1
|
Eppinger M, Radnedge L, Andersen G, Vietri N, Severson G, Mou S, Ravel J, Worsham PL. Novel plasmids and resistance phenotypes in Yersinia pestis: unique plasmid inventory of strain Java 9 mediates high levels of arsenic resistance. PLoS One 2012; 7:e32911. [PMID: 22479347 PMCID: PMC3316555 DOI: 10.1371/journal.pone.0032911] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 02/06/2012] [Indexed: 12/21/2022] Open
Abstract
Growing evidence suggests that the plasmid repertoire of Yersinia pestis is not restricted to the three classical virulence plasmids. The Java 9 strain of Y. pestis is a biovar Orientalis isolate obtained from a rat in Indonesia. Although it lacks the Y. pestis-specific plasmid pMT, which encodes the F1 capsule, it retains virulence in mouse and non-human primate animal models. While comparing diverse Y. pestis strains using subtractive hybridization, we identified sequences in Java 9 that were homologous to a Y. enterocolitica strain carrying the transposon Tn2502, which is known to encode arsenic resistance. Here we demonstrate that Java 9 exhibits high levels of arsenic and arsenite resistance mediated by a novel promiscuous class II transposon, named Tn2503. Arsenic resistance was self-transmissible from Java 9 to other Y. pestis strains via conjugation. Genomic analysis of the atypical plasmid inventory of Java 9 identified pCD and pPCP plasmids of atypical size and two previously uncharacterized cryptic plasmids. Unlike the Tn2502-mediated arsenic resistance encoded on the Y. enterocolitica virulence plasmid; the resistance loci in Java 9 are found on all four indigenous plasmids, including the two novel cryptic plasmids. This unique mobilome introduces more than 105 genes into the species gene pool. The majority of these are encoded by the two entirely novel self-transmissible plasmids, which show partial homology and synteny to other enterics. In contrast to the reductive evolution in Y. pestis, this study underlines the major impact of a dynamic mobilome and lateral acquisition in the genome evolution of the plague bacterium.
Collapse
Affiliation(s)
- Mark Eppinger
- Institute for Genome Sciences and Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, United States of America
| | - Lyndsay Radnedge
- Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Gary Andersen
- Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Nicholas Vietri
- United States Army Medical Research Institute of Infectious Diseases, Bacteriology Division, Fort Detrick, Maryland, United States of America
| | - Grant Severson
- United States Army Medical Research Institute of Infectious Diseases, Bacteriology Division, Fort Detrick, Maryland, United States of America
| | - Sherry Mou
- United States Army Medical Research Institute of Infectious Diseases, Bacteriology Division, Fort Detrick, Maryland, United States of America
| | - Jacques Ravel
- Institute for Genome Sciences and Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, United States of America
| | - Patricia L. Worsham
- United States Army Medical Research Institute of Infectious Diseases, Bacteriology Division, Fort Detrick, Maryland, United States of America
| |
Collapse
|
2
|
Brunder W, Khan AS, Hacker J, Karch H. Novel type of fimbriae encoded by the large plasmid of sorbitol-fermenting enterohemorrhagic Escherichia coli O157:H(-). Infect Immun 2001; 69:4447-57. [PMID: 11401985 PMCID: PMC98518 DOI: 10.1128/iai.69.7.4447-4457.2001] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sorbitol-fermenting (SF) enterohemorrhagic Escherichia coli (EHEC) O157:H(-) have emerged as important causes of diarrheal diseases and the hemolytic-uremic syndrome in Germany. In this study, we characterized a 32-kb fragment of the plasmid of SF EHEC O157:H(-), pSFO157, which differs markedly from plasmid pO157 of classical non-sorbitol-fermenting EHEC O157:H7. We found a cluster of six genes, termed sfpA, sfpH, sfpC, sfpD, sfpJ, and sfpG, which mediate mannose-resistant hemagglutination and the expression of fimbriae. sfp genes are similar to the pap genes, encoding P-fimbriae of uropathogenic E. coli, but the sfp cluster lacks homologues of genes encoding subunits of a tip fibrillum as well as regulatory genes. The major pilin, SfpA, despite its similarity to PapA, does not cluster together with known PapA alleles in a phylogenetic tree but is structurally related to the PmpA pilin of Proteus mirabilis. The putative adhesin gene sfpG, responsible for the hemagglutination phenotype, shows significant homology neither to papG nor to other known sequences. Sfp fimbriae are 3 to 5 nm in diameter, in contrast to P-fimbriae, which are 7 nm in diameter. PCR analyses showed that the sfp gene cluster is a characteristic of SF EHEC O157:H(-) strains and is not present in other EHEC isolates, diarrheagenic E. coli, or other Enterobacteriaceae. The sfp gene cluster is flanked by two blocks of insertion sequences and an origin of plasmid replication, indicating that horizontal gene transfer may have contributed to the presence of Sfp fimbriae in SF EHEC O157:H(-).
