1
|
Goldlust K, Ducret A, Halte M, Dedieu-Berne A, Erhardt M, Lesterlin C. The F pilus serves as a conduit for the DNA during conjugation between physically distant bacteria. Proc Natl Acad Sci U S A 2023; 120:e2310842120. [PMID: 37963249 PMCID: PMC10666033 DOI: 10.1073/pnas.2310842120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/27/2023] [Indexed: 11/16/2023] Open
Abstract
Horizontal transfer of F-like plasmids by bacterial conjugation is responsible for disseminating antibiotic resistance and virulence determinants among pathogenic Enterobacteriaceae species, a growing health concern worldwide. Central to this process is the conjugative F pilus, a long extracellular filamentous polymer that extends from the surface of plasmid donor cells, allowing it to probe the environment and make contact with the recipient cell. It is well established that the F pilus can retract to bring mating pair cells in tight contact before DNA transfer. However, whether DNA transfer can occur through the extended pilus has been a subject of active debate. In this study, we use live-cell microscopy to show that while most transfer events occur between cells in direct contact, the F pilus can indeed serve as a conduit for the DNA during transfer between physically distant cells. Our findings enable us to propose a unique model for conjugation that revises our understanding of the DNA transfer mechanism and the dissemination of drug resistance and virulence genes within complex bacterial communities.
Collapse
Affiliation(s)
- Kelly Goldlust
- Molecular Microbiology and Structural Biochemistry, Université Lyon 1, CNRS, Inserm, UMR5086, Lyon69007, France
| | - Adrien Ducret
- Molecular Microbiology and Structural Biochemistry, Université Lyon 1, CNRS, Inserm, UMR5086, Lyon69007, France
| | - Manuel Halte
- Institute for Biology/Molecular Microbiology, Humboldt-Universität zu Berlin, Berlin10115, Germany
| | - Annick Dedieu-Berne
- Molecular Microbiology and Structural Biochemistry, Université Lyon 1, CNRS, Inserm, UMR5086, Lyon69007, France
| | - Marc Erhardt
- Institute for Biology/Molecular Microbiology, Humboldt-Universität zu Berlin, Berlin10115, Germany
- Max Planck Unit for the Science of Pathogens, Berlin10117, Germany
| | - Christian Lesterlin
- Molecular Microbiology and Structural Biochemistry, Université Lyon 1, CNRS, Inserm, UMR5086, Lyon69007, France
| |
Collapse
|
2
|
Zheng W, Pena A, Low WW, Wong JLC, Frankel G, Egelman EH. Cryoelectron-Microscopic Structure of the pKpQIL Conjugative Pili from Carbapenem-Resistant Klebsiella pneumoniae. Structure 2020; 28:1321-1328.e2. [PMID: 32916103 DOI: 10.1016/j.str.2020.08.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 01/19/2023]
Abstract
Conjugative pili are important in mediating bacterial conjugation and horizontal gene transfer. Since plasmid transfer can include antibiotic-resistance genes, conjugation is an important mechanism in the spread of antibiotic resistance. Filamentous bacteriophages have been shown to exist in two different structural classes: those with a 5-fold rotational symmetry and those with a one-start helix with approximately 5 subunits per turn. Structures for the F and the F-like pED208 conjugation pilus have shown that they have 5-fold rotational symmetry. Here, we report the cryoelectron-microscopic structure of conjugative pili from carbapenem-resistant Klebsiella pneumoniae, encoded on the IncFIIK pKpQIL plasmid, at 3.9 Å resolution and show that it has a one-start helix. These results establish that conjugation pili can exist in at least two structural classes, consistent with other results showing that relatively small perturbations are needed to change the helical symmetry of polymers.
