1
|
Gaifas L, Kleman JP, Lacroix F, Schexnaydre E, Trouve J, Morlot C, Sandblad L, Gutsche I, Timmins J. Combining live fluorescence imaging with in situ cryoelectron tomography sheds light on the septation process in Deinococcus radiodurans. Proc Natl Acad Sci U S A 2025; 122:e2425047122. [PMID: 40327694 DOI: 10.1073/pnas.2425047122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/24/2025] [Indexed: 05/08/2025] Open
Abstract
Cell division is a fundamental biological process that allows a single mother cell to produce two daughter cells. In walled bacteria, different modes of cell division have been reported that are notably associated with distinctive cell shapes. In all cases, division involves a step of septation, corresponding to the growth of a new dividing cell wall, followed by splitting of the two daughter cells. The radiation-resistant Deinococcus radiodurans is a spherical bacterium protected by a thick and unusual cell envelope. It has been reported to divide using a distinctive mode of septation in which two septa originating from opposite sides of the cell progress with a flat leading edge until meeting and fusing at mid-cell. In the present study, we have combined conventional and superresolution fluorescence microscopy of live bacteria with in situ cryogenic electron tomography of bacterial lamellae to investigate the septation process in D. radiodurans. This work provides important insight into i) the complex architecture and multilayered composition of the cell envelope of this bacterium, ii) the unusual "sliding doors" septation process and iii) the sequence of events and molecular mechanisms underlying septal closure, including the synthesis of a FtsZ-dependent peptidoglycan layer that rigidifies and straightens the growing septa.
Collapse
Affiliation(s)
- Lorenzo Gaifas
- University of Grenoble Alpes, Commissariat à l'énergie atomique et aux énergies alternatives, CNRS, Institut de Biologie Structurale, Grenoble F-38000, France
| | - Jean-Philippe Kleman
- University of Grenoble Alpes, Commissariat à l'énergie atomique et aux énergies alternatives, CNRS, Institut de Biologie Structurale, Grenoble F-38000, France
| | - Françoise Lacroix
- University of Grenoble Alpes, Commissariat à l'énergie atomique et aux énergies alternatives, CNRS, Institut de Biologie Structurale, Grenoble F-38000, France
| | - Erin Schexnaydre
- Department of Chemistry, Umeå University, Umeå SE-901 87, Sweden
- SciLifeLab research infrastructure at Umeå University, Umeå Centre for Electron Microscopy, Umeå SE-901 87, Sweden
| | - Jennyfer Trouve
- University of Grenoble Alpes, Commissariat à l'énergie atomique et aux énergies alternatives, CNRS, Institut de Biologie Structurale, Grenoble F-38000, France
| | - Cecile Morlot
- University of Grenoble Alpes, Commissariat à l'énergie atomique et aux énergies alternatives, CNRS, Institut de Biologie Structurale, Grenoble F-38000, France
| | - Linda Sandblad
- Department of Chemistry, Umeå University, Umeå SE-901 87, Sweden
- SciLifeLab research infrastructure at Umeå University, Umeå Centre for Electron Microscopy, Umeå SE-901 87, Sweden
| | - Irina Gutsche
- University of Grenoble Alpes, Commissariat à l'énergie atomique et aux énergies alternatives, CNRS, Institut de Biologie Structurale, Grenoble F-38000, France
- Department of Chemistry, Umeå University, Umeå SE-901 87, Sweden
| | - Joanna Timmins
- University of Grenoble Alpes, Commissariat à l'énergie atomique et aux énergies alternatives, CNRS, Institut de Biologie Structurale, Grenoble F-38000, France
| |
Collapse
|
2
|
Bloch S, Sinden RR, Wien F, Węgrzyn G, Arluison V. DNA Transactions in Bacteria and Membranes: A Place for the Hfq Protein? MEMBRANES 2025; 15:103. [PMID: 40277973 PMCID: PMC12029325 DOI: 10.3390/membranes15040103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/27/2025] [Accepted: 03/29/2025] [Indexed: 04/26/2025]
Abstract
DNA metabolism consists of crucial processes occurring in all living cells. These processes include various transactions, such as DNA replication, genetic recombination, transposition, mutagenesis, and DNA repair. While it was initially assumed that these processes might occur in the cytoplasm of prokaryotic cells, subsequent reports indicated the importance of the cell membrane in various DNA transactions. Furthermore, newly identified factors play significant roles in regulating DNA-related cellular processes. One such factor is the Hfq protein, originally discovered as an RNA chaperone but later shown to be involved in several molecular mechanisms. These include DNA transactions and interaction with the cell membrane. Recent studies have suggested that Hfq plays a role in the regulation of DNA replication, mutagenesis, and recombination. In this narrative review, we will focus on the importance of membranes in DNA transactions and discuss the potential role of Hfq-mediated regulation of these processes in Escherichia coli, where the protein is the best characterized. Special attention is given to the affinity of this small protein for both DNA and membranes, which might help explain some of the findings from recent experiments.
Collapse
Affiliation(s)
- Sylwia Bloch
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland;
| | - Richard R. Sinden
- Department of Chemistry, Biology and Health Sciences, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA;
| | - Frank Wien
- Synchrotron SOLEIL, L’Orme des Merisiers, Départementale 128, 91190 Saint Aubin, France;
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland;
| | - Véronique Arluison
- Laboratoire Léon Brillouin, UMR 12 CEA/CNRS, Bâtiment 563, Site de Saclay, 91191 Gif-sur-Yvette, France
- Université Paris Cité, UFR SDV, 35 Rue Hélène Brion, 75013 Paris, France
| |
Collapse
|
3
|
McGuire KL, Cook BD, Narehood SM, Herzik MA. Tuning ice thickness using the chameleon for high-quality cryoEM data collection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.592094. [PMID: 38746094 PMCID: PMC11092644 DOI: 10.1101/2024.05.01.592094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Advances in single-particle cryogenic electron microscopy (cryoEM) now allow for routine structure determination of well-behaved biological specimens to high-resolution. Despite advances in the electron microscope, direct electron detectors, and data processing software, the preparation of high-quality grids with thin layers of vitreous ice containing the specimen of interest in random orientations remains a critical bottleneck for many projects. Although numerous efforts have been dedicated to overcoming hurdles frequently encountered during specimen vitrification using traditional blot-and-plunge specimen preparation techniques, the development of blot-free grid preparation devices provide a unique opportunity to carefully tune ice thickness, particle density, and specimen behavior during the vitrification process for improvements in image quality. Here, we describe critical steps of high-quality grid preparation using a SPT Labtech chameleon, evaluation of grid quality/ice thickness using the chameleon software, high-throughput imaging in the electron microscope, and recommend steps for troubleshooting grid preparation when standard parameters fail to yield suitable specimen.
Collapse
Affiliation(s)
- Kelly L. McGuire
- Department of Chemistry and Biochemistry, University of California, San Diego, California, US
| | - Brian D. Cook
- Department of Chemistry and Biochemistry, University of California, San Diego, California, US
| | - Sarah M. Narehood
- Department of Chemistry and Biochemistry, University of California, San Diego, California, US
| | - Mark A. Herzik
- Department of Chemistry and Biochemistry, University of California, San Diego, California, US
| |
Collapse
|
4
|
Eskelinen EL. Novel insights into autophagosome biogenesis revealed by cryo-electron tomography. FEBS Lett 2024; 598:9-16. [PMID: 37625816 DOI: 10.1002/1873-3468.14726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023]
Abstract
Autophagosome biogenesis, from the appearance of the phagophore to elongation and closure into an autophagosome, is one of the long-lasting open questions in the autophagy field. Recent studies utilising cryo-electron tomography and detailed analysis of the image data have revealed new information on the membrane dynamics of these events, including the shape and dimensions of omegasomes, phagophores and autophagosomes, and their relationships with the organelles around them. One of the important predictions from the new results is that 60-80% of the autophagosome membrane area is delivered by direct lipid transfer or lipid synthesis. Cryo-electron tomography can be expected to provide new directions for autophagy research in the near future.