Collapse
Affiliation(s)
- W Brunder
- Institut für Hygiene und Mikrobiologie der Universität Würzburg, D-97080 Würzburg, Germany.
| | | | | | | |
Collapse
|
3
|
Abstract
The genus Yersinia contains three pathogenic species: Yersinia pestis, Y. pseudotuberculosis, and Y. enterocolitica. Only a few biotypes and serotypes of Y. enterocolitica are pathogenic, and these form two distinct groups: some are of low virulence, and they are encountered worldwide; others, mainly encountered in North America, are markedly more virulent. All pathogenic yersiniae possess a 70-kb virulence plasmid called pYV which encodes secreted antihost proteins called Yops as well as a type III secretion machinery that is required for Yop secretion. Genes encoding Yop synthesis and secretion are tightly clustered in three quadrants of the pYV plasmid. We show here that in the low-virulence strains of Y. enterocolitica, the fourth quadrant of the plasmid contains a new class II transposon, Tn2502. This transposon encodes a defective transposase, but transposition can be complemented in trans by Tn2501, another class II transposon. Tn2502 was not detected in the pYV plasmids of the more virulent American strains of Y. enterocolitica, of Y. pseudotuberculosis, and of Y. pestis. Tn2502 confers arsenite and arsenate resistance. This resistance involves four genes; three are homologous to the arsRBC genes present on the Escherichia coli chromosome, but no homolog of the fourth one, arsH, has been found. The systematic presence of such a resistance operon on a virulence plasmid is unusual and could be related to the recent spread of low-virulence Y. enterocolitica strains. The presence of this ars operon also constitutes the first significant difference between the pYV plasmids from different Yersinia species.
Collapse
Affiliation(s)
- C Neyt
- Microbial Pathogenesis Unit, International Institute of Cellular and Molecular Pathology, and Faculté de Médecine, Université Catholique deLouvain, Brussels, Belgium
| | | | | | | |
Collapse
|
4
|
Abstract
The structure and function of transposable elements that code for catabolic pathways involved in the biodegradation of organic compounds are reviewed. Seven of these catabolic transposons have structural features that place them in the Class I (composite) or Class II (Tn3-family) bacterial elements. One is a conjugative transposon. Another three have been found to have properties of transposable elements but have not been characterized sufficiently to assign to a known class. Structural features of the toluene (Tn4651/Tn4653) and naphthalene (Tn4655) elements that illustrate the enormous potential for acquisition, deletion and rearrangement of DNA within catabolic transposons are discussed. The recently characterized chlorobenzoate (Tn5271) and chlorobenzene (Tn5280) catabolic transposons encode different aromatic ring dioxygenases, however they both illustrate the constraints that must be overcome when recipients of catabolic transposons assemble and regulate complete metabolic pathways for environmental pollutants. The structures of the chlorobenzoate catabolic transposon Tn5271 and the related haloacetate dehalogenase catabolic element of plasmid pUO1 are compared and a hypothesis for their formation is discussed. The structures and activities of catabolic transposons of unknown class coding for the catabolism of halogenated alkanoic acids (DEH) and chlorobiphenyl (Tn4371) are also reviewed.
