efficiency by all concentrations above the MBC. On the basis of these findings, the paradoxical response to penicillin is explained as a property of certain strains of E. faecalis; this property is genetically characterized by alterations in synthesis or activity of one autolysin but phenotypically expressed only by a few cells that are in a particular physiological condition when exposed to high concentrations of antibiotics.
Collapse
Affiliation(s)
- R Fontana
- Institute of Microbiology, University of Verona, Italy
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
To establish an infection, a pathogenic bacterium must adapt to growth in the hostile environment encountered in vivo in host tissues. The cell envelope plays a crucial role in this adaptive process, since it is involved in promoting adhesion to and colonisation of host tissues, in the acquisition of essential nutrients and in conferring resistance to host defences and to antibiotics. Its properties are ultimately determined by the information stored within the genome, which also contains the potential to respond to environmental change. The macromolecular structure and function of the cell envelope are largely determined by the growth environment and, in particular, specific nutrient limitation, growth rate, growth temperature and replication in suspension or within a surface-associated biofilm. Bacteria growing in vivo will manufacture envelopes characteristic of that environment and which will differ markedly in physiology, biochemistry and immunogenicity from those of cells grown in a standard laboratory medium. In vivo, the ability to withhold iron is an important component of the host's defence and iron deprivation has a pronounced effect on the metabolism and cell envelope properties of pathogenic bacteria. The phenotypic plasticity of the bacterial cell surface plays an important role in determining susceptibility to host defences and antibiotics and has important implications for the design and evaluation of new therapeutic strategies for the treatment and prevention of bacterial infections.
Collapse
Affiliation(s)
- P Williams
- Department of Pharmacy, University of Nottingham, University Park, UK
| |
Collapse
|
14
|
|
15
|
Lleó MM, Canepari P, Cornaglia G, Fontana R, Satta G. Bacteriostatic and bactericidal activities of beta-lactams against Streptococcus (Enterococcus) faecium are associated with saturation of different penicillin-binding proteins. Antimicrob Agents Chemother 1987; 31:1618-26. [PMID: 3435109 PMCID: PMC175002 DOI: 10.1128/aac.31.10.1618] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The MICs and MBCs of benzylpenicillin, ampicillin, cefotaxime, and methicillin were evaluated against a Streptococcus (Enterococcus) faecium wild-type strain and against three mutants hyperproducing PBP 5 in cells incubated at both optimal and suboptimal temperatures. In the wild-type strain grown at optimal temperature, the MBCs of all beta-lactams were significantly greater than the MICs (bacteriostatic effect). As opposed to this, in the same cells grown at suboptimal temperature and in the mutants hyperproducing PBP 5 at all temperatures, the MICs of all antibiotics coincided with the MBCs (bactericidal effect). Under all conditions in which the MIC and MBC were the same, with all antibiotics, growth inhibition occurred only at the minimal concentration saturating all penicillin-binding proteins (PBPs) (or at higher concentrations). On the contrary, under conditions in which the MIC was lower than the MBC, only some of the PBPs were saturated (or bound) at both the MIC and the MBC, PBP 5 in no case being either saturated or bound. Under all conditions in which saturation of all PBPs was needed for growth inhibition, cells died at all antibiotic MBCs with kinetics which were much faster than those with which they died at the MBCs under conditions in which not all PBPs were saturated (or bound). In addition, under the former conditions, antibiotic concentrations above the MBCs did not significantly accelerate cell death kinetics, while under the latter conditions there was an acceleration in kinetics with increasing antibiotic concentrations up to full saturation of PBPs. It is suggested that the killing that occurs when all PBPs are saturated is a direct consequence of inactivation of PBP functions, while killing occurring when only some of them are saturated or bound is also (or mainly) an indirect consequence of inability of cells to grow and that, in S. faecium, the targets for growth inhibition and cell killing reside in different PBPs: for the latter effect, inactivation of one (or more) of the high-molecular-weight PBPs is sufficient, whereas in the former case inactivation of PBP 5 is necessary (after saturation of all other PBPs).
Collapse
Affiliation(s)
- M M Lleó
- Istituto di Microbiologia dell'Università di Verona, Italy
| | | | | | | | | |
Collapse
|
16
|
Canepari P, Lleò MM, Fontana R, Satta G. Streptococcus faecium mutants that are temperature sensitive for cell growth and show alterations in penicillin-binding proteins. J Bacteriol 1987; 169:2432-9. [PMID: 3584060 PMCID: PMC212084 DOI: 10.1128/jb.169.6.2432-2439.1987] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The penicillin-binding proteins (PBPs) of 209 cell division (or growth) temperature-sensitive mutants of Streptococcus faecium were analyzed in this study. A total of nine strains showed either constitutive or temperature-sensitive conditional damage in the PBPs. Analysis of these nine strains yielded the following results: one carried a PBP 1 constitutively showing a lower molecular weight; one constitutively lacked PBP 2; two lacked PBP 3 at 42 degrees C, but not at 30 degrees C; one was normal at 30 degrees C but at 42 degrees C lacked PBP 3 and overproduced PBP 5; two were normal at 42 degrees C and lacked PBP 5 at 30 degrees C; one constitutively lacked PBP 5; and one carried a PBP 6 constitutively split in two bands. The mutant lacking PBP 3 and overproducing PBP 5 continued to grow at 42 degrees C for 150 min and then lysed. Revertants selected for growth capability at 42 degrees C from the mutants altered in PBPs 5 and 6 maintained the same PBP alterations, while those isolated from the strains with altered PBP 1 or lacking PBP 2 or PBP 3 showed a normal PBP pattern. Penicillin-resistant derivatives were isolated at 30 degrees C from the mutants lacking PBP 2 and from that lacking PBP 3. All these derivatives continued to show the same PBP damage as the parents, but overproduced PBP 5 and grew at 42 degrees C. These findings indicate that high-molecular-weight, but not low-molecular-weight, PBPs are essential for cell growth in S. faecium. This is in complete agreement with previous findings obtained with a different experimental system. On the basis of both previous and present data it is suggested that PBPs 1, 2, and 3 appear necessary for cell growth at optimal temperature (and at maximal rate), but not for cell growth at a submaximal one (or at a reduced rate), and an overproduced PBP 5 is capable of taking over the function of PBPs 1, 2, and 3.