Collapse
|
5
|
McLaughlin MR, Weaver SA, Syed F, Evans-Molina C. Advanced Imaging Techniques for the Characterization of Subcellular Organelle Structure in Pancreatic Islet β Cells. Compr Physiol 2023; 14:5243-5267. [PMID: 38158370 PMCID: PMC11490899 DOI: 10.1002/cphy.c230002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Type 2 diabetes (T2D) affects more than 32.3 million individuals in the United States, creating an economic burden of nearly $966 billion in 2021. T2D results from a combination of insulin resistance and inadequate insulin secretion from the pancreatic β cell. However, genetic and physiologic data indicate that defects in β cell function are the chief determinant of whether an individual with insulin resistance will progress to a diagnosis of T2D. The subcellular organelles of the insulin secretory pathway, including the endoplasmic reticulum, Golgi apparatus, and secretory granules, play a critical role in maintaining the heavy biosynthetic burden of insulin production, processing, and secretion. In addition, the mitochondria enable the process of insulin release by integrating the metabolism of nutrients into energy output. Advanced imaging techniques are needed to determine how changes in the structure and composition of these organelles contribute to the loss of insulin secretory capacity in the β cell during T2D. Several microscopy techniques, including electron microscopy, fluorescence microscopy, and soft X-ray tomography, have been utilized to investigate the structure-function relationship within the β cell. In this overview article, we will detail the methodology, strengths, and weaknesses of each approach. © 2024 American Physiological Society. Compr Physiol 14:5243-5267, 2024.
Collapse
Affiliation(s)
- Madeline R. McLaughlin
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Staci A. Weaver
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- The Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Farooq Syed
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- The Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Carmella Evans-Molina
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- The Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Roudebush VA Medical Center, Indianapolis, Indiana, USA
| |
Collapse
|
6
|
Wu K, Wu D, Zhu L, Wu Y. Application of Monolayer Graphene and Its Derivative in Cryo-EM Sample Preparation. Int J Mol Sci 2021; 22:8940. [PMID: 34445650 PMCID: PMC8396334 DOI: 10.3390/ijms22168940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022] Open
Abstract
Cryo-electron microscopy (Cryo-EM) has become a routine technology for resolving the structure of biological macromolecules due to the resolution revolution in recent years. The specimens are typically prepared in a very thin layer of vitrified ice suspending in the holes of the perforated amorphous carbon film. However, the samples prepared by directly applying to the conventional support membranes may suffer from partial or complete denaturation caused by sticking to the air-water interface (AWI). With the application in materials, graphene has also been used recently to improve frozen sample preparation instead of a suspended conventional amorphous thin carbon. It has been proven that graphene or graphene oxide and various chemical modifications on its surface can effectively prevent particles from adsorbing to the AWI, which improves the dispersion, adsorbed number, and orientation preference of frozen particles in the ice layer. Their excellent properties and thinner thickness can significantly reduce the background noise, allowing high-resolution three-dimensional reconstructions using a minimum data set.
Collapse
Affiliation(s)
- Ke Wu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (K.W.); (D.W.)
| | - Di Wu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (K.W.); (D.W.)
| | - Li Zhu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (K.W.); (D.W.)
- Electron Microscopy Centre of Lanzhou University, Lanzhou 730000, China
| | - Yi Wu
- MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
7
|
Okolo CA, Kounatidis I, Groen J, Nahas KL, Balint S, Fish TM, Koronfel MA, Cortajarena AL, Dobbie IM, Pereiro E, Harkiolaki M. Sample preparation strategies for efficient correlation of 3D SIM and soft X-ray tomography data at cryogenic temperatures. Nat Protoc 2021; 16:2851-2885. [PMID: 33990802 DOI: 10.1038/s41596-021-00522-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 02/09/2021] [Indexed: 02/07/2023]
Abstract
3D correlative microscopy methods have revolutionized biomedical research, allowing the acquisition of multidimensional information to gain an in-depth understanding of biological systems. With the advent of relevant cryo-preservation methods, correlative imaging of cryogenically preserved samples has led to nanometer resolution imaging (2-50 nm) under harsh imaging regimes such as electron and soft X-ray tomography. These methods have now been combined with conventional and super-resolution fluorescence imaging at cryogenic temperatures to augment information content from a given sample, resulting in the immediate requirement for protocols that facilitate hassle-free, unambiguous cross-correlation between microscopes. We present here sample preparation strategies and a direct comparison of different working fiducialization regimes that facilitate 3D correlation of cryo-structured illumination microscopy and cryo-soft X-ray tomography. Our protocol has been tested at two synchrotron beamlines (B24 at Diamond Light Source in the UK and BL09 Mistral at ALBA in Spain) and has led to the development of a decision aid that facilitates experimental design with the strategic use of markers based on project requirements. This protocol takes between 1.5 h and 3.5 d to complete, depending on the cell populations used (adherent cells may require several days to grow on sample carriers).
Collapse
Affiliation(s)
- Chidinma A Okolo
- Beamline B24, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Ilias Kounatidis
- Beamline B24, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | | | - Kamal L Nahas
- Beamline B24, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK.,Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Stefan Balint
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Thomas M Fish
- Beamline B24, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Mohamed A Koronfel
- Beamline B24, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Aitziber L Cortajarena
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia San Sebastián, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Ian M Dobbie
- Micron Advanced Imaging Consortium, Department of Biochemistry, University of Oxford, Oxford, UK
| | - Eva Pereiro
- Beamline 09-MISTRAL, ALBA Synchrotron, Barcelona, Spain
| | - Maria Harkiolaki
- Beamline B24, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK.
| |
Collapse
|
8
|
Abstract
Cryo-electron tomography (cryo-ET) is an extremely powerful tool which is used to image cellular features in their close-to-native environment at a resolution where both protein structure and membrane morphology can be revealed. Compared to conventional electron microscopy methods for biology, cryo-ET does not include the use of potentially artifact generating agents for sample fixation or visualization. Despite its obvious advantages, cryo-ET has not been widely adopted by cell biologists. This might originate from the overwhelming and constantly growing number of complex ways to record and process data as well as the numerous methods available for sample preparation. In this chapter, we will take one step back and guide the reader through the essential steps of sample preparation using mammalian cells, as well as the basic steps involved in data recording and processing. The described protocol will allow the reader to obtain data that can be used for morphological analysis and precise measurements of biological structures in their cellular environment. Furthermore, this data can be used for more elaborate structural analysis by applying further image processing steps like subtomogram averaging, which is required to determine the structure of proteins.
Collapse
|
9
|
The Mycobacterium tuberculosis capsule: a cell structure with key implications in pathogenesis. Biochem J 2019; 476:1995-2016. [PMID: 31320388 PMCID: PMC6698057 DOI: 10.1042/bcj20190324] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 01/17/2023]
Abstract
Bacterial capsules have evolved to be at the forefront of the cell envelope, making them an essential element of bacterial biology. Efforts to understand the Mycobacterium tuberculosis (Mtb) capsule began more than 60 years ago, but the relatively recent development of mycobacterial genetics combined with improved chemical and immunological tools have revealed a more refined view of capsule molecular composition. A glycogen-like α-glucan is the major constituent of the capsule, with lower amounts of arabinomannan and mannan, proteins and lipids. The major Mtb capsular components mediate interactions with phagocytes that favor bacterial survival. Vaccination approaches targeting the mycobacterial capsule have proven successful in controlling bacterial replication. Although the Mtb capsule is composed of polysaccharides of relatively low complexity, the concept of antigenic variability associated with this structure has been suggested by some studies. Understanding how Mtb shapes its envelope during its life cycle is key to developing anti-infective strategies targeting this structure at the host-pathogen interface.
Collapse
|
10
|
Akhtar S, Khan FA, Buhaimed A. Functionalized magnetic nanoparticles attenuate cancer cells proliferation: Transmission electron microscopy analysis. Microsc Res Tech 2019; 82:983-992. [PMID: 30809861 DOI: 10.1002/jemt.23245] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/07/2019] [Accepted: 02/10/2019] [Indexed: 12/18/2022]
Abstract
The penetration and transportation of nanoparticles (NPs) inside the cancer cells is critical to study. In this article, cancer cells (HCT-116) were treated with functionalized magnetic NPs for the period of 48 hr and studied their ultrastructure by transmission electron microscopy (TEM). The NPs-treated cells were prepared by chemical fixation and sliced into electron-transparent arbitrary sections (200 × 200 μm2 ) by ultramicrotome. Major events of NPs-cell interaction, such as penetration of NPs, encapsulation of NPs into the intracellular compartments, transportation of NPs, and NPs exit, were examined by TEM to understand the mechanism of cell death. The NPs showed the uniform spherical shape with broad size distribution (100-400 nm), while cells displayed irregular morphology with average diameter ~5 μm. Our results showed the successful penetration of NPs deep into the cell, encapsulation, transportation, and exocytosis. Furthermore, we tested the different concentrations (0, 1.5, 12.5, and 50 μg/ml) of NPs on cancer cells and evaluated the cell viability. Laser confocal microscopy and colorimetric analysis together demonstrated that the cell viability is a dose-dependent phenomenon, where 50 μg/ml specimen showed the highest killing of cancer cells compared to other dosages.