Collapse
Affiliation(s)
- R C Wyndham
- Ottawa-Carleton Institute of Biology, Carleton University, ON Canada
| | | | | | | |
Collapse
|
5
|
Elhai J, Cai Y, Wolk CP. Conduction of pEC22, a plasmid coding for MR.EcoT22I, mediated by a resident Tn3-like transposon, Tn5396. J Bacteriol 1994; 176:5059-67. [PMID: 8051018 PMCID: PMC196345 DOI: 10.1128/jb.176.16.5059-5067.1994] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
pEC22 is a small plasmid that encodes the restriction-modification system MR.EcoT22I. Restriction and functional analysis of the plasmid identified the positions of genes encoding that system. The plasmid is able to be conducted by conjugal plasmids, a process mediated by a transposon contained within pEC22. This cryptic transposon, called Tn5396, was isolated from pEC22 and partially sequenced. The sequence of Tn5396 is for the most part typical of transposons of the Tn3 family and is most similar to that of Tn1000. The transposon differs from closely related transposons in that it lacks well-conserved sequences in the inverted-repeat region and has an unusually long terminal inverted repeat. Consideration of regions of internal sequence similarity in this and other transposons in the Tn3 family supports a theory of the mechanism by which the ends of Tn3-like transposons may maintain substantial identity between their inverted repeats over the course of evolutionary time.
Collapse
Affiliation(s)
- J Elhai
- Michigan State University-Department of Energy Plant Research Laboratory, East Lansing 48824
| | | | | |
Collapse
|
6
|
Chiou CS, Jones AL. Nucleotide sequence analysis of a transposon (Tn5393) carrying streptomycin resistance genes in Erwinia amylovora and other gram-negative bacteria. J Bacteriol 1993; 175:732-40. [PMID: 8380801 PMCID: PMC196212 DOI: 10.1128/jb.175.3.732-740.1993] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A class II Tn3-type transposable element, designated Tn5393 and located on plasmid pEa34 from streptomycin-resistant strain CA11 of Erwinia amylovora, was identified by its ability to move from pEa34 to different sites in plasmids pGEM3Zf(+) and pUCD800. Nucleotide sequence analysis reveals that Tn5393 consists of 6,705 bp with 81-bp terminal inverted repeats and generates 5-bp duplications of the target DNA following insertion. Tn5393 contains open reading frames that encode a putative transposase (tnpA) and resolvase (tnpR) of 961 and 181 amino acids, respectively. The two open reading frames are separated by a putative recombination site (res) consisting of 194 bp. Two streptomycin resistance genes, strA and strB, were identified on the basis of their DNA sequence homology to streptomycin resistance genes in plasmid RSF1010. StrA is separated from tnpR by a 1.2-kb insertion element designated IS1133. The tnpA-res-tnpR region of Tn5393 was detected in Pseudomonas syringae pv. papulans Psp36 and in many other gram-negative bacteria harboring strA and strB. Except for some strains of Erwinia herbicola, these other gram-negative bacteria lacked insertion sequence IS1133. The prevalence of strA and strB could be accounted for by transposition of Tn5393 to conjugative plasmids that are then disseminated widely among gram-negative bacteria.
Collapse
Affiliation(s)
- C S Chiou
- Department of Botany and Plant Pathology, Michigan State University, East Lansing 48824-1312
| | | |
Collapse
|
7
|
Thomas AW, Slater JH, Weightman AJ. The dehalogenase gene dehI from Pseudomonas putida PP3 is carried on an unusual mobile genetic element designated DEH. J Bacteriol 1992; 174:1932-40. [PMID: 1312533 PMCID: PMC205799 DOI: 10.1128/jb.174.6.1932-1940.1992] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
As a result of the production of two dehalogenases (DehI and DehII), Pseudomonas putida PP3 utilized halogenated alkanoic acids, such as 2-monochloropropionic acid (2MCPA), as sole sources of carbon and energy. The DehI gene (dehI) was carried on a mobile genetic element (DEH) located on the chromosome of strain PP3. DEH recombined with target plasmid DNAs at high frequencies (e.g. 3.8 x 10(-4) per RP4.5 plasmid transferred). The regulated expression of dehI was detected in P. putida, Pseudomonas aeruginosa, and Escherichia coli strains containing derivative plasmids of RP4.5 and pWW0 recombined with DEH. Movement of DEH from the unstable RP4 derivatives pNJ5000 and pMR5 resulted in the insertion of DEH into the chromosome of RecA+ strains of P. putida but not in RecA+ nor RecA- strains of E. coli. Rescue of DEH from the chromosome of P. putida KT2441 onto plasmid RP4 involved recombination at a frequency (2.7 x 10(-4) per RP4 plasmid transferred) comparable to that observed in strain PP3. The DEH element was not classified as a conventional transposon because it did not move as a discrete DNA fragment: dehI-containing inserts in plasmid DNA targets varied in size between 6 and 13 kb. In addition, DEH exhibited a marked preference for insertion into a specific site on the plasmid pWW0, but its transposition, independent of host recombinational systems, remains to be demonstrated. However, the transposonlike characteristics of DEH included the conservation of restriction endonuclease sites, high-frequency recombination with different target replicons (plasmid and chromosomal DNA), and promiscuous insertion into plasmid RP4-based replicons. Therefore, it is proposed that DEH is an unusual mobile genetic element.