Collapse
Affiliation(s)
- Weili Zheng
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903, USA
| | - Alejandro Pena
- Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, UK
| | - Wen Wen Low
- Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, UK
| | - Joshua L C Wong
- Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, UK
| | - Gad Frankel
- Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, UK
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903, USA.
| |
Collapse
|
3
|
Koraimann G. Spread and Persistence of Virulence and Antibiotic Resistance Genes: A Ride on the F Plasmid Conjugation Module. EcoSal Plus 2018; 8. [PMID: 30022749 PMCID: PMC11575672 DOI: 10.1128/ecosalplus.esp-0003-2018] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Indexed: 02/06/2023]
Abstract
The F plasmid or F-factor is a large, 100-kbp, circular conjugative plasmid of Escherichia coli and was originally described as a vector for horizontal gene transfer and gene recombination in the late 1940s. Since then, F and related F-like plasmids have served as role models for bacterial conjugation. At present, more than 200 different F-like plasmids with highly related DNA transfer genes, including those for the assembly of a type IV secretion apparatus, are completely sequenced. They belong to the phylogenetically related MOBF12A group. F-like plasmids are present in enterobacterial hosts isolated from clinical as well as environmental samples all over the world. As conjugative plasmids, F-like plasmids carry genetic modules enabling plasmid replication, stable maintenance, and DNA transfer. In this plasmid backbone of approximately 60 kbp, the DNA transfer genes occupy the largest and mostly conserved part. Subgroups of MOBF12A plasmids can be defined based on the similarity of TraJ, a protein required for DNA transfer gene expression. In addition, F-like plasmids harbor accessory cargo genes, frequently embedded within transposons and/or integrons, which harness their host bacteria with antibiotic resistance and virulence genes, causing increasingly severe problems for the treatment of infectious diseases. Here, I focus on key genetic elements and their encoded proteins present on the F-factor and other typical F-like plasmids belonging to the MOBF12A group of conjugative plasmids.
Collapse
Affiliation(s)
- Günther Koraimann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| |
Collapse
|
4
|
LeRoux M, Kirkpatrick RL, Montauti EI, Tran BQ, Peterson SB, Harding BN, Whitney JC, Russell AB, Traxler B, Goo YA, Goodlett DR, Wiggins PA, Mougous JD. Kin cell lysis is a danger signal that activates antibacterial pathways of Pseudomonas aeruginosa. eLife 2015; 4. [PMID: 25643398 PMCID: PMC4348357 DOI: 10.7554/elife.05701] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 01/30/2015] [Indexed: 12/21/2022] Open
Abstract
The perception and response to cellular death is an important aspect of multicellular eukaryotic life. For example, damage-associated molecular patterns activate an inflammatory cascade that leads to removal of cellular debris and promotion of healing. We demonstrate that lysis of Pseudomonas aeruginosa cells triggers a program in the remaining population that confers fitness in interspecies co-culture. We find that this program, termed P. aeruginosa response to antagonism (PARA), involves rapid deployment of antibacterial factors and is mediated by the Gac/Rsm global regulatory pathway. Type VI secretion, and, unexpectedly, conjugative type IV secretion within competing bacteria, induce P. aeruginosa lysis and activate PARA, thus providing a mechanism for the enhanced capacity of P. aeruginosa to target bacteria that elaborate these factors. Our finding that bacteria sense damaged kin and respond via a widely distributed pathway to mount a complex response raises the possibility that danger sensing is an evolutionarily conserved process. DOI:http://dx.doi.org/10.7554/eLife.05701.001 Bacteria live in diverse and changing environments where resources such as nutrients and space are often limited. They have thus evolved many survival strategies, including competitive and cooperative behaviors. In the first case, bacteria antagonize or prevent the growth of other microorganisms competing with them for resources, such as by generating antibiotics that specifically target rivals. During cooperation, bacteria may coordinate the production of compounds that have a shared benefit for members of their community. In multicellular organisms, some cell types sense