Collapse
Affiliation(s)
- Sultan Akhtar
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Firdos Alam Khan
- Department of Stem Cell Biology, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Abdullah Buhaimed
- Department of Stem Cell Biology, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
11
|
Weber MS, Wojtynek M, Medalia O. Cellular and Structural Studies of Eukaryotic Cells by Cryo-Electron Tomography. Cells 2019; 8:E57. [PMID: 30654455 PMCID: PMC6356268 DOI: 10.3390/cells8010057] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 11/23/2022] Open
Abstract
The architecture of protein assemblies and their remodeling during physiological processes is fundamental to cells. Therefore, providing high-resolution snapshots of macromolecular complexes in their native environment is of major importance for understanding the molecular biology of the cell. Cellular structural biology by means of cryo-electron tomography (cryo-ET) offers unique insights into cellular processes at an unprecedented resolution. Recent technological advances have enabled the detection of single impinging electrons and improved the contrast of electron microscopic imaging, thereby significantly increasing the sensitivity and resolution. Moreover, various sample preparation approaches have paved the way to observe every part of a eukaryotic cell, and even multicellular specimens, under the electron beam. Imaging of macromolecular machineries at high resolution directly within their native environment is thereby becoming reality. In this review, we discuss several sample preparation and labeling techniques that allow the visualization and identification of macromolecular assemblies in situ, and demonstrate how these methods have been used to study eukaryotic cellular landscapes.
Collapse
Affiliation(s)
- Miriam Sarah Weber
- Department of Biochemistry, University of Zürich, 8057 Zürich, Switzerland.
| | - Matthias Wojtynek
- Department of Biochemistry, University of Zürich, 8057 Zürich, Switzerland.
- Department of Biology, Institute of Biochemistry, ETH Zürich, 8093 Zürich, Switzerland.
| | - Ohad Medalia
- Department of Biochemistry, University of Zürich, 8057 Zürich, Switzerland.
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84120, Israel.
| |
Collapse
|
12
|
Dillard RS, Hampton CM, Strauss JD, Ke Z, Altomara D, Guerrero-Ferreira RC, Kiss G, Wright ER. Biological Applications at the Cutting Edge of Cryo-Electron Microscopy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2018; 24:406-419. [PMID: 30175702 PMCID: PMC6265046 DOI: 10.1017/s1431927618012382] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Cryo-electron microscopy (cryo-EM) is a powerful tool for macromolecular to near-atomic resolution structure determination in the biological sciences. The specimen is maintained in a near-native environment within a thin film of vitreous ice and imaged in a transmission electron microscope. The images can then be processed by a number of computational methods to produce three-dimensional information. Recent advances in sample preparation, imaging, and data processing have led to tremendous growth in the field of cryo-EM by providing higher resolution structures and the ability to investigate macromolecules within the context of the cell. Here, we review developments in sample preparation methods and substrates, detectors, phase plates, and cryo-correlative light and electron microscopy that have contributed to this expansion. We also have included specific biological applications.
Collapse
Affiliation(s)
- Rebecca S Dillard
- 1Division of Pediatric Infectious Diseases,Emory University School of Medicine,Children's Healthcare of Atlanta,Atlanta,GA 30322,USA
| | - Cheri M Hampton
- 1Division of Pediatric Infectious Diseases,Emory University School of Medicine,Children's Healthcare of Atlanta,Atlanta,GA 30322,USA
| | - Joshua D Strauss
- 1Division of Pediatric Infectious Diseases,Emory University School of Medicine,Children's Healthcare of Atlanta,Atlanta,GA 30322,USA
| | - Zunlong Ke
- 1Division of Pediatric Infectious Diseases,Emory University School of Medicine,Children's Healthcare of Atlanta,Atlanta,GA 30322,USA
| | - Deanna Altomara
- 1Division of Pediatric Infectious Diseases,Emory University School of Medicine,Children's Healthcare of Atlanta,Atlanta,GA 30322,USA
| | - Ricardo C Guerrero-Ferreira
- 1Division of Pediatric Infectious Diseases,Emory University School of Medicine,Children's Healthcare of Atlanta,Atlanta,GA 30322,USA
| | - Gabriella Kiss
- 1Division of Pediatric Infectious Diseases,Emory University School of Medicine,Children's Healthcare of Atlanta,Atlanta,GA 30322,USA
| | - Elizabeth R Wright
- 1Division of Pediatric Infectious Diseases,Emory University School of Medicine,Children's Healthcare of Atlanta,Atlanta,GA 30322,USA
| |
Collapse
|
13
|
Payre B, Gontier E, Jarray A, Martinez Y, Laugier JP, Delalleau A, Gaillard BM, Anselme I, Goudounèche D, Fourquaux I, Hemati M, Gerbaud V, Delisle MB, Guilbeau-Frugier C. A new HPF specimen carrier adapter for the use of high-pressure freezing with cryoscanning electron microscope: two applications: stearic acid organization in a hydroxypropyl methylcellulose matrix and mice myocardium. J Microsc 2018; 271:255-265. [PMID: 29901222 DOI: 10.1111/jmi.12713] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 04/20/2018] [Accepted: 04/27/2018] [Indexed: 11/30/2022]
Abstract
Cryogenic transmission electron microscopy of high-pressure freezing (HPF) samples is a well-established technique for the analysis of liquid containing specimens. This technique enables observation without removing water or other volatile components. The HPF technique is less used in scanning electron microscopy (SEM) due to the lack of a suitable HPF specimen carrier adapter. The traditional SEM cryotransfer system (PP3000T Quorum Laughton, East Sussex, UK; Alto Gatan, Pleasanton, CA, USA) usually uses nitrogen slush. Unfortunately, and unlike HPF, nitrogen slush produces water crystal artefacts. So, we propose a new HPF specimen carrier adapter for sample transfer from HPF system to cryogenic-scanning electronic microscope (Cryo-SEM). The new transfer system is validated using technical two applications, a stearic acid in hydroxypropyl methylcellulose solution and mice myocardium. Preservation of samples is suitable in both cases. Cryo-SEM examination of HPF samples enables a good correlation between acid stearic liquid concentration and acid stearic occupation surface (only for homogeneous solution). For biological samples as myocardium, cytoplasmic structures of cardiomyocyte are easily recognized with adequate preservation of organelle contacts and inner cell organization. We expect this new HPF specimen carrier adapter would enable more SEM-studies using HPF.