Collapse
Affiliation(s)
- A W Thomas
- School of Pure and Applied Biology, University of Wales, Cardiff
| | | | | |
Collapse
|
8
|
Wood MS, Byrne A, Lessie TG. IS406 and IS407, two gene-activating insertion sequences for Pseudomonas cepacia. Gene X 1991; 105:101-5. [PMID: 1718819 DOI: 10.1016/0378-1119(91)90519-h] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We have determined the nucleotide sequences of IS406 (1368 bp) and IS407 (1236 bp), two insertion sequence (IS) elements isolated from Pseudomonas cepacia 249 on the basis of their abilities to activate the expression of the lac genes of Tn951. IS406 and IS407 when inserted into the lac promoter/operator region of Tn951 generated, respectively, duplications of 8 and 4 bp of target DNA. IS406 had 41-bp terminal inverted repeat (IR) sequences with eleven mismatches. IR-L (left) contained a 12-bp motif present at the ends of Tn2501. In other respects, IS406 was distinct from previously described bacterial IS elements listed in the GenBank and EMBL databases. IS407 had 49-bp terminal IRs with 18 mismatches. IR-R (right) contained an outwardly directed sigma 70-like promoter. IS407 was closely related to IS476 and ISR1 from Xanthomonas and Rhizobium sp., respectively.
Collapse
Affiliation(s)
- M S Wood
- Department of Microbiology, University of Massachusetts, Amherst 01003
| | | | | |
Collapse
|
9
|
Abstract
The Tn3 family of transposable elements is probably the most successful group of mobile DNA elements in bacteria: there are many different but related members and they are widely distributed in gram-negative and gram-positive bacteria. The Tn21 subgroup of the Tn3 family contains closely related elements that provide most of the currently known variation in Tn3-like elements in gram-negative bacteria and that are largely responsible for the problem of multiple resistance to antibiotics in these organisms. This paper reviews the structure, the mechanism of transposition, the mode of acquisition of accessory genes, and the evolution of these elements.
Collapse
Affiliation(s)
- J Grinsted
- Department of Microbiology, University of Bristol, Medical School, University Walk, U.K
| | | | | |
Collapse
|
10
|
Lafond M, Couture F, Vézina G, Levesque RC. Evolutionary perspectives on multiresistance beta-lactamase transposons. J Bacteriol 1989; 171:6423-9. [PMID: 2556363 PMCID: PMC210530 DOI: 10.1128/jb.171.12.6423-6429.1989] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A series of intragenic DNA probes, encoding the major part of the transposase resolvase and inverted repeats of transposons Tn3, Tn21, and Tn2501, were used in hybridization assays for homologous DNA sequences in 18 transposons studied. The tnpA and tnpR probes detected extensive homology with Tn3-like and Tn21-like elements for 11 transposons. This high degree of homology was confirmed with the 38- and 48-base-pair inverted-repeat oligonucleotide probes of Tn3, Tn21, and Tn2501. The Southern-type gel hybridization experiments localized the tnpA-homologous sequences on the physical DNA maps constructed. The genetic and physical maps of the transposons were compared, as were their nucleic acid sequence homologies. These comparisons suggested a subfamily of mobile elements distinct from but related to the Tn21 group. Based on these results, an evolutionary model is proposed and a pedigree is presented for the genesis of multiresistance beta-lactamase transposons.
Collapse
Affiliation(s)
- M Lafond
- Département de Microbiologie, Faculté de Médecine, Université Laval, Quebec, Canada
| | | | | | | |
Collapse
|
11
|
Abstract
The resolvase gene and the putative res site of Tn2501 are not closely related to any of the previously described resolution functions. In view of this divergence, we designed genetic experiments to confirm the localization of the res site. We analyzed the activity of the Tn2501-encoded resolvase on substrates containing either directly or invertedly repeated res sites. These experiments confirm the localization of the res site that was predicted from nucleotide sequence data and show that the Tn2501 resolvase promotes site-specific inversions in vivo.