harmful microorganisms by the injury they cause in neighboring cells. This triggers a process that can lead to the production of molecules that kill the invaders and factors that promote the repair of cellular damage. An equivalent process has so far not been described for single-celled organisms such as bacteria. However, bacteria often live in structured groups containing many different species. In this type of growth environment, the ability of bacteria to sense when others of their species are attacked and to respond by taking measures to defend themselves could improve their chances of survival. Now, LeRoux et al. reveal that the bacterium Pseudomonas aeruginosa is able to detect ‘danger signals’ released when neighboring P. aeruginosa cells are killed by other bacteria. These signals trigger a response in surviving cells by turning on a pathway that controls a number of antibacterial factors. These include the production of the so-called ‘type VI secretion system’, a molecular machine that delivers a potent cocktail of antibacterial toxins directly into nearby bacteria. This process, which LeRoux et al. have named ‘P. aeruginosa response to antagonism’, or PARA for short, enables P. aeruginosa to thrive when grown with competing bacterial species. P. aeruginosa is notorious for infecting the lungs of people with the genetic disease cystic fibrosis, as well as chronic wounds often found in people with diabetes. In both cases, when P. aeruginosa is present, the numbers of other, often less harmful organisms, tend to decrease. PARA may be one reason for the success of P. aeruginosa in these multi-species infections. DOI:http://dx.doi.org/10.7554/eLife.05701.002
Collapse
Affiliation(s)
- Michele LeRoux
- Department of Microbiology, University of Washington, Seattle, United States
| | - Robin L Kirkpatrick
- Department of Microbiology, University of Washington, Seattle, United States
| | - Elena I Montauti
- Department of Microbiology, University of Washington, Seattle, United States
| | - Bao Q Tran
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, United States
| | - S Brook Peterson
- Department of Microbiology, University of Washington, Seattle, United States
| | - Brittany N Harding
- Department of Microbiology, University of Washington, Seattle, United States
| | - John C Whitney
- Department of Microbiology, University of Washington, Seattle, United States
| | - Alistair B Russell
- Department of Microbiology, University of Washington, Seattle, United States
| | - Beth Traxler
- Department of Microbiology, University of Washington, Seattle, United States
| | - Young Ah Goo
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, United States
| | - David R Goodlett
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, United States
| | - Paul A Wiggins
- Department of Physics, University of Washington, Seattle, United States
| | - Joseph D Mougous
- Department of Microbiology, University of Washington, Seattle, United States
| |
Collapse
|
5
|
Seoane J, Yankelevich T, Dechesne A, Merkey B, Sternberg C, Smets BF. An individual-based approach to explain plasmid invasion in bacterial populations. FEMS Microbiol Ecol 2010; 75:17-27. [PMID: 21091520 DOI: 10.1111/j.1574-6941.2010.00994.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
We present an individual-based experimental framework to identify and estimate the main parameters governing bacterial conjugation at the individual cell scale. From this analysis, we have established that transient periods of unregulated plasmid transfer within newly formed transconjugant cells, together with contact mechanics arising from cellular growth and division, are the two main processes determining the emergent inability of the pWW0 TOL plasmid to fully invade spatially structured Pseudomonas putida populations. We have also shown that pWW0 conjugation occurs mainly at advanced stages of the growth cycle and that nongrowing cells, even when exposed to high nutrient concentrations, do not display conjugal activity. These results do not support previous hypotheses relating conjugation decay in the deeper cell layers of bacterial biofilms to nutrient depletion and low physiological activity. We observe, however, that transient periods of elevated plasmid transfer in newly formed transconjugant cells are offset by unfavorable cell-to-cell contact mechanics, which ultimately precludes the pWWO TOL plasmid from fully invading tightly packed multicellular P. putida populations such as microcolonies and biofilms.