Collapse
Affiliation(s)
- B Payre
- Centre de Microscopie Electronique Appliquée à la Biologie, Faculté de Médecine Rangueil, Toulouse III, P. Sabatier University, 31062, Toulouse, France
| | - E Gontier
- Bordeaux Imaging Center - UMS 3420-Université Bordeaux / CNRS / INSERM, F-33000, Bordeaux, France
| | - A Jarray
- LGC, INP, ENSIACET, 4 Allée Emile Monso, 31432, Toulouse, France
| | - Y Martinez
- CNRS, FR3450, Federation de recherche Agrobiosciences, Interactions, Biodiversité, BP 42617 Auzeville, F-31326, Castanet Tolosan, France
| | - J P Laugier
- Centre Commun de Microscopie Appliquée, Université de Nice-Sophia Antipolis, Nice, France
| | - A Delalleau
- Pixience, 12 rue Louis Courtois de Viçose, 31100, Toulouse, France
| | - B M Gaillard
- INRA, Centre Clermont-Ferrand - Theix, UMR1019, University of Clermont-Ferrand 1, UFR Médecine, UMR101, F-63000, Clermont-Ferrand, France
| | - I Anselme
- Centre de Microscopie Electronique Stéphanois - CMES-Saint Etienne, Université de Lyon, Saint-Etienne, France
| | - D Goudounèche
- Centre de Microscopie Electronique Appliquée à la Biologie, Faculté de Médecine Rangueil, Toulouse III, P. Sabatier University, 31062, Toulouse, France
| | - I Fourquaux
- Centre de Microscopie Electronique Appliquée à la Biologie, Faculté de Médecine Rangueil, Toulouse III, P. Sabatier University, 31062, Toulouse, France
| | - M Hemati
- LGC, INP, ENSIACET, 4 Allée Emile Monso, 31432, Toulouse, France
| | - V Gerbaud
- LGC, INP, ENSIACET, 4 Allée Emile Monso, 31432, Toulouse, France
| | - M B Delisle
- Centre de Microscopie Electronique Appliquée à la Biologie, Faculté de Médecine Rangueil, Toulouse III, P. Sabatier University, 31062, Toulouse, France.,CHU Toulouse and INSERM U 1037, Toulouse CEDEX, 31059, France
| | - C Guilbeau-Frugier
- Centre de Microscopie Electronique Appliquée à la Biologie, Faculté de Médecine Rangueil, Toulouse III, P. Sabatier University, 31062, Toulouse, France
| |
Collapse
|
14
|
Li Y, Almassalha LM, Chandler JE, Zhou X, Stypula-Cyrus YE, Hujsak KA, Roth EW, Bleher R, Subramanian H, Szleifer I, Dravid VP, Backman V. The effects of chemical fixation on the cellular nanostructure. Exp Cell Res 2017; 358:253-259. [PMID: 28673821 DOI: 10.1016/j.yexcr.2017.06.022] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 06/25/2017] [Accepted: 06/27/2017] [Indexed: 01/09/2023]
Abstract
Chemical fixation is nearly indispensable in the biological sciences, especially in circumstances where cryo-fixation is not applicable. While universally employed for the preservation of cell organization, chemical fixatives often introduce artifacts that can confound identification of true structures. Since biological research is increasingly probing ever-finer details of the cellular architecture, it is critical to understand the nanoscale transformation of the cellular organization due to fixation both systematically and quantitatively. In this work, we employed Partial Wave Spectroscopic (PWS) Microscopy, a nanoscale sensitive and label-free live cell spectroscopic-imaging technique, to analyze the effects of the fixation process through three commonly used fixation protocols for cells in vitro. In each method investigated, we detected dramatic difference in both nuclear and cytoplasmic nanoarchitecture between live and fixed states. But significantly, despite the alterations in cellular nanoscale organizations after chemical fixation, the population differences in chromatin structure (e.g. induced by a specific chemotherapeutic agent) remains. In conclusion, we demonstrated that the nanoscale cellular arrangement observed in fixed cells was fundamentally divorced from that in live cells, thus the quantitative analysis is only meaningful on the population level. This finding highlights the importance of live cell imaging techniques with nanoscale sensitivity or cryo-fixation in the interrogation of cellular structure, to complement more traditional chemical fixation methods.
Collapse
Affiliation(s)
- Yue Li
- Applied Physics Program, Northwestern University, Evanston, IL, USA.
| | - Luay M Almassalha
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - John E Chandler
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Xiang Zhou
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | | | - Karl A Hujsak
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Eric W Roth
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Reiner Bleher
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | | | - Igal Szleifer
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA; Department of Chemistry, Northwestern University, Evanston, IL 60208, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
| | - Vinayak P Dravid
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
| | - Vadim Backman
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA; Department of Chemistry, Northwestern University, Evanston, IL 60208, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
15
|
May KL, Silhavy TJ. Making a membrane on the other side of the wall. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:1386-1393. [PMID: 27742351 DOI: 10.1016/j.bbalip.2016.10.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/20/2016] [Accepted: 10/04/2016] [Indexed: 12/11/2022]
Abstract
The outer membrane (OM) of Gram-negative bacteria is positioned at the frontline of the cell's interaction with its environment and provides a barrier against influx of external toxins while still allowing import of nutrients and excretion of wastes. It is a remarkable asymmetric bilayer with a glycolipid surface-exposed leaflet and a glycerophospholipid inner leaflet. Lipid asymmetry is key to OM barrier function and several different systems actively maintain this lipid asymmetry. All OM components are synthesized in the cytosol before being secreted and assembled into a contiguous membrane on the other side of the cell wall. Work in recent years has uncovered the pathways that transport and assemble most of the OM components. However, our understanding of how phospholipids are delivered to the OM remains notably limited. Here we will review seminal works in phospholipid transfer performed some 40years ago and place more recent insights in their context. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop.
Collapse
Affiliation(s)
- Kerrie L May
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Thomas J Silhavy
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA.
| |
Collapse
|
16
|
Vidavsky N, Akiva A, Kaplan-Ashiri I, Rechav K, Addadi L, Weiner S, Schertel A. Cryo-FIB-SEM serial milling and block face imaging: Large volume structural analysis of biological tissues preserved close to their native state. J Struct Biol 2016; 196:487-495. [PMID: 27693309 DOI: 10.1016/j.jsb.2016.09.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/12/2016] [Accepted: 09/27/2016] [Indexed: 10/20/2022]
Abstract
Many important biological questions can be addressed by studying in 3D large volumes of intact, cryo fixed hydrated tissues (⩾10,000μm3) at high resolution (5-20nm). This can be achieved using serial FIB milling and block face surface imaging under cryo conditions. Here we demonstrate the unique potential of the cryo-FIB-SEM approach using two extensively studied model systems; sea urchin embryos and the tail fin of zebrafish larvae. We focus in particular on the environment of mineral deposition sites. The cellular organelles, including mitochondria, Golgi, ER, nuclei and nuclear pores are made visible by the image contrast created by differences in surface potential of different biochemical components. Auto segmentation and/or volume rendering of the image stacks and 3D reconstruction of the skeleton and the cellular environment, provides a detailed view of the relative distribution in space of the tissue/cellular components, and thus of their interactions. Simultaneous acquisition of secondary and back-scattered electron images adds additional information. For example, a serial view of the zebrafish tail reveals the presence of electron dense mineral particles inside mitochondrial networks extending more than 20μm in depth in the block. Large volume imaging using cryo FIB SEM, as demonstrated here, can contribute significantly to the understanding of the structures and functions of diverse biological tissues.
Collapse
Affiliation(s)
- Netta Vidavsky
- Department of Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Anat Akiva
- Department of Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Ifat Kaplan-Ashiri
- Department of Chemical Research Support, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Katya Rechav
- Department of Chemical Research Support, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Lia Addadi
- Department of Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel.
| | - Steve Weiner
- Department of Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Andreas Schertel
- Carl Zeiss Microscopy GmbH, Global Applications Support, Oberkochen, Germany
| |
Collapse
|
17
|
Abstract
Prokaryotes, by definition, do not segregate their genetic material from the cytoplasm. Thus, there is no barrier preventing direct interactions between chromosomal DNA and the plasma membrane. The possibility of such interactions in bacteria was proposed long ago and supported by early electron microscopy and cell fractionation studies. However, the identification and characterization of chromosome-membrane interactions have been slow in coming. Recently, this subject has seen more progress, driven by advances in imaging techniques and in the exploration of diverse cellular processes. A number of loci have been identified in specific bacteria that depend on interactions with the membrane for their function. In addition, there is growing support for a general mechanism of DNA-membrane contacts based on transertion-concurrent transcription, translation, and insertion of membrane proteins. This review summarizes the history and recent results of chromosome-membrane associations and discusses the known and theorized consequences of these interactions in the bacterial cell.
Collapse
Affiliation(s)
- Manuela Roggiani
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| | - Mark Goulian
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| |
Collapse
|
18
|
Developments in cryo-electron tomography for in situ structural analysis. Arch Biochem Biophys 2015; 581:78-85. [DOI: 10.1016/j.abb.2015.04.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/14/2015] [Accepted: 04/19/2015] [Indexed: 12/31/2022]
|
19
|
Loussert Fonta C, Humbel BM. Correlative microscopy. Arch Biochem Biophys 2015; 581:98-110. [DOI: 10.1016/j.abb.2015.05.017] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/26/2015] [Accepted: 05/29/2015] [Indexed: 11/15/2022]
|
20
|
Karreman MA, van Donselaar EG. VIS2FIX: rapid chemical fixation of vitreous sections for immuno-electron microscopy. Methods Mol Biol 2015; 1174:297-314. [PMID: 24947391 DOI: 10.1007/978-1-4939-0944-5_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Immuno-electron microscopy uniquely allows high-resolution localization of proteins in their cellular context. Usually, affinity labeling with an electron-dense marker, e.g., small gold particles, is performed on sections of chemically fixed cells or tissues. In this chapter, we describe two novel protocols, the VIS2FIX methods, for chemical fixation of sections of cryo-immobilized biological samples. This method involves production of thin sections of high-pressure frozen cells that are statically adhered to a TEM grid. Subsequent steps involve chemical fixation of the samples by either the VIS2FIX(H) ("H" for "hydrated") or the VIS2FIX(FS) ("FS" for "freeze substitution") techniques. Following chemical fixation, the samples are ready for immunolabeling. The described methods are fast and efficient, yield excellent preservation of intracellular structures, and offer the possibility to maintain lipids in the sample.
