1
|
Getz LJ, Maxwell KL. Diverse Antiphage Defenses Are Widespread Among Prophages and Mobile Genetic Elements. Annu Rev Virol 2024; 11:343-362. [PMID: 38950439 DOI: 10.1146/annurev-virology-100422-125123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Bacterial viruses known as phages rely on their hosts for replication and thus have developed an intimate partnership over evolutionary time. The survival of temperate phages, which can establish a chronic infection in which their genomes are maintained in a quiescent state known as a prophage, is tightly coupled with the survival of their bacterial hosts. As a result, prophages encode a diverse antiphage defense arsenal to protect themselves and the bacterial host in which they reside from further phage infection. Similarly, the survival and success of prophage-related elements such as phage-inducible chromosomal islands are directly tied to the survival and success of their bacterial host, and they also have been shown to encode numerous antiphage defenses. Here, we describe the current knowledge of antiphage defenses encoded by prophages and prophage-related mobile genetic elements.
Collapse
Affiliation(s)
- Landon J Getz
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada;
| | - Karen L Maxwell
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada;
| |
Collapse
|
2
|
Bucher MJ, Czyż DM. Phage against the Machine: The SIE-ence of Superinfection Exclusion. Viruses 2024; 16:1348. [PMID: 39339825 PMCID: PMC11436027 DOI: 10.3390/v16091348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/10/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Prophages can alter their bacterial hosts to prevent other phages from infecting the same cell, a mechanism known as superinfection exclusion (SIE). Such alterations are facilitated by phage interactions with critical bacterial components involved in motility, adhesion, biofilm production, conjugation, antimicrobial resistance, and immune evasion. Therefore, the impact of SIE extends beyond the immediate defense against superinfection, influencing the overall fitness and virulence of the bacteria. Evaluating the interactions between phages and their bacterial targets is critical for leading phage therapy candidates like Pseudomonas aeruginosa, a Gram-negative bacterium responsible for persistent and antibiotic-resistant opportunistic infections. However, comprehensive literature on the mechanisms underlying SIE remains scarce. Here, we provide a compilation of well-characterized and potential mechanisms employed by Pseudomonas phages to establish SIE. We hypothesize that the fitness costs imposed by SIE affect bacterial virulence, highlighting the potential role of this mechanism in the management of bacterial infections.
Collapse
Affiliation(s)
- Michael J Bucher
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Daniel M Czyż
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
3
|
Matrishin CB, Haase EM, Dewhirst FE, Mark Welch JL, Miranda-Sanchez F, Chen T, MacFarland DC, Kauffman KM. Phages are unrecognized players in the ecology of the oral pathogen Porphyromonas gingivalis. MICROBIOME 2023; 11:161. [PMID: 37491415 PMCID: PMC10367356 DOI: 10.1186/s40168-023-01607-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/22/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND Porphyromonas gingivalis (hereafter "Pg") is an oral pathogen that has been hypothesized to act as a keystone driver of inflammation and periodontal disease. Although Pg is most readily recovered from individuals with actively progressing periodontal disease, healthy individuals and those with stable non-progressing disease are also colonized by Pg. Insights into the factors shaping the striking strain-level variation in Pg, and its variable associations with disease, are needed to achieve a more mechanistic understanding of periodontal disease and its progression. One of the key forces often shaping strain-level diversity in microbial communities is infection of bacteria by their viral (phage) predators and symbionts. Surprisingly, although Pg has been the subject of study for over 40 years, essentially nothing is known of its phages, and the prevailing paradigm is that phages are not important in the ecology of Pg. RESULTS Here we systematically addressed the question of whether Pg are infected by phages-and we found that they are. We found that prophages are common in Pg, they are genomically diverse, and they encode genes that have the potential to alter Pg physiology and interactions. We found that phages represent unrecognized targets of the prevalent CRISPR-Cas defense systems in Pg, and that Pg strains encode numerous additional mechanistically diverse candidate anti-phage defense systems. We also found that phages and candidate anti-phage defense system elements together are major contributors to strain-level diversity and the species pangenome of this oral pathogen. Finally, we demonstrate that prophages harbored by a model Pg strain are active in culture, producing extracellular viral particles in broth cultures. CONCLUSION This work definitively establishes that phages are a major unrecognized force shaping the ecology and intra-species strain-level diversity of the well-studied oral pathogen Pg. The foundational phage sequence datasets and model systems that we establish here add to the rich context of all that is already known about Pg, and point to numerous avenues of future inquiry that promise to shed new light on fundamental features of phage impacts on human health and disease broadly. Video Abstract.
Collapse
Affiliation(s)
- Cole B Matrishin
- Department of Oral Biology, School of Dental Medicine, The University at Buffalo, Buffalo, NY, USA
| | - Elaine M Haase
- Department of Oral Biology, School of Dental Medicine, The University at Buffalo, Buffalo, NY, USA
| | - Floyd E Dewhirst
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, USA
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | | | | | - Tsute Chen
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, USA
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Donald C MacFarland
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine, The University at Buffalo, Buffalo, NY, USA
| | - Kathryn M Kauffman
- Department of Oral Biology, School of Dental Medicine, The University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
4
|
Anbo M, Jelsbak L. A bittersweet fate: detection of serotype switching in Pseudomonas aeruginosa. Microb Genom 2023; 9:mgen000919. [PMID: 36748704 PMCID: PMC9973846 DOI: 10.1099/mgen.0.000919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
High-risk clone types in Pseudomonas aeruginosa are problematic global multidrug-resistant clones. However, apart from their ability to resist antimicrobial treatment, not much is known about what sets these clones apart from the multitude of other clones. In high-risk clone ST111, it has previously been shown that replacement of the native serotype biosynthetic gene cluster (O4) by a different gene cluster (O12) by horizontal gene transfer and recombination may have contributed to the global success of this clone. However, the extent to which isolates undergo this type of serotype switching has not been adequately explored in P. aeruginosa. In the present study, a bioinformatics tool has been developed and utilized to provide a first estimate of serotype switching in groups of multidrug resistant (MDR) clinical isolates. The tool detects serotype switching by analysis of core-genome phylogeny and in silico serotype. Analysis of a national survey of MDR isolates found a prevalence of 3.9 % of serotype-switched isolates in high-risk clone types ST111, ST244 and ST253. A global survey of MDR isolates was additionally analysed, and it was found that 2.3 % of isolates had undergone a serotype switch. To further understand this process, we determined the exact boundaries of the horizontally transferred serotype O12 island. We found that the size of the serotype island correlates with the clone type of the receiving isolate and additionally we found intra-clone type variations in size and boundaries. This suggests multiple serotype switch events. Moreover, we found that the housekeeping gene gyrA is co-transferred with the O12 serotype island, which prompted us to analyse this allele for all serotype O12 isolates. We found that 95 % of ST111 O12 isolates had a resistant gyrA allele and 86 % of all O12 isolates had a resistant gyrA allele. The rates of resistant gyrA alleles in isolates with other prevalent serotypes are all lower. Together, these results show that the transfer and acquisition of serotype O12 in high-risk clone ST111 has happened multiple times and may be facilitated by multiple donors, which clearly suggests a strong selection pressure for this process. However, gyrA-mediated antibiotic resistance may not be the only evolutionary driver.
Collapse
Affiliation(s)
- Mikkel Anbo
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
| | - Lars Jelsbak
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
- *Correspondence: Lars Jelsbak,
| |
Collapse
|
5
|
Kathayat D, Helmy YA, Deblais L, Srivastava V, Closs G, Khupse R, Rajashekara G. Novel Small Molecule Growth Inhibitor Affecting Bacterial Outer Membrane Reduces Extraintestinal Pathogenic Escherichia coli (ExPEC) Infection in Avian Model. Microbiol Spectr 2021; 9:e0000621. [PMID: 34468186 PMCID: PMC8557866 DOI: 10.1128/spectrum.00006-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/06/2021] [Indexed: 12/26/2022] Open
Abstract
Avian pathogenic Escherichia coli (APEC), a subgroup of extraintestinal pathogenic E. coli (ExPEC), causes colibacillosis in chickens and is reportedly implicated in urinary tract infections and meningitis in humans. A major limitation for the current ExPEC antibiotic therapy is the development of resistance, and antibacterial drugs that can circumvent this problem are critically needed. Here, we evaluated eight novel membrane-affecting anti-APEC small molecule growth inhibitors (GIs), identified in our previous study, against APEC infection in chickens. Among the GIs tested, GI-7 (the most effective), when administered orally (1 mg/kg of body weight), reduced the mortality (41.7%), severity of lesions (62.9%), and APEC load (2.6 log) in chickens. Furthermore, GI-7 administration at an optimized dose (60 mg/liter) in drinking water also reduced the mortality (14.7%), severity of lesions (29.5%), and APEC load (2.2 log) in chickens. The abundances of Lactobacillus and oleate were increased in the cecum and serum, respectively, of GI-7-treated chickens. Pharmacokinetic analysis revealed that GI-7 was readily absorbed with minimal accumulation in the tissues. Earlier, we showed that GI-7 induced membrane blebbing and increased membrane permeability in APEC, suggesting an effect on the APEC membrane. Consistent with this finding, the expression of genes essential for maintaining outer membrane (OM) integrity was downregulated in GI-7-treated APEC. Furthermore, decreased levels of lipopolysaccharide (LPS) transport (Lpt) proteins and LPS were observed in GI-7-treated APEC. However, the mechanism of action of GI-7 currently remains unknown and needs further investigation. Our studies suggest that GI-7 represents a promising novel lead compound that can be developed to treat APEC infection in chickens and related human ExPEC infections. IMPORTANCE APEC is a subgroup of ExPEC, and genetic similarities of APEC with human ExPECs, including uropathogenic E. coli (UPEC) and neonatal meningitis E. coli (NMEC), have been reported. Our study identified a novel small molecule growth inhibitor, GI-7, effective in reducing APEC infection in chickens with an efficacy similar to that of the currently used antibiotic sulfadimethoxine, notably with an 8-times-lower dose. GI-7 affects the OM integrity and decreases the Lpt protein and LPS levels in APEC, an antibacterial mechanism that can overcome the antibiotic resistance problem. Overall, GI-7 represents a promising lead molecule/scaffold for the development of novel antibacterial therapies that could have profound implications for treating APEC infections in chickens, as well as human infections caused by ExPECs and other related Gram-negative bacteria. Further elucidation of the mechanism of action of GI-7 and identification of its target(s) in APEC will benefit future novel antibacterial development efforts.
Collapse
Affiliation(s)
- Dipak Kathayat
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, Ohio, USA
| | - Yosra A. Helmy
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, Ohio, USA
| | - Loic Deblais
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, Ohio, USA
| | - Vishal Srivastava
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, Ohio, USA
| | - Gary Closs
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, Ohio, USA
| | - Rahul Khupse
- College of Pharmacy, University of Findlay, Findlay, Ohio, USA
| | - Gireesh Rajashekara
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, Ohio, USA
| |
Collapse
|
6
|
Schroven K, Aertsen A, Lavigne R. Bacteriophages as drivers of bacterial virulence and their potential for biotechnological exploitation. FEMS Microbiol Rev 2021; 45:5902850. [PMID: 32897318 DOI: 10.1093/femsre/fuaa041] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/03/2020] [Indexed: 12/20/2022] Open
Abstract
Bacteria-infecting viruses (phages) and their hosts maintain an ancient and complex relationship. Bacterial predation by lytic phages drives an ongoing phage-host arms race, whereas temperate phages initiate mutualistic relationships with their hosts upon lysogenization as prophages. In human pathogens, these prophages impact bacterial virulence in distinct ways: by secretion of phage-encoded toxins, modulation of the bacterial envelope, mediation of bacterial infectivity and the control of bacterial cell regulation. This review builds the argument that virulence-influencing prophages hold extensive, unexplored potential for biotechnology. More specifically, it highlights the development potential of novel therapies against infectious diseases, to address the current antibiotic resistance crisis. First, designer bacteriophages may serve to deliver genes encoding cargo proteins which repress bacterial virulence. Secondly, one may develop small molecules mimicking phage-derived proteins targeting central regulators of bacterial virulence. Thirdly, bacteria equipped with phage-derived synthetic circuits which modulate key virulence factors could serve as vaccine candidates to prevent bacterial infections. The development and exploitation of such antibacterial strategies will depend on the discovery of other prophage-derived, virulence control mechanisms and, more generally, on the dissection of the mutualistic relationship between temperate phages and bacteria, as well as on continuing developments in the synthetic biology field.
