1
|
Edwards JC, Johnson MS, Taylor BL. Differentiation between electron transport sensing and proton motive force sensing by the Aer and Tsr receptors for aerotaxis. Mol Microbiol 2006; 62:823-37. [PMID: 16995896 PMCID: PMC1858650 DOI: 10.1111/j.1365-2958.2006.05411.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Aerotaxis (oxygen-seeking) behaviour in Escherichia coli is a response to changes in the electron transport system and not oxygen per se. Because changes in proton motive force (PMF) are coupled to respiratory electron transport, it is difficult to differentiate between PMF, electron transport or redox, all primary candidates for the signal sensed by the aerotaxis receptors, Aer and Tsr. We constructed electron transport mutants that produced different respiratory H+/e- stoichiometries. These strains expressed binary combinations of one NADH dehydrogenase and one quinol oxidase. We then introduced either an aer or tsr mutation into each mutant to create two sets of electron transport mutants. In vivo H+/e- ratios for strains grown in glycerol medium ranged from 1.46+/-0.18-3.04+/-0.47, but rates of respiration and growth were similar. The PMF jump in response to oxygen was proportional to the H+/e- ratio in each set of mutants (r2=0.986-0.996). The length of Tsr-mediated aerotaxis responses increased with the PMF jump (r2=0.988), but Aer-mediated responses did not correlate with either PMF changes (r2=0.297) or the rate of electron transport (r2=0.066). Aer-mediated responses were linked to NADH dehydrogenase I, although there was no absolute requirement. The data indicate that Tsr responds to changes in PMF, but strong Aer responses to oxygen are associated with redox changes in NADH dehydrogenase I.
Collapse
Affiliation(s)
- Jessica C Edwards
- Division of Microbiology and Molecular Genetics, Loma Linda University, Loma Linda, CA 92350, USA
| | | | | |
Collapse
|
2
|
Abstract
Many, if not most, bacterial species swim. The synthesis and operation of the flagellum, the most complex organelle of a bacterium, takes a significant percentage of cellular energy, particularly in the nutrient limited environments in which many motile species are found. It is obvious that motility accords cells a survival advantage over non-motile mutants under normal, poorly mixed conditions and is an important determinant in the development of many associations between bacteria and other organisms, whether as pathogens or symbionts and in colonization of niches and the development of biofilms. This survival advantage is the result of sensory control of swimming behaviour. Although too small to sense a gradient along the length of the cell, and unable to swim great distances because of buffetting by Brownian motion and the curvature resulting from a rotating flagellum, bacteria can bias their random swimming direction towards a more favourable environment. The favourable environment will vary from species to species and there is now evidence that in many species this can change depending on the current physiological growth state of the cell. In general, bacteria sense changes in a range of nutrients and toxins, compounds altering electron transport, acceptors or donors into the electron transport chain, pH, temperature and even the magnetic field of the Earth. The sensory signals are balanced, and may be balanced with other sensory pathways such as quorum sensing, to identify the optimum current environment. The central sensory pathway in this process is common to most bacteria and most effectors. The environmental change is sensed by a sensory protein. In most species examined this is a transmembrane protein, sensing the external environment, but there is increasing evidence for additional cytoplasmic receptors in many species. All receptors, whether sensing sugars, amino acids or oxygen, share a cytoplasmic signalling domain that controls the activity of a histidine protein kinase, CheA, via a linker protein, CheW. A reduction in an attractant generally leads to the increased autophosphorylation of CheA. CheA passes its phosphate to a small, single domain response regulator, CheY. CheY-P can interact with the flagellar motor to cause it to change rotational direction or stop. Signal termination either via a protein, CheZ, which increases the dephosphorylation rate of CheY-P or via a second CheY which acts as a phosphate sink, allows the cell to swim off again, usually in a new direction. In addition to signal termination the receptor must be reset, and this occurs via methylation of the receptor to return it to a non-signalling conformation. The way in which bacteria use these systems to move to optimum environments and the interaction of the different sensory pathways to produce species-specific behavioural response will be the subject of this review.
Collapse
Affiliation(s)
- J P Armitage
- Department of Biochemistry, University of Oxford, UK
| |
Collapse
|
3
|
Abstract
The newly discovered aer locus of Escherichia coli encodes a 506-residue protein with an N terminus that resembles the NifL aerosensor and a C terminus that resembles the flagellar signaling domain of methyl-accepting chemoreceptors. Deletion mutants lacking a functional Aer protein failed to congregate around air bubbles or follow oxygen gradients in soft agar plates. Membranes with overexpressed Aer protein also contained high levels of noncovalently associated flavin adenine dinucleotide (FAD). We propose that Aer is a flavoprotein that mediates positive aerotactic responses in E. coli. Aer may use its FAD prosthetic group as a cellular redox sensor to monitor environmental oxygen levels.