Collapse
Affiliation(s)
- Matthia A Karreman
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory Heidelberg, Meyerhofstraße 1, 69117, Heidelberg, Germany,
| | | |
Collapse
|
21
|
Dragavon J, Sinow C, Holland AD, Rekiki A, Theodorou I, Samson C, Blazquez S, Rogers KL, Tournebize R, Shorte SL. A step beyond BRET: Fluorescence by Unbound Excitation from Luminescence (FUEL). J Vis Exp 2014. [PMID: 24894759 PMCID: PMC4207116 DOI: 10.3791/51549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Fluorescence by Unbound Excitation from Luminescence (FUEL) is a radiative excitation-emission process that produces increased signal and contrast enhancement in vitro and in vivo. FUEL shares many of the same underlying principles as Bioluminescence Resonance Energy Transfer (BRET), yet greatly differs in the acceptable working distances between the luminescent source and the fluorescent entity. While BRET is effectively limited to a maximum of 2 times the Förster radius, commonly less than 14 nm, FUEL can occur at distances up to µm or even cm in the absence of an optical absorber. Here we expand upon the foundation and applicability of FUEL by reviewing the relevant principles behind the phenomenon and demonstrate its compatibility with a wide variety of fluorophores and fluorescent nanoparticles. Further, the utility of antibody-targeted FUEL is explored. The examples shown here provide evidence that FUEL can be utilized for applications where BRET is not possible, filling the spatial void that exists between BRET and traditional whole animal imaging.
Collapse
Affiliation(s)
- Joseph Dragavon
- Plate-Forme d'Imagerie Dynamique, Imagopole, Institut Pasteur;
| | - Carolyn Sinow
- Department of Radiation Oncology, Stanford School of Medicine
| | | | | | - Ioanna Theodorou
- Service Hospitalier Frédéric Joliot, Institut d'Imagerie Biomédicale
| | | | | | | | - Régis Tournebize
- Plate-Forme d'Imagerie Dynamique, Imagopole, Institut Pasteur; Unité INSERM U786, Institut Pasteur; Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur
| | | |
Collapse
|
22
|
Rodenburg CM, McPherson SA, Turnbough CL, Dokland T. Cryo-EM analysis of the organization of BclA and BxpB in the Bacillus anthracis exosporium. J Struct Biol 2014; 186:181-7. [PMID: 24607412 DOI: 10.1016/j.jsb.2014.02.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 02/25/2014] [Accepted: 02/28/2014] [Indexed: 10/25/2022]
Abstract
Bacillus anthracis and other pathogenic Bacillus species form spores that are surrounded by an exosporium, a balloon-like layer that acts as the outer permeability barrier of the spore and contributes to spore survival and virulence. The exosporium consists of a hair-like nap and a paracrystalline basal layer. The filaments of the nap are comprised of trimers of the collagen-like glycoprotein BclA, while the basal layer contains approximately 20 different proteins. One of these proteins, BxpB, forms tight complexes with BclA and is required for attachment of essentially all BclA filaments to the basal layer. Another basal layer protein, ExsB, is required for the stable attachment of the exosporium to the spore. To determine the organization of BclA and BxpB within the exosporium, we used cryo-electron microscopy, cryo-sectioning and crystallographic analysis of negatively stained exosporium fragments to compare wildtype spores and mutant spores lacking BclA, BxpB or ExsB (ΔbclA, ΔbxpB and ΔexsB spores, respectively). The trimeric BclA filaments are attached to basal layer surface protrusions that appear to be trimers of BxpB. The protrusions interact with a crystalline layer of hexagonal subunits formed by other basal layer proteins. Although ΔbxpB spores retain the hexagonal subunits, the basal layer is not organized with crystalline order and lacks basal layer protrusions and most BclA filaments, indicating a central role for BxpB in exosporium organization.
Collapse
Affiliation(s)
- Cynthia M Rodenburg
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Sylvia A McPherson
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Charles L Turnbough
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Terje Dokland
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
23
|
Baum MM, Gunawardana M, Webster P. Experimental approaches to investigating the vaginal biofilm microbiome. Methods Mol Biol 2014; 1147:85-103. [PMID: 24664828 PMCID: PMC8801157 DOI: 10.1007/978-1-4939-0467-9_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Unraveling the complex ecology of the vaginal biofilm microbiome relies on a number of complementary techniques. Here, we describe the experimental approaches for studying vaginal microbial biofilm samples with a focus on specimen preparation for subsequent analysis. The techniques include fluorescence microscopy, fluorescence in situ hybridization, and scanning and transmission electron microscopy. Isolation of microbial DNA and RNA from these samples is covered along with a brief discussion of chemical analysis methods.
Collapse
Affiliation(s)
- Marc M Baum
- Department of Chemistry, Oak Crest Institute of Science, 2275 E Foothill Boulevard, Pasadena, CA, 91107, USA,
| | | | | |
Collapse
|
24
|
Holland AD, Rückerl F, Dragavon JM, Rekiki A, Tinevez JY, Tournebize R, Shorte SL. In vitro characterization of Fluorescence by Unbound Excitation from Luminescence: broadening the scope of energy transfer. Methods 2013; 66:353-61. [PMID: 24045025 DOI: 10.1016/j.ymeth.2013.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 08/20/2013] [Accepted: 09/02/2013] [Indexed: 01/10/2023] Open
Abstract
Energy transfer mechanisms represent the basis for an array of valuable tools to infer interactions in vitro and in vivo, enhance detection or resolve interspecies distances such as with resonance. Based upon our own previously published studies and new results shown here we present a novel framework describing for the first time a model giving a view of the biophysical relationship between Fluorescence by Unbound Excitation from Luminescence (FUEL), a conventional radiative excitation-emission process, and bioluminescence resonance energy transfer. We show here that in homogeneous solutions and in fluorophore-targeted bacteria, FUEL is the dominant mechanism responsible for the production of red-shifted photons. The minor resonance contribution was ascertained by comparing the intensity of the experimental signal to its theoretical resonance counterpart. Distinctive features of the in vitro FUEL signal include a macroscopic depth dependency, a lack of enhancement upon targeting at a constant fluorophore concentration cf and a non-square dependency on cf. Significantly, FUEL is an important, so far overlooked, component of all resonance phenomena which should guide the design of appropriate controls when elucidating interactions. Last, our results highlight the potential for FUEL as a means to enhance in vivo and in vitro detection through complex media while alleviating the need for targeting.
Collapse
Affiliation(s)
- Alexandra D Holland
- Plate-Forme d'Imagerie Dynamique, Imagopole, Institut Pasteur, 25-28 Rue du Dr. Roux, 75724 Paris cedex 15, France
| | - Florian Rückerl
- Plate-Forme d'Imagerie Dynamique, Imagopole, Institut Pasteur, 25-28 Rue du Dr. Roux, 75724 Paris cedex 15, France
| | - Joseph M Dragavon
- Plate-Forme d'Imagerie Dynamique, Imagopole, Institut Pasteur, 25-28 Rue du Dr. Roux, 75724 Paris cedex 15, France
| | - Abdessalem Rekiki
- Plate-Forme d'Imagerie Dynamique, Imagopole, Institut Pasteur, 25-28 Rue du Dr. Roux, 75724 Paris cedex 15, France
| | - Jean-Yves Tinevez
- Plate-Forme d'Imagerie Dynamique, Imagopole, Institut Pasteur, 25-28 Rue du Dr. Roux, 75724 Paris cedex 15, France
| | - Régis Tournebize
- Plate-Forme d'Imagerie Dynamique, Imagopole, Institut Pasteur, 25-28 Rue du Dr. Roux, 75724 Paris cedex 15, France; Unité INSERM U786, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris cedex 15, France.
| | - Spencer L Shorte
- Plate-Forme d'Imagerie Dynamique, Imagopole, Institut Pasteur, 25-28 Rue du Dr. Roux, 75724 Paris cedex 15, France.
| |
Collapse
|
25
|
Abstract
The ultrastructure of bacteria is only accessible by electron microscopy. Our insights into the architecture of cells and cellular compartments such as the envelope and appendages is thus dependent on the progress of preparative and imaging techniques in electron microscopy. Here, I give a short overview of the development and characteristics of methods applied for imaging (components of) the bacterial surface and refer to key investigations and exemplary results. In the beginning of electron microscopy, fixation of biological material and staining for contrast enhancement were the standard techniques. The results from freeze-etching, metal shadowing and from ultrathin-sections of plastic-embedded material shaped our view of the cellular organization of bacteria. The introduction of cryo-preparations, keeping samples in their natural environment, and three-dimensional (3D) electron microscopy of isolated protein complexes and intact cells opened the door to a new dimension and has provided insight into the native structure of macromolecules and the in situ organization of cells at molecular resolution. Cryo-electron microscopy of single particles, together with other methods of structure determination, and cellular cryo-electron tomography will provide us with a quasi-atomic model of the bacterial cell surface in the years to come.