Collapse
Affiliation(s)
- Kaat Schroven
- Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21, 3001 Leuven, Belgium
| | - Abram Aertsen
- Laboratory of Food Microbiology, KU Leuven, Kasteelpark Arenberg 23, 3001 Leuven, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21, 3001 Leuven, Belgium
| |
Collapse
|
7
|
Shmidov E, Zander I, Lebenthal-Loinger I, Karako-Lampert S, Shoshani S, Banin E. An Efficient, Counter-Selection-Based Method for Prophage Curing in Pseudomonas aeruginosa Strains. Viruses 2021; 13:v13020336. [PMID: 33670076 PMCID: PMC7926659 DOI: 10.3390/v13020336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/11/2021] [Accepted: 02/18/2021] [Indexed: 01/28/2023] Open
Abstract
Prophages are bacteriophages in the lysogenic state, where the viral genome is inserted within the bacterial chromosome. They contribute to strain genetic variability and can influence bacterial phenotypes. Prophages are highly abundant among the strains of the opportunistic pathogen Pseudomonas aeruginosa and were shown to confer specific traits that can promote strain pathogenicity. The main difficulty of studying those regions is the lack of a simple prophage-curing method for P. aeruginosa strains. In this study, we developed a novel, targeted-curing approach for prophages in P. aeruginosa. In the first step, we tagged the prophage for curing with an ampicillin resistance cassette (ampR) and further used this strain for the sacB counter-selection marker’s temporal insertion into the prophage region. The sucrose counter-selection resulted in different variants when the prophage-cured mutant is the sole variant that lost the ampR cassette. Next, we validated the targeted-curing with local PCR amplification and Whole Genome Sequencing. The application of the strategy resulted in high efficiency both for curing the Pf4 prophage of the laboratory wild-type (WT) strain PAO1 and for PR2 prophage from the clinical, hard to genetically manipulate, 39016 strain. We believe this method can support the research and growing interest in prophage biology in P. aeruginosa as well as additional Gram-negative bacteria.
Collapse
Affiliation(s)
- Esther Shmidov
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; (E.S.); (I.Z.); (I.L.-L.); (S.S.)
- The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Itzhak Zander
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; (E.S.); (I.Z.); (I.L.-L.); (S.S.)
- The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Ilana Lebenthal-Loinger
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; (E.S.); (I.Z.); (I.L.-L.); (S.S.)
| | - Sarit Karako-Lampert
- Scientific Equipment Center, The Mina & Everard Goodman Faculty of Life Sciences Bar-Ilan University, Ramat Gan 5290002, Israel;
| | - Sivan Shoshani
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; (E.S.); (I.Z.); (I.L.-L.); (S.S.)
- The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Ehud Banin
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; (E.S.); (I.Z.); (I.L.-L.); (S.S.)
- The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
- Correspondence:
| |
Collapse
|
8
|
The Concerted Action of Two B3-Like Prophage Genes Excludes Superinfecting Bacteriophages by Blocking DNA Entry into Pseudomonas aeruginosa. J Virol 2020; 94:JVI.00953-20. [PMID: 32461312 DOI: 10.1128/jvi.00953-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 05/15/2020] [Indexed: 12/15/2022] Open
Abstract
In this study, we describe seven vegetative phage genomes homologous to the historic phage B3 that infect Pseudomonas aeruginosa Like other phage groups, the B3-like group contains conserved (core) and variable (accessory) open reading frames (ORFs) grouped at fixed regions in their genomes; however, in either case, many ORFs remain without assigned functions. We constructed lysogens of the seven B3-like phages in strain Ps33 of P. aeruginosa, a novel clinical isolate, and assayed the exclusion phenotype against a variety of temperate and virulent superinfecting phages. In addition to the classic exclusion conferred by the phage immunity repressor, the phenotype observed in B3-like lysogens suggested the presence of other exclusion genes. We set out to identify the genes responsible for this exclusion phenotype. Phage Ps56 was chosen as the study subject since it excluded numerous temperate and virulent phages. Restriction of the Ps56 genome, cloning of several fragments, and resection of the fragments that retained the exclusion phenotype allowed us to identify two core ORFs, so far without any assigned function, as responsible for a type of exclusion. Neither gene expressed separately from plasmids showed activity, but the concurrent expression of both ORFs is needed for exclusion. Our data suggest that phage adsorption occurs but that phage genome translocation to the host's cytoplasm is defective. To our knowledge, this is the first report on this type of exclusion mediated by a prophage in P. aeruginosa IMPORTANCE Pseudomonas aeruginosa is a Gram-negative bacterium frequently isolated from infected immunocompromised patients, and the strains are resistant to a broad spectrum of antibiotics. Recently, the use of phages has been proposed as an alternative therapy against multidrug-resistant bacteria. However, this approach may present various hurdles. This work addresses the problem that pathogenic bacteria may be lysogenized by phages carrying genes encoding resistance against secondary infections, such as those used in phage therapy. Discovering phage genes that exclude superinfecting phages not only assigns novel functions to orphan genes in databases but also provides insight into selection of the proper phages for use in phage therapy.
Collapse
|
9
|
The Role of Pseudomonas aeruginosa Lipopolysaccharide in Bacterial Pathogenesis and Physiology. Pathogens 2019; 9:pathogens9010006. [PMID: 31861540 PMCID: PMC7168646 DOI: 10.3390/pathogens9010006] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/15/2019] [Accepted: 12/17/2019] [Indexed: 12/13/2022] Open
Abstract
The major constituent of the outer membrane of Gram-negative bacteria is lipopolysaccharide (LPS), which is comprised of lipid A, core oligosaccharide, and O antigen, which is a long polysaccharide chain extending into the extracellular environment. Due to the localization of LPS, it is a key molecule on the bacterial cell wall that is recognized by the host to deploy an immune defence in order to neutralize invading pathogens. However, LPS also promotes bacterial survival in a host environment by protecting the bacteria from these threats. This review explores the relationship between the different LPS glycoforms of the opportunistic pathogen Pseudomonas aeruginosa and the ability of this organism to cause persistent infections, especially in the genetic disease cystic fibrosis. We also discuss the role of LPS in facilitating biofilm formation, antibiotic resistance, and how LPS may be targeted by new antimicrobial therapies.
Collapse
|
10
|
Subedi D, Kohli GS, Vijay AK, Willcox M, Rice SA. Accessory genome of the multi-drug resistant ocular isolate of Pseudomonas aeruginosa PA34. PLoS One 2019; 14:e0215038. [PMID: 30986237 PMCID: PMC6464166 DOI: 10.1371/journal.pone.0215038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 03/25/2019] [Indexed: 02/07/2023] Open
Abstract
Bacteria can acquire an accessory genome through the horizontal transfer of genetic elements from non-parental lineages. This leads to rapid genetic evolution allowing traits such as antibiotic resistance and virulence to spread through bacterial communities. The study of complete genomes of bacterial strains helps to understand the genomic traits associated with virulence and antibiotic resistance. We aimed to investigate the complete accessory genome of an ocular isolate of Pseudomonas aeruginosa strain PA34. We obtained the complete genome of PA34 utilising genome sequence reads from Illumina and Oxford Nanopore Technology followed by PCR to close any identified gaps. In-depth genomic analysis was performed using various bioinformatics tools. The susceptibility to heavy metals and cytotoxicity was determined to confirm expression of certain traits. The complete genome of PA34 includes a chromosome of 6.8 Mbp and two plasmids of 95.4 Kbp (pMKPA34-1) and 26.8 Kbp (pMKPA34-2). PA34 had a large accessory genome of 1,213 genes and had 543 unique genes not present in other strains. These exclusive genes encoded features related to metal and antibiotic resistance, phage integrase and transposons. At least 24 genomic islands (GIs) were predicated in the complete chromosome, of which two were integrated into novel sites. Eleven GIs carried virulence factors or replaced pathogenic genes. A bacteriophage carried the aminoglycoside resistance gene (AAC(3)-IId). The two plasmids carried other six antibiotic resistance genes. The large accessory genome of this ocular isolate plays a large role in shaping its virulence and antibiotic resistance.
Collapse
Affiliation(s)
- Dinesh Subedi
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
- * E-mail:
| | - Gurjeet Singh Kohli
- The Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Ajay Kumar Vijay
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Mark Willcox
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Scott A. Rice
- The Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- The School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- The ithree Institute, The University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
11
|
Phage Morons Play an Important Role in Pseudomonas aeruginosa Phenotypes. J Bacteriol 2018; 200:JB.00189-18. [PMID: 30150232 DOI: 10.1128/jb.00189-18] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/16/2018] [Indexed: 12/23/2022] Open
Abstract
The viruses that infect bacteria, known as phages, play a critical role in controlling bacterial populations in many diverse environments, including the human body. This control stems not only from phages killing bacteria but also from the formation of lysogens. In this state, the phage replication cycle is suppressed, and the phage genome is maintained in the bacterial cell in a form known as a prophage. Prophages often carry genes that benefit the host bacterial cell, since increasing the survival of the host cell by extension also increases the fitness of the prophage. These highly diverse and beneficial phage genes, which are not required for the life cycle of the phage itself, have been referred to as "morons," as their presence adds "more on" the phage genome in which they are found. While individual phage morons have been shown to contribute to bacterial virulence by a number of different mechanisms, there have been no systematic investigations of their activities. Using a library of phages that infect two different clinical isolates of P. aeruginosa, PAO1 and PA14, we compared the phenotypes imparted by the expression of individual phage morons. We identified morons that inhibit twitching and swimming motilities and observed an inhibition of the production of virulence factors such as rhamnolipids and elastase. This study demonstrates the scope of phage-mediated phenotypic changes and provides a framework for future studies of phage morons.IMPORTANCE Environmental and clinical isolates of the bacterium Pseudomonas aeruginosa frequently contain viruses known as prophages. These prophages can alter the virulence of their bacterial hosts through the expression of nonessential genes known as "morons." In this study, we identified morons in a group of Pseudomonas aeruginosa phages and characterized the effects of their expression on bacterial behaviors. We found that many morons confer selective advantages for the bacterial host, some of which correlate with increased bacterial virulence. This work highlights the symbiotic relationship between bacteria and prophages and illustrates how phage morons can help bacteria adapt to different selective pressures and contribute to human diseases.