Collapse
Affiliation(s)
- S I Bibikov
- Biology Department, University of Utah, Salt Lake City 84112, USA
| | | | | | | |
Collapse
|
4
|
Zhulin IB, Bespalov VA, Johnson MS, Taylor BL. Oxygen taxis and proton motive force in Azospirillum brasilense. J Bacteriol 1996; 178:5199-204. [PMID: 8752338 PMCID: PMC178317 DOI: 10.1128/jb.178.17.5199-5204.1996] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The microaerophilic nitrogen-fixing bacterium Azospirillum brasilense formed a sharply defined band in a spatial gradient of oxygen. As a result of aerotaxis, the bacteria were attracted to a specific low concentration of oxygen (3 to 5 microM). Bacteria swimming away from the aerotactic band were repelled by the higher or lower concentration of oxygen that they encountered and returned to the band. This behavior was confirmed by using temporal gradients of oxygen. The cellular energy level in A. brasilense, monitored by measuring the proton motive force, was maximal at 3 to 5 microM oxygen. The proton motive force was lower at oxygen concentrations that were higher or lower than the preferred oxygen concentration. Bacteria swimming toward the aerotactic band would experience an increase in the proton motive force, and bacteria swimming away from the band would experience a decrease in the proton motive force. It is proposed that the change in the proton motive force is the signal that regulates positive and negative aerotaxis. The preferred oxygen concentration for aerotaxis was similar to the preferred oxygen concentration for nitrogen fixation. Aerotaxis is an important adaptive behavioral response that can guide these free-living diazotrophs to the optimal niche for nitrogen fixation in the rhizosphere.
Collapse
Affiliation(s)
- I B Zhulin
- Department of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, California 92350, USA
| | | | | | | |
Collapse
|
5
|
Nealson KH, Moser DP, Saffarini DA. Anaerobic electron acceptor chemotaxis in Shewanella putrefaciens. Appl Environ Microbiol 1995; 61:1551-4. [PMID: 11536689 PMCID: PMC167410 DOI: 10.1128/aem.61.4.1551-1554.1995] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shewanella putrefaciens MR-1 can grow either aerobically or anaerobically at the expense of many different electron acceptors and is often found in abundance at redox interfaces in nature. Such redox interfaces are often characterized by very strong gradients of electron acceptors resulting from rapid microbial metabolism. The coincidence of S. putrefaciens abundance with environmental gradients prompted an examination of the ability of MR-1 to sense and respond to electron acceptor gradients in the laboratory. In these experiments, taxis to the majority of the electron acceptors that S. putrefaciens utilizes for anaerobic growth was seen. All anaerobic electron acceptor taxis was eliminated by the presence of oxygen, nitrate, nitrite, elemental sulfur, or dimethyl sulfoxide, even though taxis to the latter was very weak and nitrate and nitrite respiration was normal in the presence of dimethyl sulfoxide. Studies with respiratory mutants of MR-1 revealed that several electron acceptors that could not be used for anaerobic growth nevertheless elicited normal anaerobic taxis. Mutant M56, which was unable to respire nitrite, showed normal taxis to nitrite, as well as the inhibition of taxis to other electron acceptors by nitrite. These results indicate that electron acceptor taxis in S. putrefaciens does not conform to the paradigm established for Escherichia coli and several other bacteria. Carbon chemo-taxis was also unusual in this organism: of all carbon compounds tested, the only positive response observed was to formate under anaerobic conditions.
Collapse
Affiliation(s)
- K H Nealson
- Center for Great Lakes Studies, University of Wisconsin-Milwaukee 53204, USA
| | | | | |
Collapse
|
6
|
Nealson K, Saffarini D, Moser D, Smith MJ. A spectrophotometric method for monitoring tactic responses of bacteria under anaerobic conditions. J Microbiol Methods 1994. [DOI: 10.1016/0167-7012(94)90005-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
7
|
Khosla C, Bailey JE. Characterization of the oxygen-dependent promoter of the Vitreoscilla hemoglobin gene in Escherichia coli. J Bacteriol 1989; 171:5995-6004. [PMID: 2681149 PMCID: PMC210464 DOI: 10.1128/jb.171.11.5995-6004.1989] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The gene coding for the Vitreoscilla hemoglobin (VHb) molecule has been cloned and functionally expressed in Escherichia coli. By using a plasmid-encoded gene as well as single-copy integrants, the oxygen-dependent VHb gene (VHb) promoter was shown to be functional in E. coli. The promoter was maximally induced under microaerobic conditions (dissolved oxygen levels of less than 2% air saturation). Direct analysis of mRNA levels as well as the use of gene fusions with lacZ showed that oxygen-dependent regulation occurred at the level of transcription. Transcriptional activity decreased substantially under anaerobic conditions, suggesting the presence of a regulatory mechanism that is maximally induced under hypoxic but not completely anaerobic conditions in E. coli. Primer extension analysis was used to identify the existence of two overlapping promoters within a 150-base-pair region upstream of the structural VHb gene. The oxygen-dependent activity of both promoters was qualitatively similar, suggesting the existence of a common mechanism by which available oxygen concentrations influence expression from the two promoters. Analysis of promoter activity in crp and cya mutants showed that both cyclic AMP and catabolite activator protein were required for full activity of the promoter. The VHb promoter contained a region of significant homology to the catabolite activator protein-binding site near the E. coli lac promoter.