Collapse
|
26
|
Jeon J, Lodge MS, Dawson BD, Ishigami M, Shewmaker F, Chen B. Superb resolution and contrast of transmission electron microscopy images of unstained biological samples on graphene-coated grids. Biochim Biophys Acta Gen Subj 2013; 1830:3807-15. [DOI: 10.1016/j.bbagen.2013.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 02/27/2013] [Accepted: 03/01/2013] [Indexed: 11/26/2022]
|
27
|
Tocheva EI, López-Garrido J, Hughes HV, Fredlund J, Kuru E, Vannieuwenhze MS, Brun YV, Pogliano K, Jensen GJ. Peptidoglycan transformations during Bacillus subtilis sporulation. Mol Microbiol 2013; 88:673-86. [PMID: 23531131 DOI: 10.1111/mmi.12201] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2013] [Indexed: 11/28/2022]
Abstract
While vegetative Bacillus subtilis cells and mature spores are both surrounded by a thick layer of peptidoglycan (PG, a polymer of glycan strands cross-linked by peptide bridges), it has remained unclear whether PG surrounds prespores during engulfment. To clarify this issue, we generated a slender ΔponA mutant that enabled high-resolution electron cryotomographic imaging. Three-dimensional reconstructions of whole cells in near-native states revealed a thin PG-like layer extending from the lateral cell wall around the prespore throughout engulfment. Cryotomography of purified sacculi and fluorescent labelling of PG in live cells confirmed that PG surrounds the prespore. The presence of PG throughout engulfment suggests new roles for PG in sporulation, including a new model for how PG synthesis might drive engulfment, and obviates the need to synthesize a PG layer de novo during cortex formation. In addition, it reveals that B. subtilis can synthesize thin, Gram-negative-like PG layers as well as its thick, archetypal Gram-positive cell wall. The continuous transformations from thick to thin and back to thick during sporulation suggest that both forms of PG have the same basic architecture (circumferential). Endopeptidase activity may be the main switch that governs whether a thin or a thick PG layer is assembled.
Collapse
Affiliation(s)
- Elitza I Tocheva
- Division of Biology, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Guerrero-Ferreira RC, Wright ER. Cryo-electron tomography of bacterial viruses. Virology 2013; 435:179-86. [PMID: 23217626 DOI: 10.1016/j.virol.2012.08.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 08/08/2012] [Accepted: 08/19/2012] [Indexed: 01/15/2023]
Abstract
Bacteriophage particles contain both simple and complex macromolecular assemblages and machines that enable them to regulate the infection process under diverse environmental conditions with a broad range of bacterial hosts. Recent developments in cryo-electron tomography (cryo-ET) make it possible to observe the interactions of bacteriophages with their host cells under native-state conditions at unprecedented resolution and in three-dimensions. This review describes the application of cryo-ET to studies of bacteriophage attachment, genome ejection, assembly and egress. Current topics of investigation and future directions in the field are also discussed.
Collapse
Affiliation(s)
- Ricardo C Guerrero-Ferreira
- Division of Pediatric Infectious Diseases, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | | |
Collapse
|
29
|
Cougot N, Cavalier A, Thomas D, Gillet R. The Dual Organization of P-bodies Revealed by Immunoelectron Microscopy and Electron Tomography. J Mol Biol 2012; 420:17-28. [DOI: 10.1016/j.jmb.2012.03.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 03/01/2012] [Accepted: 03/29/2012] [Indexed: 12/31/2022]
|
30
|
Comolli LR, Duarte R, Baum D, Luef B, Downing KH, Larson DM, Csencsits R, Banfield JF. A portable cryo-plunger for on-site intact cryogenic microscopy sample preparation in natural environments. Microsc Res Tech 2012; 75:829-36. [PMID: 22213355 PMCID: PMC4677670 DOI: 10.1002/jemt.22001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 11/11/2011] [Indexed: 11/05/2022]
Abstract
We present a modern, light portable device specifically designed for environmental samples for cryogenic transmission-electron microscopy (cryo-TEM) by on-site cryo-plunging. The power of cryo-TEM comes from preparation of artifact-free samples. However, in many studies, the samples must be collected at remote field locations, and the time involved in transporting samples back to the laboratory for cryogenic preservation can lead to severe degradation artifacts. Thus, going back to the basics, we developed a simple mechanical device that is light and easy to transport on foot yet effective. With the system design presented here we are able to obtain cryo-samples of microbes and microbial communities not possible to culture, in their near-intact environmental conditions as well as in routine laboratory work, and in real time. This methodology thus enables us to bring the power of cryo-TEM to microbial ecology.
Collapse
Affiliation(s)
- Luis R Comolli
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Pilizota T, Shaevitz JW. Fast, multiphase volume adaptation to hyperosmotic shock by Escherichia coli. PLoS One 2012; 7:e35205. [PMID: 22514721 PMCID: PMC3325977 DOI: 10.1371/journal.pone.0035205] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Accepted: 03/10/2012] [Indexed: 11/25/2022] Open
Abstract
All living cells employ an array of different mechanisms to help them survive changes in extra cellular osmotic pressure. The difference in the concentration of chemicals in a bacterium's cytoplasm and the external environment generates an osmotic pressure that inflates the cell. It is thought that the bacterium Escherichia coli use a number of interconnected systems to adapt to changes in external pressure, allowing them to maintain turgor and live in surroundings that range more than two-hundred-fold in external osmolality. Here, we use fluorescence imaging to make the first measurements of cell volume changes over time during hyperosmotic shock and subsequent adaptation on a single cell level in vivo with a time resolution on the order of seconds. We directly observe two previously unseen phases of the cytoplasmic water efflux upon hyperosmotic shock. Furthermore, we monitor cell volume changes during the post-shock recovery and observe a two-phase response that depends on the shock magnitude. The initial phase of recovery is fast, on the order of 15–20 min and shows little cell-to-cell variation. For large sucrose shocks, a secondary phase that lasts several hours adds to the recovery. We find that cells are able to recover fully from shocks as high as 1 Osmol/kg using existing systems, but that for larger shocks, protein synthesis is required for full recovery.
Collapse
Affiliation(s)
- Teuta Pilizota
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Joshua W. Shaevitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Physics, Princeton University, Princeton, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
32
|
Abstract
The electron microscope has contributed deep insights into biological structure since its invention nearly 80 years ago. Advances in instrumentation and methodology in recent decades have now enabled electron tomography to become the highest resolution three-dimensional (3D) imaging technique available for unique objects such as cells. Cells can be imaged either plastic-embedded or frozen-hydrated. Then the series of projection images are aligned and back-projected to generate a 3D reconstruction or 'tomogram'. Here, we review how electron tomography has begun to reveal the molecular organization of cells and how the existing and upcoming technologies promise even greater insights into structural cell biology.