Collapse
|
12
|
Olszak T, Shneider MM, Latka A, Maciejewska B, Browning C, Sycheva LV, Cornelissen A, Danis-Wlodarczyk K, Senchenkova SN, Shashkov AS, Gula G, Arabski M, Wasik S, Miroshnikov KA, Lavigne R, Leiman PG, Knirel YA, Drulis-Kawa Z. The O-specific polysaccharide lyase from the phage LKA1 tailspike reduces Pseudomonas virulence. Sci Rep 2017; 7:16302. [PMID: 29176754 PMCID: PMC5701251 DOI: 10.1038/s41598-017-16411-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/13/2017] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas phage LKA1 of the subfamily Autographivirinae encodes a tailspike protein (LKA1gp49) which binds and cleaves B-band LPS (O-specific antigen, OSA) of Pseudomonas aeruginosa PAO1. The crystal structure of LKA1gp49 catalytic domain consists of a beta-helix, an insertion domain and a C-terminal discoidin-like domain. The putative substrate binding and processing site is located on the face of the beta-helix whereas the C-terminal domain is likely involved in carbohydrates binding. NMR spectroscopy and mass spectrometry analyses of degraded LPS (OSA) fragments show an O5 serotype-specific polysaccharide lyase specificity. LKA1gp49 reduces virulence in an in vivo Galleria mellonella infection model and sensitizes P. aeruginosa to serum complement activity. This enzyme causes biofilm degradation and does not affect the activity of ciprofloxacin and gentamicin. This is the first comprehensive report on LPS-degrading lyase derived from a Pseudomonas phage. Biological properties reveal a potential towards its applications in antimicrobial design and as a microbiological or biotechnological tool.
Collapse
Affiliation(s)
- Tomasz Olszak
- Institute of Genetics and Microbiology, University of Wroclaw, Wroclaw, 51-148, Poland
| | - Mikhail M Shneider
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- University of Texas Medical Branch, Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, Galveston, TX, 77555-0647, USA
| | - Agnieszka Latka
- Institute of Genetics and Microbiology, University of Wroclaw, Wroclaw, 51-148, Poland
| | - Barbara Maciejewska
- Institute of Genetics and Microbiology, University of Wroclaw, Wroclaw, 51-148, Poland
| | | | - Lada V Sycheva
- Affinivax Inc., Cambridge, 02139-3543, Massachusetts, USA
| | | | - Katarzyna Danis-Wlodarczyk
- Institute of Genetics and Microbiology, University of Wroclaw, Wroclaw, 51-148, Poland
- Laboratory of Gene Technology, KU Leuven, Leuven, 3001, Belgium
| | - Sofya N Senchenkova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Alexander S Shashkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Grzegorz Gula
- Institute of Genetics and Microbiology, University of Wroclaw, Wroclaw, 51-148, Poland
| | - Michal Arabski
- Department of Biochemistry and Genetics, Institute of Biology, The Jan Kochanowski University in Kielce, Kielce, 25-406, Poland
| | - Slawomir Wasik
- Department of Molecular Physics, Institute of Physics, The Jan Kochanowski University in Kielce, Kielce, 25-406, Poland
| | - Konstantin A Miroshnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, Leuven, 3001, Belgium
| | - Petr G Leiman
- University of Texas Medical Branch, Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, Galveston, TX, 77555-0647, USA
| | - Yuriy A Knirel
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Zuzanna Drulis-Kawa
- Institute of Genetics and Microbiology, University of Wroclaw, Wroclaw, 51-148, Poland.
| |
Collapse
|
13
|
Taylor VL, Hoage JFJ, Thrane SW, Huszczynski SM, Jelsbak L, Lam JS. A Bacteriophage-Acquired O-Antigen Polymerase (Wzyβ) from P. aeruginosa Serotype O16 Performs a Varied Mechanism Compared to Its Cognate Wzyα. Front Microbiol 2016; 7:393. [PMID: 27065964 PMCID: PMC4815439 DOI: 10.3389/fmicb.2016.00393] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/14/2016] [Indexed: 12/23/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative bacterium that produces highly varied lipopolysaccharide (LPS) structures. The O antigen (O-Ag) in the LPS is synthesized through the Wzx/Wzy-dependent pathway where lipid-linked O-Ag repeats are polymerized by Wzy. Horizontal-gene transfer has been associated with O-Ag diversity. The O-Ag present on the surface of serotypes O5 and O16, differ in the intra-molecular bonds, α and β, respectively; the latter arose from the action of three genes in a serotype converting unit acquired from bacteriophage D3, including a β-polymerase (Wzyβ). To further our understanding of O-polymerases, the inner membrane (IM) topology of Wzyβ was determined using a dual phoA-lacZα reporter system wherein random 3′ gene truncations were localized to specific loci with respect to the IM by normalized reporter activities as determined through the ratio of alkaline phosphatase activity to β-galactosidase activity. The topology of Wzyβ developed through this approach was shown to contain two predominant periplasmic loops, PL3 (containing an RX10G motif) and PL4 (having an O-Ag ligase superfamily motif), associated with inverting glycosyltransferase reaction. Through site-directed mutagenesis and complementation assays, residues Arg254, Arg270, Arg272, and His300 were found to be essential for Wzyβ function. Additionally, like-charge substitutions, R254K and R270K, could not complement the wzyβ knockout, highlighting the essential guanidium side group of Arg residues. The O-Ag ligase domain is conserved among heterologous Wzy proteins that produce β-linked O-Ag repeat units. Taking advantage of the recently obtained whole-genome sequence of serotype O16 a candidate promoter was identified. Wzyβ under its native promoter was integrated in the PAO1 genome, which resulted in simultaneous production of α- and β-linked O-Ag. These observations established that members of Wzy-like family consistently exhibit a dual-periplasmic loops topology, and identifies motifs that are plausible to be involved in enzymatic activities. Based on these results, the phage-derived Wzyβ utilizes a different reaction mechanism in the P. aeruginosa host to avoid self-inhibition during serotype conversion.
Collapse
Affiliation(s)
- Véronique L Taylor
- Department of Molecular and Cellular Biology, University of Guelph Guelph, ON, Canada
| | - Jesse F J Hoage
- Department of Molecular and Cellular Biology, University of Guelph Guelph, ON, Canada
| | | | - Steven M Huszczynski
- Department of Molecular and Cellular Biology, University of Guelph Guelph, ON, Canada
| | - Lars Jelsbak
- Department of Systems Biology, Technical University of Denmark Kongens Lyngby, Denmark
| | - Joseph S Lam
- Department of Molecular and Cellular Biology, University of Guelph Guelph, ON, Canada
| |
Collapse
|
14
|
Pan X, Cui X, Zhang F, He Y, Li L, Yang H. Genetic Evidence for O-Specific Antigen as Receptor of Pseudomonas aeruginosa Phage K8 and Its Genomic Analysis. Front Microbiol 2016; 7:252. [PMID: 26973628 PMCID: PMC4773840 DOI: 10.3389/fmicb.2016.00252] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 02/15/2016] [Indexed: 11/25/2022] Open
Abstract
Phage therapy requires the comprehensive understanding of the mechanisms underlying the host-phage interactions. In this work, to identify the genes related to Pseudomonas aeruginosa phage K8 receptor synthesis, 16 phage-resistant mutants were selected from a Tn5G transposon mutant library of strain PAK. The disrupted genetic loci were identified and they were related to O-specific antigen (OSA) synthesis, including gene wbpR, ssg, wbpV, wbpO, and Y880_RS05480, which encoded a putative O-antigen polymerase Wzy. The Lipopolysaccharide profile of the Y880_RS05480 mutant was analyzed and shown to lack the O-antigen. Therefore, the data from characterization of Y880_RS05480 by TMHMM and SDS-PAGE silver staining analysis suggest that this locus might encode Wzy. The complete phage K8 genome was characterized as 93879 bp in length and contained identical 1188-bp terminal direct repeats. Comparative genomic analysis showed that phage K8 was highly homologous to members of the genus PaP1-like phages. On the basis of our genetic findings, OSA of P. aeruginosa PAK is proven to be the receptor of phage K8. The highly conserved structural proteins among the genetic closely related phages suggest that they may recognize the same receptor.
Collapse
Affiliation(s)
- Xuewei Pan
- Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology Tianjin, China
| | - Xiaoli Cui
- Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology Tianjin, China
| | - Fenjiao Zhang
- Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology Tianjin, China
| | - Yang He
- Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology Tianjin, China
| | - Lingyan Li
- Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology Tianjin, China
| | - Hongjiang Yang
- Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology Tianjin, China
| |
Collapse
|
15
|
Ma Y, Allen LZ, Palenik B. Diversity and genome dynamics of marine cyanophages using metagenomic analyses. ENVIRONMENTAL MICROBIOLOGY REPORTS 2014; 6:583-594. [PMID: 25756111 DOI: 10.1111/1758-2229.12160] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Cyanophages are abundant in the oceanic environment and directly impact cyanobacterial distributions, physiological processes and evolution. Two samples collected from coastal Maine in July and September 2009 were enriched for Synechococcus cells using flow cytometry and examined through metagenomic sequencing. Homology-based sequence prediction indicated cyanophages, largely myoviruses, accounted for almost half the reads and provided insights into environmental infection events. T4-phage core-gene phylogenetic reconstruction revealed unique diversity among uncultured cyanophages and reference isolates resulting in identification of a new phylogenetic cluster. Genomic comparison of reference cyanophage strains S-SM2 and Syn1 with putative homologous contigs recovered from metagenomes provided evidence that gene insertion, deletion and recombination have occurred among, and are likely important for diversification of, natural populations. Identification of putative genetic exchange between cyanophage and non-cyanophage viruses, i.e. Micromonas virus and Pelagibacter phage, supports hypotheses related to a significant role for viruses in mediating transfer of genetic material between taxonomically diverse organisms with overlapping ecological niches.
Collapse
|
16
|
Abstract
Prophage-encoded genes can provide a variety of benefits for their bacterial hosts. These beneficial genes are often contained within “moron” elements. Morons, thus termed as the insertion of the DNA encoding them adds “more on” the genome in which they are found, are independent transcriptional units disseminated among phage genomes through horizontal gene transfer. Morons have been identified in the majority of phage genomes and they have been found to play diverse roles in bacterial physiology. At present, we are only beginning to ascribe functions to the many proteins encoded within these ubiquitous genetic elements. Recently, we discovered that the first described moron-encoded protein, gp15 of phage HK97, is expressed from the HK97 prophage and functions as a superinfection exclusion protein, protecting its host from genome injection by other phages. This work and the growing body of data pertaining to other morons challenges the traditional view of phages as purely parasites of bacteria and emphasizes the symbiotic relationship between bacteria and prophages.
Collapse
Affiliation(s)
- Nichole Cumby
- Department of Molecular Genetics; University of Toronto; Toronto, ON Canada
| | | | | |
Collapse
|
17
|
Abstract
Bacteria Pseudomonas aeruginosa, being opportunistic pathogens, are the major cause of nosocomial infections and, in some cases, the primary cause of death. They are virtually untreatable with currently known antibiotics. Phage therapy is considered as one of the possible approaches to the treatment of P. aeruginosa infections. Difficulties in the implementation of phage therapy in medical practice are related, for example, to the insufficient number and diversity of virulent phages that are active against P. aeruginosa. Results of interaction of therapeutic phages with bacteria in different conditions and environments are studied insufficiently. A little is known about possible interactions of therapeutic phages with resident prophages and plasmids in clinical strains in the foci of infections. This chapter highlights the different approaches to solving these problems and possible ways to expand the diversity of therapeutic P. aeruginosa phages and organizational arrangements (as banks of phages) to ensure long-term use of phages in the treatment of P. aeruginosa infections.