Collapse
Affiliation(s)
- C Khosla
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena 91125
| | | |
Collapse
|
8
|
Shioi J, Tribhuwan RC, Berg ST, Taylor BL. Signal transduction in chemotaxis to oxygen in Escherichia coli and Salmonella typhimurium. J Bacteriol 1988; 170:5507-11. [PMID: 3056903 PMCID: PMC211644 DOI: 10.1128/jb.170.12.5507-5511.1988] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Pathways previously proposed for sensory transduction in chemotaxis to oxygen (aerotaxis) involved either (i) cytochrome o, the electron transport system, and proton motive force or (ii) enzyme IIGlucose and the phosphoenolpyruvate:carbohydrate phosphotransferase system for active transport. This investigation distinguished between these possibilities. Aerotaxis was absent in a cyo cyd strain of Escherichia coli that lacked both cytochrome o and cytochrome d, which are the terminal oxidases for the branched electron transport system in E. coli. Aerotaxis, measured by either a spatial or temporal assay, was normal in E. coli strains that had a cyo+ or cyd+ gene or both. The membrane potential of all oxidase-positive strains was approximately -170 mV in aerated medium at pH 7.5. Behavioral responses to changes in oxygen concentration correlated with changes in proton motive force. Aerotaxis was normal in ptsG and ptsI strains that lack enzyme IIGlucose and enzyme I, respectively, and are deficient in the phosphotransferase system. A cya strain that is deficient in adenylate cyclase also had normal aerotaxis. We concluded that aerotaxis was mediated by the electron transport system and that either the cytochrome d or the cytochrome o branch of the pathway could mediate aerotaxis.
Collapse
Affiliation(s)
- J Shioi
- Department of Biochemistry, School of Medicine, Loma Linda University, California 92350
| | | | | | | |
Collapse
|
9
|
|
10
|
Abstract
Flagellate bacteria can respond to a wide range of environmental chemicals and a variety of physical parameters, and integrate those responses. The most important thing for a cell is to maintain its energy level; bacteria therefore respond directly to any changes in their PMF. This has been likened to higher organisms responding to a physiological change, for example, a fall in blood glucose. In addition, if the PMF is high, the cell is free to respond to a limited range of metabolites and possibly move to an area that will allow an increased growth rate. Bacteria do not sense all amino acids, as the space available on the cytoplasmic membrane is limited, and a change in a few important metabolites is probably a good measure of the general environment around the cell. The sensory response does not require either transport into the cell or metabolism of the chemical, only the binding to the specific MCP. The cell could have a mutation in the pathway metabolizing the chemoeffector, but it would still respond to changes in the concentration of that compound. This taken with the ability of the cells to adapt to the stimulus has been considered to be the prokaryotic equivalent of smell and taste.
Collapse
Affiliation(s)
- J P Armitage
- Department of Biochemistry, University of Oxford, England
| | | |
Collapse
|
11
|
Abstract
Studies of bacterial chemotaxis to oxygen (aerotaxis) over a broad range of oxygen concentrations showed that at high concentrations, oxygen was a repellent of Salmonella typhimurium, Escherichia coli, and some bacilli, whereas it is known that at lower concentrations (less than or equal to 0.25 mM dissolved oxygen), oxygen is an attractant. In a temporal assay of aerotaxis, S. typhimurium in medium equilibrated with air (0.25 mM dissolved oxygen) and then exposed to pure oxygen (1.2 mM) tumbled continuously for approximately 20 s. The oxygen concentration that elicited a half-maximal negative (repellent) response was 1.0 mM for both S. typhimurium and E. coli. The receptor for the negative chemoresponse to high concentrations of oxygen is apparently different from the receptor for the positive chemoresponse to low concentrations of oxygen, since the oxygen concentration that elicits a half-maximal positive (attractant) response in S. typhimurium and E. coli is reported to be 0.7 microM. Adaptation to high concentrations of oxygen, like adaptation to low concentrations of oxygen, was independent of methylation of a transducer protein. Only the response to low oxygen concentrations, however, was altered by interaction with the amidated Tsr transducer in cheB mutants.