Collapse
Affiliation(s)
- Lu Gan
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
33
|
Electron microscopy of nanoemulsions: An essential tool for characterisation and stability assessment. Micron 2012; 43:85-103. [DOI: 10.1016/j.micron.2011.07.014] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 07/18/2011] [Accepted: 07/19/2011] [Indexed: 12/12/2022]
|
34
|
|
35
|
Miot J, Maclellan K, Benzerara K, Boisset N. Preservation of protein globules and peptidoglycan in the mineralized cell wall of nitrate-reducing, iron(II)-oxidizing bacteria: a cryo-electron microscopy study. GEOBIOLOGY 2011; 9:459-470. [PMID: 21955835 DOI: 10.1111/j.1472-4669.2011.00298.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Iron-oxidizing bacteria are important actors of the geochemical cycle of iron in modern environments and may have played a key role all over Earth's history. However, in order to better assess that role on the modern and the past Earth, there is a need for better understanding the mechanisms of bacterial iron oxidation and for defining potential biosignatures to be looked for in the geologic record. In this study, we investigated experimentally and at the nanometre scale the mineralization of iron-oxidizing bacteria with a combination of synchrotron-based scanning transmission X-ray microscopy (STXM), scanning transmission electron microscopy (STEM) and cryo-transmission electron microscopy (cryo-TEM). We show that the use of cryo-TEM instead of conventional microscopy provides detailed information of the successive iron biomineralization stages in anaerobic nitrate-reducing iron-oxidizing bacteria. These results suggest the existence of preferential Fe-binding and Fe-oxidizing sites on the outer face of the plasma membrane leading to the nucleation and growth of Fe minerals within the periplasm of these cells that eventually become completely encrusted. In contrast, the septa of dividing cells remain nonmineralized. In addition, the use of cryo-TEM offers a detailed view of the exceptional preservation of protein globules and the peptidoglycan within the Fe-mineralized cell walls of these bacteria. These organic molecules and ultrastructural details might be protected from further degradation by entrapment in the mineral matrix down to the nanometre scale. This is discussed in the light of previous studies on the properties of Fe-organic interactions and more generally on the fossilization of mineral-organic assemblies.
Collapse
Affiliation(s)
- J Miot
- Institut de Minéralogie et de Physique des Milieux Condensés, UMR 7590, CNRS, Université Piere et Marie Curie et IPGP, Paris, France
| | | | | | | |
Collapse
|
36
|
|
37
|
Homo JC, Booy F, Labouesse P, Lepault J, Dubochet J. Improved anticontaminator for cryo-electron microscopy with a Philips EM 400. J Microsc 2011. [DOI: 10.1111/j.1365-2818.1984.tb00543.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
|
39
|
Abstract
Bacteria are able to survive in low-iron environments by sequestering this metal ion from iron-containing proteins and other biomolecules such as transferrin, lactoferrin, heme, hemoglobin, or other heme-containing proteins. In addition, many bacteria secrete specific low molecular weight iron chelators termed siderophores. These iron sources are transported into the Gram-negative bacterial cell through an outer membrane receptor, a periplasmic binding protein (PBP), and an inner membrane ATP-binding cassette (ABC) transporter. In different strains the outer membrane receptors can bind and transport ferric siderophores, heme, or Fe3+ as well as vitamin B12, nickel complexes, and carbohydrates. The energy that is required for the active transport of these substrates through the outer membrane receptor is provided by the TonB/ExbB/ExbD complex, which is located in the cytoplasmic membrane. In this minireview, we will briefly examine the three-dimensional structure of TonB and the current models for the mechanism of TonB-dependent energy transduction. Additionally, the role of TonB in colicin transport will be discussed.
Collapse
Affiliation(s)
- Karla D Krewulak
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
40
|
Thomson NM, Channon K, Mokhtar NA, Staniewicz L, Rai R, Roy I, Sato S, Tsuge T, Donald AM, Summers D, Sivaniah E. Imaging internal features of whole, unfixed bacteria. SCANNING 2011; 33:59-68. [PMID: 21344457 DOI: 10.1002/sca.20221] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 01/21/2011] [Indexed: 05/30/2023]
Abstract
Wet scanning-transmission electron microscopy (STEM) is a technique that allows high-resolution transmission imaging of biological samples in a hydrated state, with minimal sample preparation. However, it has barely been used for the study of bacterial cells. In this study, we present an analysis of the advantages and disadvantages of wet STEM compared with standard transmission electron microscopy (TEM). To investigate the potential applications of wet STEM, we studied the growth of polyhydroxyalkanoate and triacylglycerol carbon storage inclusions. These were easily visible inside cells, even in the early stages of accumulation. Although TEM produces higher resolution images, wet STEM is useful when preservation of the sample is important or when studying the relative sizes of different features, since samples do not need to be sectioned. Furthermore, under carefully selected conditions, it may be possible to maintain cell viability, enabling new types of experiments to be carried out. To our knowledge, internal features of bacterial cells have not been imaged previously by this technique.
Collapse
Affiliation(s)
- Nicholas M Thomson
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Pierson J, Vos M, McIntosh JR, Peters PJ. Perspectives on electron cryo-tomography of vitreous cryo-sections. JOURNAL OF ELECTRON MICROSCOPY 2011; 60 Suppl 1:S93-100. [PMID: 21844602 PMCID: PMC3156678 DOI: 10.1093/jmicro/dfr014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
A major objective of modern structural biology is to appreciate the cellular organization by elucidating the spatial arrangement of macromolecular complexes within a cell. Cryogenic sample preparation, combined with cryo-ultramicrotomy, enables large cells and pieces of biological tissues to be thinned for electron cryo-tomography, which provides a three-dimensional view of the biological sample. There are, however, limitations associated with the technique that must be realized, addressed and overcome for the procedure to become mainstream. Here, we provide perspectives on the continued advancements in cryogenic sample preparation for vitreous cryo-sectioning, image collection and post-image processing that have expanded the attainable information limit within the three-dimensional reconstructions of cells and pieces of biological tissues.
Collapse
Affiliation(s)
- Jason Pierson
- Division of Cell Biology II, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
42
|
Greif D, Wesner D, Regtmeier J, Anselmetti D. High resolution imaging of surface patterns of single bacterial cells. Ultramicroscopy 2010; 110:1290-6. [DOI: 10.1016/j.ultramic.2010.06.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 04/26/2010] [Accepted: 06/01/2010] [Indexed: 10/19/2022]
|
43
|
Kishimoto-Okada A, Murakami S, Ito Y, Horii N, Furukawa H, Takagi J, Iwasaki K. Comparison of the envelope architecture of E. coli using two methods: CEMOVIS and cryo-electron tomography. JOURNAL OF ELECTRON MICROSCOPY 2010; 59:419-426. [PMID: 20630858 DOI: 10.1093/jmicro/dfq056] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Cryo-electron microscopy of vitreous sections (CEMOVIS) and cryo-electron tomography (cryo-ET) of vitrified specimens are gradually gaining popularity. However, similar to the conventional methods, these techniques tend to produce different images of the same sample. In CEMOVIS, the mechanical stress caused by sectioning may cause inaccuracies smaller than those caused by crevasses. Therefore, we examined Escherichia coli cells by using CEMOVIS and cryo-ET to determine the differences in the computed sizes of the envelope layers, which are smaller than crevasses. We found that the width of the periplasmic space in vitreous sections and tomograms was 12 and 14 nm, respectively; furthermore, while the distance between the outer membrane (OM) and the peptidoglycan (PG) layer was almost equal (11 nm) in the two techniques, that between the plasma membrane (PM) and PG was clearly different. Thus, the observed size difference can be mainly attributed to the PM-PG distance. Since our data were obtained from images acquired using the same microscope in the same conditions, the size differences cannot be attributed to microscope-related factors. One possible factor is the angle of the cutting plane against the long axis of the cell body in CEMOVIS. However, the same PG-OM distance in both methods may exclude the variations caused by this factor. Furthermore, the mechanical stress caused by vitreous sectioning or high-pressure freezing may result in shrinkage. If this shrinkage is responsible for the nanometre-scale deformation in CEMOVIS, this factor will have to be considered in determining the molecular resolution obtained by CEMOVIS.
Collapse
Affiliation(s)
- Aiko Kishimoto-Okada
- Institute for Protein Research, Laboratory of Protein Synthesis and Expression, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Electron cryotomography (ECT) is an emerging technology that allows thin samples such as macromolecular complexes and small bacterial cells to be imaged in 3-D in a nearly native state to "molecular" ( approximately 4 nm) resolution. As such, ECT is beginning to deliver long-awaited insight into the positions and structures of cytoskeletal fi laments, cell wall elements, motility machines, chemoreceptor arrays, internal compartments, and other ultrastructures. This article describes the technique and summarizes its contributions to bacterial cell biology. For comparable recent reviews, see (Subramaniam 2005; Jensen and Briegel 2007; Murphy and Jensen 2007; Li and Jensen 2009). For reviews on the history, technical details, and broader application of electron tomography in general, see for example (Subramaniam and Milne 2004; Lucić et al. 2005; Leis et al. 2008; Midgley and Dunin-Borkowski 2009).