Collapse
Affiliation(s)
- Victor N Krylov
- Mechnikov Research Institute for Vaccines & Sera, Russian Academy of Medical Sciences, Moscow, Russia.
| |
Collapse
|
18
|
Sharma P, Gupta SK, Rolain JM. Whole genome sequencing of bacteria in cystic fibrosis as a model for bacterial genome adaptation and evolution. Expert Rev Anti Infect Ther 2014; 12:343-55. [PMID: 24502835 DOI: 10.1586/14787210.2014.887441] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cystic fibrosis (CF) airways harbor a wide variety of new and/or emerging multidrug resistant bacteria which impose a heavy burden on patients. These bacteria live in close proximity with one another, which increases the frequency of lateral gene transfer. The exchange and movement of mobile genetic elements and genomic islands facilitate the spread of genes between genetically diverse bacteria, which seem to be advantageous to the bacterium as it allows adaptation to the new niches of the CF lungs. Niche adaptation is one of the major evolutionary forces shaping bacterial genome composition and in CF the chronic strains adapt and become less virulent. The purpose of this review is to shed light on CF bacterial genome alterations. Next-generation sequencing technology is an exciting tool that may help us to decipher the genome architecture and the evolution of bacteria colonizing CF lungs.
Collapse
Affiliation(s)
- Poonam Sharma
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergents, CNRS-IRD, UMR 7278, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille Université, 27 Bd Jean-Moulin, Marseille Cedex 05 13385, France
| | | | | |
Collapse
|
19
|
The D3 bacteriophage α-polymerase inhibitor (Iap) peptide disrupts O-antigen biosynthesis through mimicry of the chain length regulator Wzz in Pseudomonas aeruginosa. J Bacteriol 2013; 195:4735-41. [PMID: 23955007 DOI: 10.1128/jb.00903-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Lysogenic bacteriophage D3 causes seroconversion of Pseudomonas aeruginosa PAO1 from serotype O5 to O16 by inverting the linkage between O-specific antigen (OSA) repeat units from α to β. The OSA units are polymerized by Wzy to modal lengths regulated by Wzz1 and Wzz2. A key component of the D3 seroconversion machinery is the inhibitor of α-polymerase (Iap) peptide, which is able to solely suppress α-linked long-chain OSA production in P. aeruginosa PAO1. To establish the target specificity of Iap for Wzyα, changes in OSA phenotypes were examined via Western immunoblotting for wzz1 and wzz2 single-knockout strains, as well as a wzz1 wzz2 double knockout, following the expression of iap from a tuneable vector. Increased induction of Iap expression completely abrogated OSA production in the wzz1 wzz2 double mutant, while background levels of OSA production were still observed in either of the single mutants. Therefore, Iap inhibition of OSA biosynthesis was most effective in the absence of both Wzz proteins. Sequence alignment analyses revealed a high degree of similarity between Iap and the first transmembrane segment (TMS) of either Wzz1 or Wzz2. Various topology prediction analyses of the Iap sequence consistently predicted the presence of a single TMS, suggesting a propensity for Iap to insert itself into the inner membrane (IM). The compromised ability of Iap to abrogate Wzyα function in the presence of Wzz1 or Wzz2 provides compelling evidence that inhibition occurs after Wzyα inserts itself into the IM and is achieved through mimicry of the first TMS from the Wzz proteins of P. aeruginosa PAO1.
Collapse
|
20
|
Zhang H, Fouts DE, DePew J, Stevens RH. Genetic modifications to temperate Enterococcus faecalis phage Ef11 that abolish the establishment of lysogeny and sensitivity to repressor, and increase host range and productivity of lytic infection. MICROBIOLOGY-SGM 2013; 159:1023-1035. [PMID: 23579685 DOI: 10.1099/mic.0.067116-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ef11 is a temperate bacteriophage originally isolated by induction from a lysogenic Enterococcus faecalis strain recovered from an infected root canal, and the Ef11 prophage is widely disseminated among strains of E. faecalis. Because E. faecalis has emerged as a significant opportunistic human pathogen, we were interested in examining the genes and regulatory sequences predicted to be critical in the establishment/maintenance of lysogeny by Ef11 as a first step in the construction of the genome of a virulent, highly lytic phage that could be used in treating serious E. faecalis infections. Passage of Ef11 in E. faecalis JH2-2 yielded a variant that produced large, extensively spreading plaques in lawns of indicator cells, and elevated phage titres in broth cultures. Genetic analysis of the cloned virus producing the large plaques revealed that the variant was a recombinant between Ef11 and a defective FL1C-like prophage located in the E. faecalis JH2-2 chromosome. The recombinant possessed five ORFs of the defective FL1C-like prophage in place of six ORFs of the Ef11 genome. Deletion of the putative lysogeny gene module (ORFs 31-36) and replacement of the putative cro promoter from the recombinant phage genome with a nisin-inducible promoter resulted in no loss of virus infectivity. The genetic construct incorporating all the aforementioned Ef11 genomic modifications resulted in the generation of a variant that was incapable of lysogeny and insensitive to repressor, rendering it virulent and highly lytic, with a notably extended host range.
Collapse
Affiliation(s)
- H Zhang
- Laboratory of Oral Infectious Diseases, Temple University Kornberg School of Dentistry, Philadelphia, PA 19140, USA
- Department of Endodontology, Temple University Kornberg School of Dentistry, Philadelphia, PA 19140, USA
| | - D E Fouts
- Genomic Medicine, J. Craig Venter Institute, Rockville, MD 20850, USA
| | - J DePew
- Genomic Medicine, J. Craig Venter Institute, Rockville, MD 20850, USA
| | - R H Stevens
- Laboratory of Oral Infectious Diseases, Temple University Kornberg School of Dentistry, Philadelphia, PA 19140, USA
- Department of Endodontology, Temple University Kornberg School of Dentistry, Philadelphia, PA 19140, USA
| |
Collapse
|
21
|
Krylov V, Shaburova O, Krylov S, Pleteneva E. A genetic approach to the development of new therapeutic phages to fight pseudomonas aeruginosa in wound infections. Viruses 2012; 5:15-53. [PMID: 23344559 PMCID: PMC3564109 DOI: 10.3390/v5010015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 12/03/2012] [Accepted: 12/12/2012] [Indexed: 01/24/2023] Open
Abstract
Pseudomonas aeruginosa is a frequent participant in wound infections. Emergence of multiple antibiotic resistant strains has created significant problems in the treatment of infected wounds. Phage therapy (PT) has been proposed as a possible alternative approach. Infected wounds are the perfect place for PT applications, since the basic condition for PT is ensured; namely, the direct contact of bacteria and their viruses. Plenty of virulent ("lytic") and temperate ("lysogenic") bacteriophages are known in P. aeruginosa. However, the number of virulent phage species acceptable for PT and their mutability are limited. Besides, there are different deviations in the behavior of virulent (and temperate) phages from their expected canonical models of development. We consider some examples of non-canonical phage-bacterium interactions and the possibility of their use in PT. In addition, some optimal approaches to the development of phage therapy will be discussed from the point of view of a biologist, considering the danger of phage-assisted horizontal gene transfer (HGT), and from the point of view of a surgeon who has accepted the Hippocrates Oath to cure patients by all possible means. It is also time now to discuss the possible approaches in international cooperation for the development of PT. We think it would be advantageous to make phage therapy a kind of personalized medicine.
Collapse
Affiliation(s)
- Victor Krylov
- Laboratory for Bacteriophages Genetics. Mechnikov Research Institute of Vaccines and Sera, 5a Maliy Kazenniy per., Moscow, Russia.
| | | | | | | |
Collapse
|
22
|
Differential infection properties of three inducible prophages from an epidemic strain of Pseudomonas aeruginosa. BMC Microbiol 2012; 12:216. [PMID: 22998633 PMCID: PMC3544612 DOI: 10.1186/1471-2180-12-216] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 09/19/2012] [Indexed: 12/16/2022] Open
Abstract
Background Pseudomonas aeruginosa is the most common bacterial pathogen infecting the lungs of patients with cystic fibrosis (CF). The Liverpool Epidemic Strain (LES) is transmissible, capable of superseding other P. aeruginosa populations and is associated with increased morbidity. Previously, multiple inducible prophages have been found to coexist in the LES chromosome and to constitute a major component of the accessory genome not found in other sequenced P. aerugionosa strains. LES phages confer a competitive advantage in a rat model of chronic lung infection and may, therefore underpin LES prevalence. Here the infective properties of three LES phages were characterised. Results This study focuses on three of the five active prophages (LESφ2, LESφ3 and LESφ4) that are members of the Siphoviridae. All were induced from LESB58 by norfloxacin. Lytic production of LESφ2 was considerably higher than that of LESφ3 and LESφ4. Each phage was capable of both lytic and lysogenic infection of the susceptible P. aeruginosa host, PAO1, producing phage-specific plaque morphologies. In the PAO1 host background, the LESφ2 prophage conferred immunity against LESφ3 infection and reduced susceptibility to LESφ4 infection. Each prophage was less stable in the PAO1 chromosome with substantially higher rates of spontaneous phage production than when residing in the native LESB58 host. We show that LES phages are capable of horizontal gene transfer by infecting P. aeruginosa strains from different sources and that type IV pili are required for infection by all three phages. Conclusions Multiple inducible prophages with diverse infection properties have been maintained in the LES genome. Our data suggest that LESφ2 is more sensitive to induction into the lytic cycle or has a more efficient replicative cycle than the other LES phages.
Collapse
|
23
|
Lam JS, Taylor VL, Islam ST, Hao Y, Kocíncová D. Genetic and Functional Diversity of Pseudomonas aeruginosa Lipopolysaccharide. Front Microbiol 2011; 2:118. [PMID: 21687428 PMCID: PMC3108286 DOI: 10.3389/fmicb.2011.00118] [Citation(s) in RCA: 186] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 05/12/2011] [Indexed: 12/13/2022] Open
Abstract
Lipopolysccharide (LPS) is an integral component of the Pseudomonas aeruginosa cell envelope, occupying the outer leaflet of the outer membrane in this Gram-negative opportunistic pathogen. It is important for bacterium-host interactions and has been shown to be a major virulence factor for this organism. Structurally, P. aeruginosa LPS is composed of three domains, namely, lipid A, core oligosaccharide, and the distal O antigen (O-Ag). Most P. aeruginosa strains produce two distinct forms of O-Ag, one a homopolymer of D-rhamnose that is a common polysaccharide antigen (CPA, formerly termed A band), and the other a heteropolymer of three to five distinct (and often unique dideoxy) sugars in its repeat units, known as O-specific antigen (OSA, formerly termed B band). Compositional differences in the O units among the OSA from different strains form the basis of the International Antigenic Typing Scheme for classification via serotyping of different strains of P. aeruginosa. The focus of this review is to provide state-of-the-art knowledge on the genetic and resultant functional diversity of LPS produced by P. aeruginosa. The underlying factors contributing to this diversity will be thoroughly discussed and presented in the context of its contributions to host-pathogen interactions and the control/prevention of infection.
Collapse
Affiliation(s)
- Joseph S. Lam
- Department of Molecular and Cellular Biology, University of GuelphGuelph, ON, Canada
| | - Véronique L. Taylor
- Department of Molecular and Cellular Biology, University of GuelphGuelph, ON, Canada
| | - Salim T. Islam
- Department of Molecular and Cellular Biology, University of GuelphGuelph, ON, Canada
| | - Youai Hao
- Department of Molecular and Cellular Biology, University of GuelphGuelph, ON, Canada
| | - Dana Kocíncová
- Department of Molecular and Cellular Biology, University of GuelphGuelph, ON, Canada
| |
Collapse
|
24
|
Abstract
Pseudomonas aeruginosa strains exhibit significant variability in pathogenicity and ecological flexibility. Such interstrain differences reflect the dynamic nature of the P. aeruginosa genome, which is composed of a relatively invariable "core genome" and a highly variable "accessory genome." Here we review the major classes of genetic elements comprising the P. aeruginosa accessory genome and highlight emerging themes in the acquisition and functional importance of these elements. Although the precise phenotypes endowed by the majority of the P. aeruginosa accessory genome have yet to be determined, rapid progress is being made, and a clearer understanding of the role of the P. aeruginosa accessory genome in ecology and infection is emerging.