Collapse
Affiliation(s)
- Jose Seoane
- Department of Environmental Engineering, Technical University of Denmark, Lyngby, Denmark
| | | | | | | | | | | |
Collapse
|
6
|
Harajly M, Khairallah MT, Corkill JE, Araj GF, Matar GM. Frequency of conjugative transfer of plasmid-encoded ISEcp1 - blaCTX-M-15 and aac(6')-lb-cr genes in Enterobacteriaceae at a tertiary care center in Lebanon - role of transferases. Ann Clin Microbiol Antimicrob 2010; 9:19. [PMID: 20646305 PMCID: PMC2919444 DOI: 10.1186/1476-0711-9-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 07/20/2010] [Indexed: 11/10/2022] Open
Abstract
Background The frequency of transfer of genes encoding resistance to antimicrobial agents was determined by conjugation in ESBL-producing and/or fluoroquinolone or aminoglycoside resistant Enterobacteriaceae clinical isolates at a tertiary care center in Lebanon. In addition, the role of tra genes encoding transferases in mediating conjugation was assessed. Methods Conjugation experiments were done on 53 ESBL-producing and/or fluoroquinolone resistant E. coli and K. pneumoniae and ESBL-producing S. sonnei isolates. Antimicrobial susceptibility testing on parent and transconjugant isolates, and PCR amplifications on plasmid extracts of the resistance-encoding genes: blaCTX-M-15 with the ISEcp1 insertion sequence, the aac(6')-lb-cr and qnrS genes, as well as tra encoding transferases genes were done. Random amplified polymorphic DNA (RAPD) analysis was performed to demonstrate whether conjugative isolates are clonal and whether they are linked epidemiologically to a particular source. Results Antimicrobial susceptibility testing on transconjugants revealed that 26 out of 53 (49%) ESBL-producing Enterobacteriaceae were able to transfer antimicrobial resistance to the recipients. Transfer of high-level resistance to the transconjugants encoded by the blaCTX-M-15 gene downstream the ISEcp1 insertion sequence against 3rd generation cephalosporins, and of low-level resistance against ciprofloxacin, and variable levels of resistance against aminoglycosides encoded by aac(6')-lb-cr gene, were observed in transconjugants. tra encoding transferase genes were detected exclusively in conjugative isolates. Conclusion In conclusion, the frequency of transfer of antimicrobial resistance in non clonal Enterobacteriaceae at the tertiary care center by conjugation was 49%. Conjugation occurred in isolates expressing the tra encoding transferase genes. Multiple conjugative strains harboring the plasmid encoded antimicrobial resistant genes were circulating in the medical center. Molecular epidemiology analysis showed that conjugative isolates are neither clonal nor linked to a particular site and transfer of antimicrobial resistance is by horizontal transfer of plasmids.
Collapse
Affiliation(s)
- Mohamad Harajly
- Department of Microbiology and Immunology, American University of Beirut, Lebanon
| | | | | | | | | |
Collapse
|
7
|
Abstract
DNA pumps play important roles in bacteria during cell division and during the transfer of genetic material by conjugation and transformation. The FtsK/SpoIIIE proteins carry out the translocation of double-stranded DNA to ensure complete chromosome segregation during cell division. In contrast, the complex molecular machines that mediate conjugation and genetic transformation drive the transport of single stranded DNA. The transformation machine also processes this internalized DNA and mediates its recombination with the resident chromosome during and after uptake, whereas the conjugation apparatus processes DNA before transfer. This article reviews these three types of DNA pumps, with attention to what is understood of their molecular mechanisms, their energetics and their cellular localizations.
Collapse
Affiliation(s)
- Briana Burton
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| | | |
Collapse
|
8
|
Massoudieh A, Crain C, Lambertini E, Nelson KE, Barkouki T, L'amoreaux P, Loge FJ, Ginn TR. Kinetics of conjugative gene transfer on surfaces in granular porous media. JOURNAL OF CONTAMINANT HYDROLOGY 2010; 112:91-102. [PMID: 19969386 DOI: 10.1016/j.jconhyd.2009.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 07/31/2009] [Accepted: 10/23/2009] [Indexed: 05/28/2023]
Abstract
The transfer of genetic material among bacteria in the environment can occur both in the planktonic and attached state. Given the propensity of organisms to exist in sessile microbial communities in oligotrophic subsurface conditions, and that such conditions typify the subsurface, this study focuses on exploratory modeling of horizontal gene transfer among surface-associated Escherichiacoli in the subsurface. The mathematics so far used to describe the kinetics of conjugation in biofilms are developed largely from experimental observations of planktonic gene transfer, and are absent of lags or plasmid stability that appear experimentally. We develop a model and experimental system to quantify bacterial filtration and gene transfer in the attached state, on granular porous media. We include attachment kinetics described in Nelson et al. (2007) using the filtration theory approach of Nelson and Ginn (2001, 2005) with motility of E. coli described according to Biondi et al. (1998).