Collapse
Affiliation(s)
- Elitza I Tocheva
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | |
Collapse
|
45
|
Sani M, Houben ENG, Geurtsen J, Pierson J, de Punder K, van Zon M, Wever B, Piersma SR, Jiménez CR, Daffé M, Appelmelk BJ, Bitter W, van der Wel N, Peters PJ. Direct visualization by cryo-EM of the mycobacterial capsular layer: a labile structure containing ESX-1-secreted proteins. PLoS Pathog 2010; 6:e1000794. [PMID: 20221442 PMCID: PMC2832766 DOI: 10.1371/journal.ppat.1000794] [Citation(s) in RCA: 223] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 01/26/2010] [Indexed: 11/19/2022] Open
Abstract
The cell envelope of mycobacteria, a group of Gram positive bacteria, is composed of a plasma membrane and a Gram-negative-like outer membrane containing mycolic acids. In addition, the surface of the mycobacteria is coated with an ill-characterized layer of extractable, non-covalently linked glycans, lipids and proteins, collectively known as the capsule, whose occurrence is a matter of debate. By using plunge freezing cryo-electron microscopy technique, we were able to show that pathogenic mycobacteria produce a thick capsule, only present when the cells were grown under unperturbed conditions and easily removed by mild detergents. This detergent-labile capsule layer contains arabinomannan, α-glucan and oligomannosyl-capped glycolipids. Further immunogenic and proteomic analyses revealed that Mycobacterium marinum capsule contains high amounts of proteins that are secreted via the ESX-1 pathway. Finally, cell infection experiments demonstrated the importance of the capsule for binding to cells and dampening of pro-inflammatory cytokine response. Together, these results show a direct visualization of the mycobacterial capsular layer as a labile structure that contains ESX-1-secreted proteins. The genus Mycobacterium contains a number of important pathogens, such as Mycobacterium tuberculosis. The highly characteristic cell envelope of these bacteria plays a crucial role in the infection process. The most apparent difference with other bacteria is the recently described outer membrane composed of unique (glyco)lipids. However, on top of this membrane mycobacteria also have an ill-defined capsular layer. In this paper, we studied this capsular layer using different electron microscopy techniques and mass spectrometry. Using close to native state preparation method, we show that both pathogenic and non-pathogenic mycobacteria have a labile capsular layer that covers the outer membrane. This capsular layer, in addition to containing arabinogalactan, glycan and mannose-containing glyco-lipids, also surprisingly contains a large amount of ESX-1-secreted proteins in Mycobacterium marinum. Furthermore, we also show that the capsule plays a role in the binding of macrophages and the induction of cytokines. Collectively, these results show for the first time that the capsule can be visualized on both pathogenic and non-pathogenic mycobacteria. In addition, growing mycobacteria under standard laboratory conditions in the presence of detergent with agitation promotes capsular shedding and influences the biological characteristics of the bacteria.
Collapse
Affiliation(s)
- Musa Sani
- Division of Cell Biology-B6, Netherlands Cancer Institute–Antoni van Leeuwenhoek Hospital (NKI-AVL), Amsterdam, the Netherlands
| | - Edith N. G. Houben
- Department of Medical Microbiology and Infection Control, VU University Medical Centre, Amsterdam, the Netherlands
| | - Jeroen Geurtsen
- Department of Medical Microbiology and Infection Control, VU University Medical Centre, Amsterdam, the Netherlands
| | - Jason Pierson
- Division of Cell Biology-B6, Netherlands Cancer Institute–Antoni van Leeuwenhoek Hospital (NKI-AVL), Amsterdam, the Netherlands
| | - Karin de Punder
- Division of Cell Biology-B6, Netherlands Cancer Institute–Antoni van Leeuwenhoek Hospital (NKI-AVL), Amsterdam, the Netherlands
| | - Maaike van Zon
- Division of Cell Biology-B6, Netherlands Cancer Institute–Antoni van Leeuwenhoek Hospital (NKI-AVL), Amsterdam, the Netherlands
| | - Brigitte Wever
- Department of Medical Microbiology and Infection Control, VU University Medical Centre, Amsterdam, the Netherlands
| | - Sander R. Piersma
- Department of Medical Oncology, VU University Medical Centre, Amsterdam, the Netherlands
| | - Connie R. Jiménez
- Department of Medical Oncology, VU University Medical Centre, Amsterdam, the Netherlands
| | - Mamadou Daffé
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Département Mécanismes Moléculaires des Infections Mycobactériennes, Toulouse, France
| | - Ben J. Appelmelk
- Department of Medical Microbiology and Infection Control, VU University Medical Centre, Amsterdam, the Netherlands
| | - Wilbert Bitter
- Department of Medical Microbiology and Infection Control, VU University Medical Centre, Amsterdam, the Netherlands
| | - Nicole van der Wel
- Division of Cell Biology-B6, Netherlands Cancer Institute–Antoni van Leeuwenhoek Hospital (NKI-AVL), Amsterdam, the Netherlands
- * E-mail: (NvdW); (PJP)
| | - Peter J. Peters
- Division of Cell Biology-B6, Netherlands Cancer Institute–Antoni van Leeuwenhoek Hospital (NKI-AVL), Amsterdam, the Netherlands
- Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
- * E-mail: (NvdW); (PJP)
| |
Collapse
|
46
|
BLECK C, MERZ A, GUTIERREZ M, WALTHER P, DUBOCHET J, ZUBER B, GRIFFITHS G. Comparison of different methods for thin section EM analysis of Mycobacterium smegmatis. J Microsc 2010; 237:23-38. [DOI: 10.1111/j.1365-2818.2009.03299.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Abstract
Aqueous biological samples must be "preserved" (stabilized) before they can be placed in the high vacuum of an electron microscope. Among the various approaches that have been developed, plunge freezing maintains the sample in the most native state and is therefore the method of choice when possible. Plunge freezing for standard electron cryomicroscopy applications proceeds by spreading the sample into a thin film across an EM grid and then rapidly submerging it in a cryogen (usually liquid ethane), but success depends critically on the properties of the grid and sample, the production of a uniformly thin film, the temperature and nature of the cryogen, and the plunging conditions. This chapter reviews plunge-freezing principles, techniques, instrumentation, common problems, and safety considerations.
Collapse
|
48
|
Abstract
Some bacteria are amongst the most important model organisms for biology and medicine. Here we review how electron microscopes have been used to image bacterial cells, summarizing the technical details of the various methods, the advantages and disadvantages of each, and the major biological insights that have been obtained. Three specific example structures, "mesosomes," "cytoskeletal filaments," and "nucleoid," are used to illustrate how methodological advances have shaped our understanding of bacterial ultrastructure. Methods that involve dehydration and metal stains are widely practiced and have revealed many ultrastructural features, but they can generate misleading artifacts and have failed to preserve important structures such as the bacterial cytoskeleton. The invention of cryo-electron microscopy, which allows bacterial cells to be imaged in a frozen-hydrated, near-native state without the need for dehydration and stains, has now led to important new insights. Efforts to identify structures and localize specific proteins in cryo-EM images are summarized.
Collapse
|
49
|
Weston AE, Armer HEJ, Collinson LM. Towards native-state imaging in biological context in the electron microscope. J Chem Biol 2009; 3:101-12. [PMID: 19916039 DOI: 10.1007/s12154-009-0033-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Accepted: 10/22/2009] [Indexed: 12/11/2022] Open
Abstract
Modern cell biology is reliant on light and fluorescence microscopy for analysis of cells, tissues and protein localisation. However, these powerful techniques are ultimately limited in resolution by the wavelength of light. Electron microscopes offer much greater resolution due to the shorter effective wavelength of electrons, allowing direct imaging of sub-cellular architecture. The harsh environment of the electron microscope chamber and the properties of the electron beam have led to complex chemical and mechanical preparation techniques, which distance biological samples from their native state and complicate data interpretation. Here we describe recent advances in sample preparation and instrumentation, which push the boundaries of high-resolution imaging. Cryopreparation, cryoelectron microscopy and environmental scanning electron microscopy strive to image samples in near native state. Advances in correlative microscopy and markers enable high-resolution localisation of proteins. Innovation in microscope design has pushed the boundaries of resolution to atomic scale, whilst automatic acquisition of high-resolution electron microscopy data through large volumes is finally able to place ultrastructure in biological context.
Collapse
Affiliation(s)
- Anne E Weston
- Electron Microscopy Unit, London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London, WC2A 3PX UK
| | | | | |
Collapse
|
50
|
Tomova C, Humbel BM, Geerts WJC, Entzeroth R, Holthuis JCM, Verkleij AJ. Membrane Contact Sites between Apicoplast and ER inToxoplasma gondiiRevealed by Electron Tomography. Traffic 2009; 10:1471-80. [DOI: 10.1111/j.1600-0854.2009.00954.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|