Collapse
|
25
|
Genetic characterization indicates that a specific subpopulation of Pseudomonas aeruginosa is associated with keratitis infections. J Clin Microbiol 2011; 49:993-1003. [PMID: 21227987 DOI: 10.1128/jcm.02036-10] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Pseudomonas aeruginosa is a common opportunistic bacterial pathogen that causes a variety of infections in humans. Populations of P. aeruginosa are dominated by common clones that can be isolated from diverse clinical and environmental sources. To determine whether specific clones are associated with corneal infection, we used a portable genotyping microarray system to analyze a set of 63 P. aeruginosa isolates from patients with corneal ulcers (keratitis). We then used population analysis to compare the keratitis isolates to a wider collection of P. aeruginosa from various nonocular sources. We identified various markers in a subpopulation of P. aeruginosa associated with keratitis that were in strong disequilibrium with the wider P. aeruginosa population, including oriC, exoU, katN, unmodified flagellin, and the carriage of common genomic islands. The genome sequencing of a keratitis isolate (39016; representing the dominant serotype O11), which was associated with a prolonged clinical healing time, revealed several genomic islands and prophages within the accessory genome. The PCR amplification screening of all 63 keratitis isolates, however, provided little evidence for the shared carriage of specific prophages or genomic islands between serotypes. P. aeruginosa twitching motility, due to type IV pili, is implicated in corneal virulence. We demonstrated that 46% of the O11 keratitis isolates, including 39016, carry a distinctive pilA, encoding the pilin of type IV pili. Thus, the keratitis isolates were associated with specific characteristics, indicating that a subpopulation of P. aeruginosa is adapted to cause corneal infection.
Collapse
|
26
|
Abstract
Pseudomonas species and their bacteriophages have been studied intensely since the beginning of the 20th century, due to their ubiquitous nature, and medical and ecological importance. Here, we summarize recent molecular research performed on Pseudomonas phages by reviewing findings on individual phage genera. While large phage collections are stored and characterized worldwide, the limits of their genomic diversity are becoming more and more apparent. Although this article emphasizes the biological background and molecular characteristics of these phages, special attention is given to emerging studies in coevolutionary and in therapeutic settings.
Collapse
Affiliation(s)
- Pieter-Jan Ceyssens
- Department of Biosystems, Katholieke Universiteit Leuven, Kasteelpark Arenberg 21, bus 2462, B-3001 Leuven, Belgium
| | | |
Collapse
|
27
|
Pirnay JP, Bilocq F, Pot B, Cornelis P, Zizi M, Van Eldere J, Deschaght P, Vaneechoutte M, Jennes S, Pitt T, De Vos D. Pseudomonas aeruginosa population structure revisited. PLoS One 2009; 4:e7740. [PMID: 19936230 PMCID: PMC2777410 DOI: 10.1371/journal.pone.0007740] [Citation(s) in RCA: 187] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 09/26/2009] [Indexed: 12/25/2022] Open
Abstract
At present there are strong indications that Pseudomonas aeruginosa exhibits an epidemic population structure; clinical isolates are indistinguishable from environmental isolates, and they do not exhibit a specific (disease) habitat selection. However, some important issues, such as the worldwide emergence of highly transmissible P. aeruginosa clones among cystic fibrosis (CF) patients and the spread and persistence of multidrug resistant (MDR) strains in hospital wards with high antibiotic pressure, remain contentious. To further investigate the population structure of P. aeruginosa, eight parameters were analyzed and combined for 328 unrelated isolates, collected over the last 125 years from 69 localities in 30 countries on five continents, from diverse clinical (human and animal) and environmental habitats. The analysed parameters were: i) O serotype, ii) Fluorescent Amplified-Fragment Length Polymorphism (FALFP) pattern, nucleotide sequences of outer membrane protein genes, iii) oprI, iv) oprL, v) oprD, vi) pyoverdine receptor gene profile (fpvA type and fpvB prevalence), and prevalence of vii) exoenzyme genes exoS and exoU and viii) group I pilin glycosyltransferase gene tfpO. These traits were combined and analysed using biological data analysis software and visualized in the form of a minimum spanning tree (MST). We revealed a network of relationships between all analyzed parameters and non-congruence between experiments. At the same time we observed several conserved clones, characterized by an almost identical data set. These observations confirm the nonclonal epidemic population structure of P. aeruginosa, a superficially clonal structure with frequent recombinations, in which occasionally highly successful epidemic clones arise. One of these clones is the renown and widespread MDR serotype O12 clone. On the other hand, we found no evidence for a widespread CF transmissible clone. All but one of the 43 analysed CF strains belonged to a ubiquitous P. aeruginosa "core lineage" and typically exhibited the exoS(+)/exoU(-) genotype and group B oprL and oprD alleles. This is to our knowledge the first report of an MST analysis conducted on a polyphasic data set.
Collapse
Affiliation(s)
- Jean-Paul Pirnay
- Laboratory for Molecular and Cellular Technology, Burn Centre, Queen Astrid Military Hospital, Brussel, Belgium.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kaluzny K, Abeyrathne PD, Lam JS. Coexistence of two distinct versions of O-antigen polymerase, Wzy-alpha and Wzy-beta, in Pseudomonas aeruginosa serogroup O2 and their contributions to cell surface diversity. J Bacteriol 2007; 189:4141-52. [PMID: 17384183 PMCID: PMC1913395 DOI: 10.1128/jb.00237-07] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Assembly of B-band lipopolysaccharide (LPS) in Pseudomonas aeruginosa follows a Wzy-dependent pathway, requiring the O-antigen polymerase Wzy and other proteins. The peptide sequences of the wzy(alpha) product from strains of serotypes O2, O5, and O16 are identical, but the O units in O5 are alpha-glycosidically linked, while those in O2 and O16 are beta-linked. We hypothesized that a derivative of the D3 bacteriophage wzy(beta) is present in the chromosomes of O2 and O16 and that this gene is responsible for the beta-linkage. By a combination of PCR and primer walking, wzy(beta) genes of both serotypes have been amplified and cloned. They are identical but share only 87.42% sequence identity with their xenolog in D3. A chromosomal knockout mutant of O16 wzy(beta) was made, and it produces semirough LPS devoid of B-band O antigen. The cloned wzy(beta) is capable of complementing the O16 wzy(beta) mutant, as well as cross-complementing a wzy(alpha) knockout mutant. However, in the latter case, the restored O antigen was beta-linked. Using reverse transcription-PCR, we showed that wzy(alpha) was transcribed in O2 and O16 strains and was functional, since both of these genes could complement the wzy(alpha) mutant of O5. With the coexistence of wzy(alpha) and wzy(beta) in O2 and O16 and the B-band O polysaccharides in these being beta-linked, we hypothesized that iap, an inhibitor of the alpha-polymerase gene, must be present in these serotypes. Indeed, through PCR, TOPO-cloning, and nucleotide-sequencing results, we verified the presence of iap in both O2 and O16 serotypes.
Collapse
Affiliation(s)
- Katarina Kaluzny
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | |
Collapse
|
29
|
Woods DE, Jeddeloh JA, Fritz DL, DeShazer D. Burkholderia thailandensis E125 harbors a temperate bacteriophage specific for Burkholderia mallei. J Bacteriol 2002; 184:4003-17. [PMID: 12081973 PMCID: PMC135171 DOI: 10.1128/jb.184.14.4003-4017.2002] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2002] [Accepted: 04/12/2002] [Indexed: 11/20/2022] Open
Abstract
Burkholderia thailandensis is a nonpathogenic gram-negative bacillus that is closely related to Burkholderia mallei and Burkholderia pseudomallei. We found that B. thailandensis E125 spontaneously produced a bacteriophage, termed phiE125, which formed turbid plaques in top agar containing B. mallei ATCC 23344. We examined the host range of phiE125 and found that it formed plaques on B. mallei but not on any other bacterial species tested, including B. thailandensis and B. pseudomallei. Examination of the bacteriophage by transmission electron microscopy revealed an isometric head and a long noncontractile tail. B. mallei NCTC 120 and B. mallei DB110795 were resistant to infection with phiE125 and did not produce lipopolysaccharide (LPS) O antigen due to IS407A insertions in wbiE and wbiG, respectively. wbiE was provided in trans on a broad-host-range plasmid to B. mallei NCTC 120, and it restored LPS O-antigen production and susceptibility to phiE125. The 53,373-bp phiE125 genome contained 70 genes, an IS3 family insertion sequence (ISBt3), and an attachment site (attP) encompassing the 3' end of a proline tRNA (UGG) gene. While the overall genetic organization of the phiE125 genome was similar to lambda-like bacteriophages and prophages, it also possessed a novel cluster of putative replication and lysogeny genes. The phiE125 genome encoded an adenine and a cytosine methyltransferase, and purified bacteriophage DNA contained both N6-methyladenine and N4-methylcytosine. The results presented here demonstrate that phiE125 is a new member of the lambda supergroup of Siphoviridae that may be useful as a diagnostic tool for B. mallei.
Collapse
Affiliation(s)
- Donald E Woods
- Department of Microbiology and Infectious Diseases, University of Calgary Health Sciences Centre, Alberta T2N 4N1, Canada
| | | | | | | |
Collapse
|
30
|
Lerouge I, Vanderleyden J. O-antigen structural variation: mechanisms and possible roles in animal/plant-microbe interactions. FEMS Microbiol Rev 2002; 26:17-47. [PMID: 12007641 DOI: 10.1111/j.1574-6976.2002.tb00597.x] [Citation(s) in RCA: 329] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Current data from bacterial pathogens of animals and from bacterial symbionts of plants support some of the more general proposed functions for lipopolysaccharides (LPS) and underline the importance of LPS structural versatility and adaptability. Most of the structural heterogeneity of LPS molecules is found in the O-antigen polysaccharide. In this review, the role and mechanisms of this striking flexibility in molecular structure of the O-antigen in bacterial pathogens and symbionts are illustrated by some recent findings. The variation in O-antigen that gives rise to an enormous structural diversity of O-antigens lies in the sugar composition and the linkages between monosaccharides. The chemical composition and structure of the O-antigen is strain-specific (interstrain LPS heterogeneity) but can also vary within one bacterial strain (intrastrain LPS heterogeneity). Both LPS heterogeneities can be achieved through variations at different levels. First of all, O-polysaccharides can be modified non-stoichiometrically with sugar moieties, such as glucosyl and fucosyl residues. The addition of non-carbohydrate substituents, i.e. acetyl or methyl groups, to the O-antigen can also occur with regularity, but in most cases these modifications are again non-stoichiometric. Understanding LPS structural variation in bacterial pathogens is important because several studies have indicated that the composition or size of the O-antigen might be a reliable indicator of virulence potential and that these important features often differ within the same bacterial strain. In general, O-antigen modifications seem to play an important role at several (at least two) stages of the infection process, including the colonization (adherence) step and the ability to bypass or overcome host defense mechanisms. There are many reports of modifications of O-antigen in bacterial pathogens, resulting either from altered gene expression, from lysogenic conversion or from lateral gene transfer followed by recombination. In most cases, the mechanisms underlying these changes have not been resolved. However, in recent studies some progress in understanding has been made. Changes in O-antigen structure mediated by lateral gene transfer, O-antigen conversion and phase variation, including fucosylation, glucosylation, acetylation and changes in O-antigen size, will be discussed. In addition to the observed LPS heterogeneity in bacterial pathogens, the structure of LPS is also altered in bacterial symbionts in response to signals from the plant during symbiosis. It appears to be part of a molecular communication between bacterium and host plant. Experiments ex planta suggest that the bacterium in the rhizosphere prepares its LPS for its roles in symbiosis by refining the LPS structure in response to seed and root compounds and the lower pH at the root surface. Moreover, modifications in LPS induced by conditions associated with infection are another indication that specific structures are important. Also during the differentiation from bacterium to bacteroid, the LPS of Rhizobium undergoes changes in the composition of the O-antigen, presumably in response to the change of environment. Recent findings suggest that, during symbiotic bacteroid development, reduced oxygen tension induces structural modifications in LPS that cause a switch from predominantly hydrophilic to predominantly hydrophobic molecular forms. However, the genetic mechanisms by which the LPS epitope changes are regulated remain unclear. Finally, the possible roles of O-antigen variations in symbiosis will be discussed.