Collapse
Affiliation(s)
- T Michiels
- Université Catholique de Louvain, Unité de Microbiologie, UCL 54-90, Brussels, Belgium
| | | |
Collapse
|
12
|
Hamada K, Nakayama Y. Location on the chromosome of the lac gene in a lactose-fermenting Salmonella litchfield strain. Microbiol Immunol 1989; 33:87-97. [PMID: 2716548 DOI: 10.1111/j.1348-0421.1989.tb01501.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We present conclusive evidence for the chromosomal location of the lac gene in a lactose-fermenting Salmonella litchfield strain (AO Lac+). Two Hfr strains constructed from AO Lac+ had abilities to transfer the lac gene to S. typhimurium LT2 at relatively high frequencies. Detailed characterization of the transconjugants suggested that the lac in AO Lac+ was located on the host chromosome between galE (18 min) and trpB (34 min). Transduction experiments using P22 phage showed that the lac was cotransduced with gal, but not with trpB. These results clearly indicate that the lac gene is located at a position near 18 min of the linkage map of Salmonella.
Collapse
Affiliation(s)
- K Hamada
- Division of Microbiology, Public Health Institute of Hyogo Prefecture
| | | |
Collapse
|
13
|
Tsuda M, Iino T. Identification and characterization of Tn4653, a transposon covering the toluene transposon Tn4651 on TOL plasmid pWW0. MOLECULAR & GENERAL GENETICS : MGG 1988; 213:72-7. [PMID: 2851712 DOI: 10.1007/bf00333400] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A Pseudomonas TOL plasmid pWW0 possesses toluene degradative pathway (xyl) genes. Unstable maintenance of a pWW0 derivative in Escherichia coli allowed us to identify two transposable elements each carrying all the xyl genes. One element corresponded to a 56 kb transposon, Tn4651, which we had previously characterized. The other element newly identified in this study was 70 kb long, and this element, designated Tn4653, completely included Tn4651. Genetic analysis of Tn4653 demonstrated that its transposition involves two steps, i.e. cointegrate formation and its subsequent resolution. The former step required a trans-acting factor, transposase, which was encoded in a 3.0 kb fragment at one end of Tn4653, and the latter step was inferred to be mediated by the factors necessary for resolution of the Tn4651-mediated cointegrate. The transposase functions were not interchangeable between the two transposons.
Collapse
Affiliation(s)
- M Tsuda
- Department of Biology, Faculty of Science, University of Tokyo, Japan
| | | |
Collapse
|
14
|
Abstract
The umuDC operon of Escherichia coli encodes mutagenic DNA repair. The umuDC regions of multiple isolates of E. coli, E. alkalescens, and E. dispar and a single stock of E. aurescens were mapped by nucleotide hybridization. umuDC is located at one end of a conserved tract of restriction endonuclease sites either 12.5 or 14 kilobase pairs long. Rearrangements, including possible deletions, were seen in the polymorphic DNA flanking the conserved tract. Restriction site polymorphisms were not found around the DNA repair gene recA or polA. The junctions of the conserved region contain direct repeats of nucleotide sequences resembling the termini of the Tn3 group of transposons. Possible mechanisms for the generation of these variants are discussed.
Collapse
Affiliation(s)
- S G Sedgwick
- Genetics Division, National Institute for Medical Research, Mill Hill, London, Great Britain
| | | | | |
Collapse
|
15
|
Olson ER, Chung ST. Transposon Tn4556 of Streptomyces fradiae: nucleotide sequence of the ends and the target sites. J Bacteriol 1988; 170:1955-7. [PMID: 2832391 PMCID: PMC211057 DOI: 10.1128/jb.170.4.1955-1957.1988] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A transposon, Tn4556, has recently been isolated from Streptomyces fradiae (S.-T. Chung, J. Bacteriol. 169:4436-4441, 1987). The ends of Tn4556 were found to contain inverted repeats of 38 base pairs with 70% sequence identity with the ends of Tn3. Insertion of Tn4556 into a Streptomyces plasmid resulted in a 5-base-pair duplication of the target site.