Collapse
|
12
|
|
13
|
Dang CV, Niwano M, Ryu J, Taylor BL. Inversion of aerotactic response in Escherichia coli deficient in cheB protein methylesterase. J Bacteriol 1986; 166:275-80. [PMID: 3007436 PMCID: PMC214587 DOI: 10.1128/jb.166.1.275-280.1986] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Mutants of Escherichia coli and Salmonella typhimurium that were deficient in protein methylesterase activity encoded by cheB had an inverted response to oxygen; they were repelled by concentrations of oxygen that attract wild-type bacteria. Normal responses to oxygen and phosphotransferase substrates were observed in mutants that were deficient in protein methyltransferase (CheR) and the methyl-accepting transducing proteins (Tsr, Tar, Trg). However, the methylation-independent response to oxygen was modified by the loss of esterase activity. The inversion was apparently effected by the amidated Tsr protein present in cheB tsr+ mutants because aerotaxis was normal in cheB tsr strains. Chemotaxis to phosphotransferase sugars was normal in cheB mutants provided the extreme clockwise bias of the flagellar motors was modified to increase the probability of counterclockwise rotation.
Collapse
|
14
|
Yang T. Biochemical and biophysical properties of cytochrome o of Azotobacter vinelandii. BIOCHIMICA ET BIOPHYSICA ACTA 1986; 848:342-51. [PMID: 3947619 DOI: 10.1016/0005-2728(86)90209-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cytochrome o, solubilized from the membrane of Azotobacter vinelandii, has been purified to homogeneity as judged by ultracentrifugation and polyacrylamide gel electrophoresis. The detergent-containing cytochrome o is composed of one polypeptide chain with a molecular weight of 28 000-29 000, associated by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The enzyme exists as a dimer by gel filtration analysis. The amino analysis which reveals the majority of residues are of hydrophobic nature. The cytochrome o oxidase contains protoheme as its prosthetic group and about 20-40% of phospholipids. The phospholipids are identified as phosphatidylethanolamine and phosphatidylglycerol by radioautographic analysis using 2-dimensional thin-layer chromatography. No copper or nonheme iron can be detected in the purified oxidase preparation by atomic absorption and chemical analyses. Oxidation-reduction titration shows this membrane-bound cytochrome o to be a low-potential component, and Em was determined to be -18 mV in the purified form and -30 mV in the membrane-bound form. Both forms bind CO with a reduced absorption peak at 559 and 557-558 nm in the native and solubilized forms, respectively. A high-spin (g = 6.0) form is assigned to the oxidized cytochrome o by electron paramagnetic resonance analysis, and KCN abolishes this high-spin signal. CO titration of purified cytochrome o in the anaerobic conditions shows the enzyme binds one CO per four protohemes and a dissociation constant is estimated to be 3.2 microM for CO. Cyanide reacts with purified cytochrome o in both oxidized and CO-bound forms, identified by specific spectral compounds absorbed at the Soret region. Cytochrome c, often co-purified with cytochrome c from the membrane, cannot serve as a reductant for cytochrome o in vitro, due to the apparent potential difference of about 300 mV. Upon separation, both cytochrome o and cytochrome c4 show a great tendency of aggregation. Furthermore, the oxidase activity (measured by tetramethyl-p-phenylenediamine oxidation rate) decreases as the cytochrome c concentration is decreased by ammonium sulfate fractionation. All these suggest the structural and functional complex nature of cytochrome c4 and cytochrome o in the membrane of A. vinelandii.
Collapse
|
15
|
|
16
|
Laszlo DJ, Niwano M, Goral WW, Taylor BL. Bacillus cereus electron transport and proton motive force during aerotaxis. J Bacteriol 1984; 159:820-4. [PMID: 6434511 PMCID: PMC215731 DOI: 10.1128/jb.159.3.820-824.1984] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Aerotaxis (migration towards oxygen) of Bacillus cereus M63, a motile strain, was inhibited by potassium cyanide and 2-heptyl-4-hydroxyquinoline N-oxide, indicating a requirement for both the terminal oxidase (cytochrome aa3) and the cytochrome b segment of the electron transport system. The concentration of oxygen that gave a half-maximal aerotactic response (K0.5) was 0.31 microM, which was similar to the Km for respiration (0.80 microM). The proton motive force increased from -135 to -177 mV when anaerobic cells were aerated, and it is proposed that the signal for aerotaxis is the increase in proton motive force that results from increased respiration. A strain of B. cereus T initially used in this study was immotile, grew as long chains of cells, and was deficient in autolytic enzyme. B. cereus M63 is a spontaneous derivative of B. cereus T that has normal motility.
Collapse
|