Collapse
Affiliation(s)
- Inge Lerouge
- Centre of Microbial and Plant Genetics, Katholieke Universtiteit Leuven, Kasteelpark Arenberg 20, B-3001, Heverlee, Belgium
| | | |
Collapse
|
31
|
Newton GJ, Daniels C, Burrows LL, Kropinski AM, Clarke AJ, Lam JS. Three-component-mediated serotype conversion in Pseudomonas aeruginosa by bacteriophage D3. Mol Microbiol 2001; 39:1237-47. [PMID: 11251840 DOI: 10.1111/j.1365-2958.2001.02311.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacteriophage D3 is capable of lysogenizing Pseudomonas aeruginosa PAO1 (serotype O5), converting the O-antigen from O5 to O16 and O-acetylating the N-acetylfucosamine moiety. To investigate the mechanism of lysogenic conversion, a 3.6 kb fragment from the D3 genome was isolated capable of mediating serotypic conversion identical to the D3 lysogen strain (AK1380). The PAO1 transformants containing this 3.6 kb of D3 DNA exhibited identical lipopolysaccharide (LPS) banding patterns to serotype O16 in silver-stained SDS-PAGE gels and displayed reactivity to an antibody specific for O-acetyl groups. Further analysis led to the identification of three open reading frames (ORFs) required for serotype conversion: an alpha-polymerase inhibitor (iap); an O-acetylase (oac); and a beta-polymerase (wzybeta). The alpha-polymerase inhibitor (Iap) is capable of inhibiting the assembly of the serotype-specific O5 B-band LPS and allows the phage-encoded beta-polymerase (Wzybeta) to form new beta-linked B-band LPS. The D3 phage also alters the LPS by the addition of O-acetyl groups to the FucNAc residue in the O-antigen repeat unit by the action of the D3 O-acetylase (Oac). These three components form a simple yet elegant system by which bacteriophage D3 is capable of altering the surface of P. aeruginosa PAO1.
Collapse
Affiliation(s)
- G J Newton
- Department of Microbiology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | | | | | | | | | | |
Collapse
|
32
|
Kropinski AM. Sequence of the genome of the temperate, serotype-converting, Pseudomonas aeruginosa bacteriophage D3. J Bacteriol 2000; 182:6066-74. [PMID: 11029426 PMCID: PMC94740 DOI: 10.1128/jb.182.21.6066-6074.2000] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Temperate bacteriophage D3, a member of the virus family Siphoviridae, is responsible for serotype conversion in its host, Pseudomonas aeruginosa. The complete sequence of the double-stranded DNA genome has been determined. The 56,426 bp contains 90 putative open reading frames (ORFs) and four genes specifying tRNAs. The latter are specific for methionine (AUG), glycine (GGA), asparagine (AAC), and threonine (ACA). The tRNAs may function in the translation of certain highly expressed proteins from this relatively AT-rich genome. D3 proteins which exhibited a high degree of sequence similarity to previously characterized phage proteins included the portal, major head, tail, and tail tape measure proteins, endolysin, integrase, helicase, and NinG. The layout of genes was reminiscent of lambdoid phages, with the exception of the placement of the endolysin gene, which parenthetically also lacked a cognate holin. The greatest sequence similarity was found in the morphogenesis genes to coliphages HK022 and HK97. Among the ORFs was discovered the gene encoding the fucosamine O-acetylase, which is in part responsible for the serotype conversion events.
Collapse
MESH Headings
- Acetylesterase/genetics
- Amino Acid Sequence
- Base Sequence
- Cloning, Molecular
- Genome, Viral
- Molecular Sequence Data
- Open Reading Frames
- Protein Biosynthesis
- Pseudomonas Phages/genetics
- Pseudomonas aeruginosa/virology
- RNA, Bacterial/genetics
- RNA, Transfer, Asp/genetics
- RNA, Transfer, Gly/genetics
- RNA, Transfer, Met/genetics
- RNA, Transfer, Thr/genetics
- Sequence Homology, Nucleic Acid
- Siphoviridae/genetics
- Viral Proteins/genetics
Collapse
Affiliation(s)
- A M Kropinski
- Department of Microbiology and Immunology, Faculty of Health Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| |
Collapse
|
33
|
Abstract
The sequence of the nonredundant region of the Salmonella enterica serovar Typhimurium temperate, serotype-converting bacteriophage P22 has been completed. The genome is 41,724 bp with an overall moles percent GC content of 47.1%. Numerous examples of potential integration host factor and C1-binding sites were identified in the sequence. In addition, five potential rho-independent terminators were discovered. Sixty-five genes were identified and annotated. While many of these had been described previously, we have added several new ones, including the genes involved in serotype conversion and late control. Two of the serotype conversion gene products show considerable sequence relatedness to GtrA and -B from Shigella phages SfII, SfV, and SfX. We have cloned the serotype-converting cassette (gtrABC) and demonstrated that it results in Salmonella serovar Typhimurium LT2 cells which express antigen O1. Many of the putative proteins show sequence relatedness to proteins from a great variety of other phages, supporting the hypothesis that this phage has evolved through the recombinational exchange of genetic information with other viruses.
Collapse
Affiliation(s)
- C Vander Byl
- Department of Microbiology and Immunology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | |
Collapse
|
34
|
Shtatland T, Gill SC, Javornik BE, Johansson HE, Singer BS, Uhlenbeck OC, Zichi DA, Gold L. Interactions of Escherichia coli RNA with bacteriophage MS2 coat protein: genomic SELEX. Nucleic Acids Res 2000; 28:E93. [PMID: 11058143 PMCID: PMC113162 DOI: 10.1093/nar/28.21.e93] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Genomic SELEX is a method for studying the network of nucleic acid-protein interactions within any organism. Here we report the discovery of several interesting and potentially biologically important interactions using genomic SELEX. We have found that bacteriophage MS2 coat protein binds several Escherichia coli mRNA fragments more tightly than it binds the natural, well-studied, phage mRNA site. MS2 coat protein binds mRNA fragments from rffG (involved in formation of lipopolysaccharide in the bacterial outer membrane), ebgR (lactose utilization repressor), as well as from several other genes. Genomic SELEX may yield experimentally induced artifacts, such as molecules in which the fixed sequences participate in binding. We describe several methods (annealing of oligonucleotides complementary to fixed sequences or switching fixed sequences) to eliminate some, or almost all, of these artifacts. Such methods may be useful tools for both randomized sequence SELEX and genomic SELEX.
Collapse
MESH Headings
- Artifacts
- Bacteriophages
- Base Sequence
- Binding Sites
- Capsid/metabolism
- Capsid Proteins
- Computational Biology
- Consensus Sequence
- Genes, Bacterial/genetics
- Genome, Bacterial
- Genomic Library
- Nucleic Acid Conformation
- Nucleic Acid Hybridization
- Oligodeoxyribonucleotides/genetics
- Oligodeoxyribonucleotides/metabolism
- Polymerase Chain Reaction
- Protein Binding
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- RNA-Binding Proteins/metabolism
- Sensitivity and Specificity
- Substrate Specificity
- Transcription, Genetic
Collapse
Affiliation(s)
- T Shtatland
- Department of Molecular, University of Colorado, Boulder, CO 80309-0347, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Sadovskaya I, Brisson JR, Thibault P, Richards JC, Lam JS, Altman E. Structural characterization of the outer core and the O-chain linkage region of lipopolysaccharide from Pseudomonas aeruginosa serotype O5. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:1640-50. [PMID: 10712594 DOI: 10.1046/j.1432-1327.2000.01156.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The point of attachment of the O-chain in the outer core region of Pseudomonas aeruginosa serotype O5 lipopolysaccharide (LPS) was determined following a detailed analysis of the extended core oligosaccharide, containing one trisaccharide O-chain repeating unit, present in both the wild-type strain PAO1 and O-chain deficient mutant strains AK1401 and PAO-rfc. The structure of the extended core oligosaccharide was determined by various mass spectrometric methods as well as one-dimensional and two-dimensional NMR spectroscopy. Furthermore, the one-dimensional analogues of NOESY and TOCSY experiments were applied to confirm the structure of the outer core region in the O-chain polysaccharide. In both the extended core oligosaccharide and the core of the smooth LPS, a loss of one of the beta-glucosyl residues and the translocation of the alpha-rhamnosyl residue, followed by the attachment of the first O-chain repeating unit was observed. This process is complicated and could involve two distinct rhamnosyltransferases, one with alpha-1, 6-linkage specificity and another with alpha-1,3-linkage specificity. It is also plausible that an alpha-1,3 rhamnosyltransferase facilitates the addition of the 'new' alpha-rhamnosyl residue that will act as a receptor for the attachment of the single O-antigen repeating unit in the LPS of the semi-rough mutant. The 2-amino-2-deoxy-fucosyl residue of the first O-chain repeating unit directly attached to the core was found to have a beta-anomeric configuration instead of an alpha configuration, characteristic for this residue as a component of the O-chain polysaccharide. The results of this study provide the first example of the mechanistic implications of the structure of the outer core region in a fully assembled O-chain containing LPS, differing from the O-chain deficient rough LPS.
Collapse
Affiliation(s)
- I Sadovskaya
- Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada
| | | | | | | | | | | |
Collapse
|
36
|
Gilakjan ZA, Kropinski AM. Cloning and analysis of the capsid morphogenesis genes of Pseudomonas aeruginosa bacteriophage D3: another example of protein chain mail? J Bacteriol 1999; 181:7221-7. [PMID: 10572124 PMCID: PMC103683 DOI: 10.1128/jb.181.23.7221-7227.1999] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The terminal DNA restriction fragments (PstI-D and -B) of Pseudomonas aeruginosa bacteriophage D3 were ligated, cloned, and sequenced. Of the nine open reading frames in this 8.3-kb fragment, four were identified as encoding large-subunit terminase, portal, ClpP protease, and major head proteins. The portal and capsid proteins showed significant homology with proteins of the lambdoid coliphage HK97. Phage D3 was purified by CsCl equilibrium gradient centrifugation (rho = 1.533 g/ml), and sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed six proteins with molecular masses of 186, 91, 79, 70, 45, and 32 kDa. The pattern was unusual, since a major band corresponding to the expected head protein (43 kDa) was missing and a significant amount of the protein was retained in the stacking gel. The amino terminus of the 186-kDa protein was sequenced, revealing that the D3 head is composed of cross-linked 31-kDa protein subunits, resulting from the proteolysis of the 43-kDa precursor. This is identical to the situation observed with coliphage HK97.