Collapse
Affiliation(s)
- E R Olson
- Molecular Biology Department, Upjohn Company, Kalamazoo, Michigan 49001
| | | |
Collapse
|
16
|
Martinez E, de la Cruz F. Transposon Tn21 encodes a RecA-independent site-specific integration system. MOLECULAR & GENERAL GENETICS : MGG 1988; 211:320-5. [PMID: 2832705 DOI: 10.1007/bf00330610] [Citation(s) in RCA: 98] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The IncW plasmid R388 and the DNA region of Tn21 containing the Smr and the Sur genes are capable of RecA-independent recombination. This recombination occurs at a relatively high frequency (up to 10(-4) recombinants per recipient molecule) and results in integration of the two plasmids. No detectable repeats are formed in the process. The crossover points have been confined to a 0.4-kb homologous segment in both plasmids which contains a 59-bp DNA sequence presumably involved in the acquisition of new genes by Tn21 and its relatives (Cameron et al. 1986). It is likely that the recombination occurs precisely at this point. At least one trans-acting function (an integrase) is required for the site-specific recombination. It has been localized to a 1456-bp BstEII-BamHI fragment of Tn21 and can efficiently complement the integration of plasmids containing the integration site.
Collapse
Affiliation(s)
- E Martinez
- Departmento de Biologia Molecular, Universidad de Cantabria, Santander, Spain
| | | |
Collapse
|
17
|
Abstract
The structure and transposition mechanism of Tn3-elements are described. Different studies showed that Tn21, Tn501, Tn1721 and Tn3926 are closely related. An evolution model for these transposons is proposed.
Collapse
Affiliation(s)
- M C Lett
- Laboratoire de Bactériologie, Faculté de Pharmacie, Strasbourg, France
| |
Collapse
|
18
|
Turner AK, Grinsted J. DNA sequence of the transposase gene of the new category of class II transposon, Tn2501. Nucleic Acids Res 1987; 15:10049. [PMID: 2827105 PMCID: PMC306554 DOI: 10.1093/nar/15.23.10049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- A K Turner
- Department of Microbiology, University of Bristol, UK
| | | |
Collapse
|
19
|
Michiels T, Cornelis G, Ellis K, Grinsted J. Tn2501, a component of the lactose transposon Tn951, is an example of a new category of class II transposable elements. J Bacteriol 1987; 169:624-31. [PMID: 3027041 PMCID: PMC211824 DOI: 10.1128/jb.169.2.624-631.1987] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Tn2501 is a cryptic class II transposon found as part of the lactose transposon Tn951. Insertional inactivation and nucleotide sequence analysis of Tn2501 allowed us (i) to localize the transposase (tnpA) and the resolvase (tnpR) genes as well as the resolution site (res) of Tn2501 and (ii) to compare Tn2501 with other well-known elements of the two subgroups of class II transposons (Tn3, gamma delta, Tn951, IS101; and Tn21, Tn501, Tn1721). The genetic organization of Tn2501 is similar to that of Tn3 with divergent transcription of the tnpA and tnpR genes away from the intervening res site. The tnpR gene of Tn2501 shows weak homology with that of Tn3 and even less with those of Tn21 and Tn501. However, the tnpA gene and the inverted repeat sequences of Tn2501 present more homology with those of Tn21 and Tn501 than with those of Tn3. Complementation studies showed that TnpA- mutants of Tn2501 can be complemented, at a low frequency, by the Tn21 transposase. None of the tested transposons complemented TnpR- mutants of Tn2501.
Collapse
|
20
|
Michiels T, Cornelis G. Tn951 derivatives designed for high-frequency plasmid-specific transposition and deletion mutagenesis. Gene 1986; 43:175-81. [PMID: 3017811 DOI: 10.1016/0378-1119(86)90205-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We describe the construction of a system allowing high-frequency transposition and deletion mutagenesis with class-II transposons containing a kanamycin or a chloramphenicol-resistance marker. The system utilizes the transposition function of Tn3 and the resolution function of Tn951/Tn2501 which leads to an uncoupling of the resolution and repression functions. It consists of defective transposons inserted into conjugative, replication thermosensitive plasmids. The properties of the system are: easily selectable resistance markers, high transposition frequencies onto plasmids, low transposition frequencies onto the host chromosome, placement of the tnpA gene outside the transposons so that "second-generation" transposition does not occur, possibility to transpose the whole system onto other plasmid vectors with different selection strategies, consecutive use of two transposons for deletion mutagenesis and restriction mapping.
Collapse
|
21
|
|