Collapse
|
17
|
Chapter 12. Antimicrobial Drugs – Clinical Problems and Opportunities. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 1986. [DOI: 10.1016/s0065-7743(08)61122-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
18
|
Fontana R, Grossato A, Rossi L, Cheng YR, Satta G. Transition from resistance to hypersusceptibility to beta-lactam antibiotics associated with loss of a low-affinity penicillin-binding protein in a Streptococcus faecium mutant highly resistant to penicillin. Antimicrob Agents Chemother 1985; 28:678-83. [PMID: 3853962 PMCID: PMC176356 DOI: 10.1128/aac.28.5.678] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Penicillin-binding protein (PBP) 5 of Streptococcus faecium has been shown to have a very low affinity for penicillin, and this PBP was suggested to be responsible for both the natural low susceptibility and high resistance to the antibiotic in this species (R. Fontana, R. Cerini, P. Longoni, A. Grossato, and P. Canepari, J. Bacteriol. 155:1343-1350, 1983). In this study, an S. faecium mutant (Rev 14) hypersusceptible to penicillin was derived from the highly resistant S. faecium R40 treated with novobiocin, and its properties were compared with those of the parent and S. faecium PS, a relatively susceptible strain from which R40 was isolated. The hypersusceptible strain did not synthesize PBP 5, but it did resemble the parent in cell morphology, growth rate, and autolytic activity. In addition, it was highly susceptible to other beta-lactams but remained as susceptible as R40 and PS to antibiotics of a different mechanisms of action. The affinity of individual PBPs for the beta-lactams tested was the same in all the strains. This finding suggested that Rev 14 hypersusceptibility was due to the lack of PBP 5 and strongly supported the role of this protein in the mechanism of both natural low susceptibility and high-level resistance to beta-lactams in S. faecium.
Collapse
|
19
|
Rossi L, Tonin E, Cheng YR, Fontana R. Regulation of penicillin-binding protein activity: description of a methicillin-inducible penicillin-binding protein in Staphylococcus aureus. Antimicrob Agents Chemother 1985; 27:828-31. [PMID: 3848293 PMCID: PMC180160 DOI: 10.1128/aac.27.5.828] [Citation(s) in RCA: 76] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The penicillin-binding proteins (PBPs) of two methicillin-resistant strains of Staphylococcus aureus (R2 and R1) were analyzed in cells grown in the absence and in the presence of methicillin. Under the former condition, strain R2 showed the typical PBP pattern of beta-lactam-susceptible strains, while strain R1 showed a markedly increased amount of PBP-3. Under the latter condition, on the other hand, a novel PBP (PBP-2a) located between PBP-2 and -3 was detected in strain R2, while strain R1 appeared to synthesize an even greater amount of PBP-3, in respect to untreated cells. Both R2 PBP-2a and R1 PBP-3 showed a very low affinity for methicillin, which was consistent with the MICs for the respective strains.
Collapse
|
20
|
Fontana R, Bertoloni G, Amalfitano G, Canepari P. Characterization of penicillin-resistantStreptococcus faeciummutants. FEMS Microbiol Lett 1984. [DOI: 10.1111/j.1574-6968.1984.tb01368.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
21
|
|
22
|
Fontana R, Cerini R, Longoni P, Grossato A, Canepari P. Identification of a streptococcal penicillin-binding protein that reacts very slowly with penicillin. J Bacteriol 1983; 155:1343-50. [PMID: 6411688 PMCID: PMC217833 DOI: 10.1128/jb.155.3.1343-1350.1983] [Citation(s) in RCA: 124] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Penicillin-binding protein (PBP) 5 of Streptococcus faecium ATCC 9790 has an unusually low affinity for penicillin (50% binding occurred at a penicillin level of 8 micrograms/ml after 60 min of incubation, and the protein only became labeled after 20 min of incubation with high concentrations of radioactive penicillin). PBPs with similar properties are carried by strains of Streptococcus durans, Streptococcus faecalis, and Streptococcus lactis but not by strains of groups A, B, C, and G streptococci or Streptococcus pneumoniae. The strains carrying the slow-reacting PBP demonstrated a sensitivity to penicillin that was several hundred times lower than that of strains not carrying it. Spontaneous mutants with minimal inhibitory concentrations of penicillin of 20, 40, and 80 micrograms/ml were isolated from S. faecium ATCC 9790. They all showed a dramatic increase in the amount of slow-reacting PBP produced. Mutants with increased penicillin resistance were also isolated from wild-type strains of S. durans, S. faecalis, and S. faecium. All of them carried a greater amount of the slow-reacting PBP than that carried by the parent. Finally, it was found that resistant S. faecium ATCC 9790 mutants grew normally in the presence of penicillin concentrations that were far above that saturating all PBPs except PBP 5. Cell growth was, on the contrary, inhibited by a penicillin concentration that saturated the slow-reacting PBP by 90%. This penicillin dose was equal to the minimal inhibitory concentration.
Collapse
|