Collapse
Affiliation(s)
- Z A Gilakjan
- Department of Microbiology and Immunology, Faculty of Health Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | |
Collapse
|
37
|
Kropinski AM, Sibbald MJ. Transfer RNA genes and their significance to codon usage in the Pseudomonas aeruginosa lamboid bacteriophage D3. Can J Microbiol 1999. [DOI: 10.1139/w99-078] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Using tRNAscan-SE and FAStRNA we have identified four tRNA genes in the delayed early region of the bacteriophage D3 genome (GenBank accession No. AF077308). These are specific for methionine (AUG), glycine (GGA), asparagine (AAC), and threonine (ACA). The D3 Thr- and Gly-tRNAs recognize codons, which are rarely used in Pseudomonas aeruginosa and presumably, influence the rate of translation of phage proteins. BLASTN searches revealed that the D3 tRNA genes have homology to tRNA genes from Gram-positive bacteria. Analysis of codon usage in the 91 ORFs discovered in D3 indicates patterns of codon usage reminiscent of Escherichia coli or P. aeruginosa.Key words: bacteriophage, Pseudomonas, D3, tRNA, codon usage.
Collapse
|
38
|
Rocchetta HL, Burrows LL, Lam JS. Genetics of O-antigen biosynthesis in Pseudomonas aeruginosa. Microbiol Mol Biol Rev 1999; 63:523-53. [PMID: 10477307 PMCID: PMC103745 DOI: 10.1128/mmbr.63.3.523-553.1999] [Citation(s) in RCA: 267] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pathogenic bacteria produce an elaborate assortment of extracellular and cell-associated bacterial products that enable colonization and establishment of infection within a host. Lipopolysaccharide (LPS) molecules are cell surface factors that are typically known for their protective role against serum-mediated lysis and their endotoxic properties. The most heterogeneous portion of LPS is the O antigen or O polysaccharide, and it is this region which confers serum resistance to the organism. Pseudomonas aeruginosa is capable of concomitantly synthesizing two types of LPS referred to as A band and B band. The A-band LPS contains a conserved O polysaccharide region composed of D-rhamnose (homopolymer), while the B-band O-antigen (heteropolymer) structure varies among the 20 O serotypes of P. aeruginosa. The genes coding for the enzymes that direct the synthesis of these two O antigens are organized into two separate clusters situated at different chromosomal locations. In this review, we summarize the organization of these two gene clusters to discuss how A-band and B-band O antigens are synthesized and assembled by dedicated enzymes. Examples of unique proteins required for both A-band and B-band O-antigen synthesis and for the synthesis of both LPS and alginate are discussed. The recent identification of additional genes within the P. aeruginosa genome that are homologous to those in the A-band and B-band gene clusters are intriguing since some are able to influence O-antigen synthesis. These studies demonstrate that P. aeruginosa represents a unique model system, allowing studies of heteropolymeric and homopolymeric O-antigen synthesis, as well as permitting an examination of the interrelationship of the synthesis of LPS molecules and other virulence determinants.
Collapse
Affiliation(s)
- H L Rocchetta
- Canadian Bacterial Diseases Network, Department of Microbiology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | |
Collapse
|
39
|
Hatano K, Pier GB. Complex serology and immune response of mice to variant high-molecular-weight O polysaccharides isolated from Pseudomonas aeruginosa serogroup O2 strains. Infect Immun 1998; 66:3719-26. [PMID: 9673254 PMCID: PMC108407 DOI: 10.1128/iai.66.8.3719-3726.1998] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The O antigen of the Pseudomonas aeruginosa lipopolysaccharide is the optimal target for protective antibodies, but the unusual and complex nature of their sugar substituents has made it difficult to define the range of these structures needed in an effective vaccine. Most clinical isolates of P. aeruginosa can be classified into 10 O-antigen serogroups, but slight chemical differences among O polysaccharides within a serogroup give rise to subtype epitopes. These epitopes could impact the reactivity of O-antigen-specific antibodies, as well as the susceptibility of a target strain to protective, opsonic antibodies. To define parameters of serogroup and subtype-epitope immunogenicity, antigenicity, and surface expression on P. aeruginosa cells, we prepared high-molecular-weight O-polysaccharide vaccines from strains of P. aeruginosa serogroup O2, for which eight structurally variant O antigens expressing six defined subtype epitopes (O2a to O2f) have been identified. A complex pattern of immune responses to these antigens was observed following vaccination of mice. The high-molecular-weight O polysaccharides were generally more immunogenic at low doses (1 and 10 microg) than at a high dose (50 microg) and usually elicited antibodies that opsonized the homologous strain for phagocytic killing. Some of the individual polysaccharides elicited cross-opsonic antibodies to a variable number of strains that express all of the defined serogroup O2 subtype epitopes. Combination into one vaccine of two antigens that individually elicited cross-reactive opsonic antibodies to most members of the O2 serogroup inhibited, instead of enhanced, the production of antibodies broadly reactive with most serogroup O2 subtype strains. Thus, immune responses to P. aeruginosa O antigens may be restricted to a limited range of epitopes on structurally complex O antigens, and combining multiple related antigens into a single vaccine formulation may inhibit the production of those antibodies best able to protect against most P. aeruginosa strains within a given O-antigen serogroup.
Collapse
Affiliation(s)
- K Hatano
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115-5804, USA
| | | |
Collapse
|
40
|
Barretto Tinoco EM, Stevens R, Haubek D, Lai CH, Balachandran S, Preus H. Relationship of serotype, leukotoxin gene type and lysogeny in Actinobacillus actinomycetemcomitans to periodontal disease status. Eur J Oral Sci 1997; 105:310-7. [PMID: 9298362 DOI: 10.1111/j.1600-0722.1997.tb00246.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Actinobacillus actinomycetemcomitans has been associated with different forms of periodontitis, particularly with localized juvenile periodontitis (LJP). The bacterium possesses several virulence factors which have been shown to interact with the host immune system. Among these factors, leukotoxin, surface antigens (serotype) and bacteriophages have been suggested directly or indirectly to influence the course of infection. However, few studies have been able to show associations between these factors and periodontal disease, alone or in combination. Thus, the purpose of the present study was to investigate possible correlations between periodontal disease status and selected virulence factors (serotype, presence of bacteriophages, and the presence of a 530 bp deletion in the promoter region of the leukotoxin gene). 36 subjects took part in the study. Serotype c was the most frequently found serotype among periodontally affected subjects, although serotypes a and b were also present. 27 out of 36 strains harbored bacteriophages, and there was strong evidence that some of the bacteriophages were different from the previously characterized phi Aa phage. A. actinomycetemcomitans containing the F-fragment phage were more frequently associated with periodontal disease. Five strains, all serotype b, 3 from LJP patients and 2 from healthy subjects, showed a 530-bp deletion in the promoter region of the leukotoxin gene.
Collapse
Affiliation(s)
- E M Barretto Tinoco
- Department of Periodontology, Faculty of Dentistry, University of Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
41
|
Farinha MA, Kropinski AM. Overexpression, purification, and analysis of the c1 repressor protein of Pseudomonas aeruginosa bacteriophage D3. Can J Microbiol 1997; 43:220-6. [PMID: 9090110 DOI: 10.1139/m97-030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A 3.1-kb region of the bacteriophage D3 genome which contains the immunity functions has recently been sequenced (GenBank accession No. L22692). Sequence analysis indicated the presence of a putative repressor gene (c1) whose protein product functions to maintain the bacteriophage genome as a stably integrated prophage in the chromosome of Pseudomonas aeruginosa. A plasmid was constructed that overexpresses repressor C1 protein under control of P(tac) in Escherichia coli. C1 protein was subsequently purified and characterized as a 223 amino acid protein with specific binding affinity for 14-base imperfect palindromic operator sequences located on the genome of bacteriophage D3. N-terminal protein sequence data obtained from automated Edman degradation (16 cycles) of purified repressor protein were identical to the predicted sequence based on DNA sequence analysis of the c1 open reading frame.
Collapse
Affiliation(s)
- M A Farinha
- Department of Biological Sciences, University of North Texas, Denton 76203, USA
| | | |
Collapse
|
42
|
Sharp R, Jansons IS, Gertman E, Kropinski AM. Genetic and sequence analysis of the cos region of the temperate Pseudomonas aeruginosa bacteriophage, D3. Gene X 1996; 177:47-53. [PMID: 8921844 DOI: 10.1016/0378-1119(96)00268-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The location and structure of the cos ends of bacteriophage D3, which infects Pseudomonas aeruginosa strain PAO, has been determined using a combination of deletion analysis, transposon mutagenesis, and sequencing directly off the phage DNA. Phage D3 was found to have 9-bp 3' cos ends, making it the first phage of a Gram-negative organism known to have 3' cos ends. A 700-bp region flanking the cos site was necessary for efficient transduction of D3 cosmid derivatives. This region was found to contain incomplete inverted repeat sequences flanking the cos site, along with adenine-rich repeats homologous to coliphage gama Ter binding sites. Possible IHF binding sites were also present.
Collapse
Affiliation(s)
- R Sharp
- Department of Microbiology and Immunology, Queen's University, Kingston, Ontario, Canada
| | | | | | | |
Collapse
|
43
|
Mamat U, Rietschel ET, Schmidt G. Repression of lipopolysaccharide biosynthesis in Escherichia coli by an antisense RNA of Acetobacter methanolicus phage Acm1. Mol Microbiol 1995; 15:1115-25. [PMID: 7542725 DOI: 10.1111/j.1365-2958.1995.tb02285.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Lysogenic Acetobacter methanolicus strains carrying the prophage Acm1 were found to be unable to synthesize both the capsular polysaccharide (CPS) and the O-specific side-chain of lipopolysaccharide (LPS) and to represent rough variants of the host bacterium. A 262 bp DNA fragment of phage Acm1, obviously required for interference with LPS biosynthesis, was cloned and expressed in Escherichia coli. Independently of the O-type, transformation of various E. coli strains with the recombinant DNA resulted in a suppression of biosynthesis of the O-specific chains. The DNA fragment of phage Acm1 contained three very short open reading frames of 21, 24, and 36 bp. However, attempts to express phage-encoded peptides were not successful. Instead, the Acm1-derived DNA fragment was shown to code for the synthesis of a trans-acting RNA molecule of 97 nucleotides, designated lbi (LPS biosynthesis-interfering) RNA. This RNA contains sequence complementarity to E. coli target RNA sequences and appears to have the ability to form intracellularly RNA hybrid duplexes with mRNA. The data presented in this study support the hypothesis that the phenotypic effect of conversion to rough-type LPS is accompanied by the expression of an antisense RNA of phage Acm1.
Collapse
MESH Headings
- Acetobacter/virology
- Bacterial Capsules/biosynthesis
- Bacteriophages/genetics
- Base Sequence
- Cloning, Molecular
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Genes, Viral
- Lipopolysaccharides/biosynthesis
- Lysogeny
- Molecular Sequence Data
- Nucleic Acid Conformation
- Open Reading Frames/genetics
- RNA, Antisense/chemistry
- RNA, Antisense/genetics
- RNA, Antisense/metabolism
- RNA, Bacterial/metabolism
- RNA, Messenger/metabolism
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Sequence Analysis, DNA
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- U Mamat
- Forschungsinstitut Borstel, Institut für Experimentelle Biologie und Medizin, Germany
| | | | | |
Collapse
|
44
|
Hatano K, Boisot S, DesJardins D, Wright DC, Brisker J, Pier GB. Immunogenic and antigenic properties of a heptavalent high-molecular-weight O-polysaccharide vaccine derived from Pseudomonas aeruginosa. Infect Immun 1994; 62:3608-16. [PMID: 7520416 PMCID: PMC303009 DOI: 10.1128/iai.62.9.3608-3616.1994] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We investigated the chemical and immunologic properties of a heptavalent vaccine composed of high-molecular-weight polymers of the lipopolysaccharide (LPS) O polysaccharides representative of the most common clinical isolates of Pseudomonas aeruginosa. We also evaluated the serum antibody response to nonvaccine strains of P. aeruginosa, including strains expressing structural variants (subtype strains) of the O side chain of the vaccine strains. The polyvalent vaccine, prepared under conditions suitable for human use, contained low levels of contaminants and passed preclinical safety and toxicity tests required for human use. Chemical analyses indicated that individual polysaccharides were composed of both O-side chain and core sugars. Following immunization of C3H/HeN mice and New Zealand White rabbits, antibody titers against vaccine components increased between 32- and 200-fold. Antibodies reactive with LPS isolated from smooth and rough nonvaccine strains were also elicited. Analysis of the opsonic activity against the known LPS subtype variants of the vaccine strains revealed a variable pattern of killing, which ranged from opsonic killing of > or = 69% of bacterial cells representing all subtype variants within a serogroup to opsonization of only a minority of the subtype variant strains. Mouse and rabbit immune sera showed different patterns of opsonic activity against subtype strains, indicating that different epitopes on these antigens are immunodominant in the representatives of these two animal species tested. The polyvalent vaccine was effective at eliciting antibodies to vaccine components in mice and rabbits, but it remains to be determined if the current heptavalent formulation contains sufficient components to provoke human antibodies reactive with a majority of clinical strains of P. aeruginosa.
Collapse
Affiliation(s)
- K Hatano
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | | | | | | | | | | |
Collapse
|
45
|
Farinha MA, Allan BJ, Gertman EM, Ronald SL, Kropinski AM. Cloning of the early promoters of Pseudomonas aeruginosa bacteriophage D3: sequence of the immunity region of D3. J Bacteriol 1994; 176:4809-15. [PMID: 8050993 PMCID: PMC196314 DOI: 10.1128/jb.176.16.4809-4815.1994] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The early promoters of bacteriophage D3 of Pseudomonas aeruginosa were cloned and physically mapped to the right 25% of the phage genome. The promoters were cloned into promoter selection vector pQF26, and their relative strengths, the direction of transcription, and whether they were directly regulated by repressor were determined. A 3.3-kb fragment of the genome containing the immunity region was sequenced and analyzed (GenBank accession number: L22692). The promoter activity associated with this region was determined to be bidirectional and repressible, indicating that this region contains operator-promoter complexes. Sequence and functional analyses suggest that this region is analogous to the immunity region of coliphage lambda. Two strong promoters, one of which was repressible, were found to be located adjacent to the immunity region. Clear-plaque mutant phage D3c contains insertion element IS222, which causes it to behave as a repressor-negative (c1) variant. The site of insertion of IS222 was sequenced and determined to lie within the c1 gene open reading frame. This phage shows remarkable similarity in genomic organization to coliphage lambda and its relatives.
Collapse
Affiliation(s)
- M A Farinha
- Department of Microbiology, University of Alberta, Edmonton, Canada
| | | | | | | | | |
Collapse
|
46
|
Stevens RH, Preus HR, Dokko B, Russell DT, Furgang D, Schreiner HC, Goncharoff P, Figurski DH, Fine DH. Prevalence and distribution of bacteriophage phi Aa DNA in strains of Actinobacillus actinomycetemcomitans. FEMS Microbiol Lett 1994; 119:329-37. [PMID: 8050714 DOI: 10.1111/j.1574-6968.1994.tb06909.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
phi Aa is a bacteriophage that was originally isolated by induction of a lysogenic strain of the oral bacterium Actinobacillus actinomycetemcomitans. Since the discovery of phage phi Aa, additional phages infecting several other strains of A. actinomycetemcomitans have been identified. To determine the prevalence of phi Aa or phi Aa-related temperate phages in this species, a phi Aa-specific DNA probe was prepared to screen for homologous sequences among 42 strains of A. actinomycetemcomitans. Fourteen (33%) of the 42 strains examined contained DNA sequences that hybridized with the phage phi Aa probe. A bacteriophage designated phi Aa33384 was isolated by induction from one of the strains (ATCC 33384) that contained a sequence that hybridized with the phi Aa probe. The phi Aa probe hybridized with the DNA extracted from bacteriophage phi Aa33384. The distribution of the phage phi Aa sequence among A. actinomycetemcomitans serotypes was 5/13 (38%) of the serotype a strains, 0/16 (0%) of the serotype b strains, and 9/13 (69%) of the serotype c strains. The results of this investigation suggest that the target sequence prepared from the phage phi Aa genome is fairly common in the A. actinomycetemcomitans chromosome, and that the sequence is distributed among the A. actinomycetemcomitans serotypes in a seemingly nonrandom manner.
Collapse
Affiliation(s)
- R H Stevens
- Department of Endodontology, School of Dentistry, Temple University, Philadelphia, PA 19104
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Elsabbagh H, Xiong G, Lutz F. Nucleotide sequence of attP and cos sites of phage CTX and expression of cytotoxin in Pseudomonas aeruginosa PA158. MOLECULAR & GENERAL GENETICS : MGG 1993; 237:421-8. [PMID: 8483457 DOI: 10.1007/bf00279447] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The gene for Pseudomonas aeruginosa cytotoxin (CTX) has been found to be part of a temperate phage with a total size of 35.5 kb. We have investigated several DNA fragments of this phage for CTX production. For phage integration, the phage genome cohesive (cos) ends covalently associate with host DNA of strain PA158. The cos ends and the CTX gene are found on a 3.4 kb EcoRI fragment B and are included in the 11 kb HindIII fragment A and the 8.5 kb BamHI fragment B of the phage DNA. The cos ends are 20 nucleotides long and are located at 338-357 nucleotides upstream of the CTX transcriptional initiation site. The phage attachment (attP) site is also present on the 3.4 kb EcoRI fragment B. The attP site consists of 34 bp and is located at 974-1007 nucleotides upstream of the CTX gene start site. Replication of the vegetative form of the phage is increased at 37 degrees C compared to that at 30 degrees C, while cytotoxin production in infected cells is similar at 30 degrees C and 37 degrees C. It can be concluded, therefore, that the integrated form of the CTX gene is responsible for CTX production. SDS-polyacrylamide gel electrophoresis (SDS-PAGE) showed ten proteins in purified phage preparations; however, CTX could not be detected on Western blots using an enzyme-linked immunofluorescence assay.
Collapse
Affiliation(s)
- H Elsabbagh
- Institut für Pharmakologie und Toxikologie, Justus Liebig-Universität Giessen, FRG
| | | | | |
Collapse
|
48
|
Whitfield C, Valvano MA. Biosynthesis and expression of cell-surface polysaccharides in gram-negative bacteria. Adv Microb Physiol 1993; 35:135-246. [PMID: 8310880 DOI: 10.1016/s0065-2911(08)60099-5] [Citation(s) in RCA: 176] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- C Whitfield
- Department of Microbiology, University of Guelph, Ontario, Canada
| | | |
Collapse
|
49
|
Lam JS, Handelsman MY, Chivers TR, MacDonald LA. Monoclonal antibodies as probes to examine serotype-specific and cross-reactive epitopes of lipopolysaccharides from serotypes O2, O5, and O16 of Pseudomonas aeruginosa. J Bacteriol 1992; 174:2178-84. [PMID: 1372599 PMCID: PMC205836 DOI: 10.1128/jb.174.7.2178-2184.1992] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Serotypes O2, O5, and O16 of Pseudomonas aeruginosa are chemically related, and the O antigens of their lipopolysaccharides share a similar trisaccharide repeat backbone structure. Serotype-specific monoclonal antibodies (MAbs) MF71-3, MF15-4, and MF47-4 against the O2, O5, and O16 serotypes, respectively, were isolated. MAb 18-19, which is cross-reactive with all strains of this chemically related serogroup, was also produced. When column chromatography or sodium dodecyl sulfate-polyacrylamide gel electrophoresis-separated lipopolysaccharide (LPS) samples from each of the serotypes were probed with the MAbs in Western immunoblots, each of the serotype-specific MAbs interacted only with high-molecular-weight bands of the homologous LPS, with a minimum O-antigen chain length of at least 6 to 10 repeats. In contrast, cross-reactive MAb 18-19 was shown to interact in Western immunoblots with the entire LPS banding pattern except the fastest-running band, which lacks O antigen. Chemical modification of P. aeruginosa LPS by alkali treatment and carboxyl reduction abolished reactions between LPS and MAb 18-19, while reactions of modified LPS with serotype-specific MAbs were not affected. Therefore, cross-reactive MAb 18-19 likely recognizes the chemical backbone structure of the O repeat that is common to all three serotypes of the O2-O5-O16 group, while the O-specific MAbs appeared to recognize LPS epitopes that could be presented when 6 to 10 or more O-antigen repeat units are present on the LPS molecule. Thus, the O-specific LPS epitopes likely involve unique chemical structures, glycosidic linkages, and some order of folding of the O side chains.
Collapse
Affiliation(s)
- J S Lam
- Department of Microbiology, University of Guelph, Ontario, Canada
| | | | | | | |
Collapse
|
50
|
Lightfoot J, Lam JS. Molecular cloning of genes involved with expression of A-band lipopolysaccharide, an antigenically conserved form, in Pseudomonas aeruginosa. J Bacteriol 1991; 173:5624-30. [PMID: 1909320 PMCID: PMC208290 DOI: 10.1128/jb.173.18.5624-5630.1991] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Most strains of Pseudomonas aeruginosa can express two chemically and immunologically distinct types of lipopolysaccharide (LPS), an antigenically conserved form called A band and the serotype-specific form called B band. To study the molecular controls regulating expression of the A-band LPS antigen, we have cloned the genes involved with A-band LPS expression. Strain AK1401, a phage-resistant mutant of PAO1 which was shown previously to produce only A-band LPS and not the O-antigen-containing B-band LPS, was mutagenized by using ethyl methanesulfonate to generate an A-band-deficient mutant called rd7513. A cosmid clone bank of P. aeruginosa PAO1 whole genomic DNA was constructed in Escherichia coli. The gene bank was mobilized en masse into strain rd7513, and detection of complementation of synthesis of A band was done by screening transconjugants in a colony immunoblot assay with the A-band-specific monoclonal antibody N1F10. One recombinant cosmid, pFV3, complemented synthesis of A-band polysaccharide in rd7513. Silver-stained polyacrylamide gel and Western immunoblot analyses of LPS extracted from the transconjugant rd7513(pFV3) showed that the A band produced had a higher molecular weight than the A band of AK1401. Analysis of the plasmid pFV3 showed that it contained a chromosomal insert of 27 kb. Two subclones of pFV3, namely, pFV35 and pFV36, containing chromosomal inserts of 5.3 and 4.2 kb, respectively, also complemented A-band expression in rd7513. The LPS banding profile of rd7513(pFV35) was similar to that of AK1401, while the LPS profile of rd7513(pFV36) more closely resembled that of rd7513(pFV3). pFV3 complemented A-band expression in five of the six P. aeruginosa O serotypes which lack A band as well as in rough strain AK44 but failed to complement A-band expression in core mutants AK1012 and AK1282, suggesting that pFV3 contains genes for A-band expression and that synthesis of a complete core region in isogenic mutant strains is required for A-band synthesis.
Collapse
Affiliation(s)
- J Lightfoot
- Department of Microbiology, University of Guelph, Ontario, Canada
| | | |
Collapse
|