Collapse
Affiliation(s)
- A Massoudieh
- Dept. of Civil and Environmental Engineering, UC Davis, 1 Shields Avenue, University of California, Davis, CA 95616, United States
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Silverman PM, Clarke MB. New insights into F-pilus structure, dynamics, and function. Integr Biol (Camb) 2009; 2:25-31. [PMID: 20473409 DOI: 10.1039/b917761b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
F-pili are thin, flexible filaments elaborated by F(+) cells of Escherichia coli. They belong to the class of Gram-negative pili that function in horizontal gene transfer. F-pili are initially required to establish contacts between DNA donor and recipient cells. Beyond that, F-pilus function, and that of other conjugative pili, has remained obscure and controversial. The idea that F-pili are dynamic structures was proposed 40 years ago. Initially, F-pili were thought to remain extended until another cell bound to the filament tip, whereupon the filament retracted to bring the contacted cell to the donor cell surface. Thereafter, secure surface-surface contacts would allow efficient DNA transfer. A later variant of this hypothesis was that F-pili are inherently dynamic, elongating and retracting even in the absence of exogenous signals. A very different hypothesis, also proposed first about 40 years ago, was that F-pili are conduits, presumably passive, for the transfer of DNA from donor to recipient. In this hypothesis, DNA transfer is not obligatorily coupled to F-pilus retraction. Here, we review recent data obtained by integrating long-established facts about the biology of F-pili with modern tools of fluorescence and electron microscopy. These data suggest that one function for F-pili is to search a large volume around donor cells in liquid culture for the presence of other cells. However, this may not be the only function. We show that F-pilin is also required at a second, largely undefined step occurring after cells have been brought into direct contact by F-pilus retraction.
Collapse
|
10
|
Abstract
Conjugative plasmids of Gram-negative bacteria have both vertical and horizontal modes of transmission: they are segregated to daughter cells during division, and transferred between hosts by plasmid-encoded conjugative machinery. Despite maintaining horizontal mobility, many plasmids carry fertility inhibition (fin) systems that repress their own conjugative transfer. To assess the ecological basis of self-transfer repression, we compared the invasion of bacterial populations by fin(+) and fin(-) variants of the plasmid R1 using a computational model and co-culture competitions. We observed that the fin(+) variant had a modest cost to the host (measured by reduction in growth rate), while the fin(-) variant incurred a larger cost. In simulations and empirical competitions the fin(-) plasmid invaded cultures quickly, but was subsequently displaced by the fin(+) plasmid. This indicated a competitive advantage to reducing horizontal transmission and allowing increased host replication. Computational simulations predicted that the advantage associated with reduced cost to the host would be maintained over a wide range of environmental conditions and plasmid costs. We infer that vertical transmission in concert with competitive exclusion favour decreased horizontal mobility of plasmids. Similar dynamics may exert evolutionary pressure on parasites, such as temperate bacteriophages and vertically transmitted animal viruses, to limit their rates of horizontal transfer.
Collapse
|
11
|
Abstract
Bacteria have evolved numerous mechanisms for cell-cell communication, many of which have important consequences for human health. Among these is conjugation, the direct transfer of DNA from one cell to another. For gram-negative bacteria, conjugation requires thin, flexible filaments (conjugative pili) that are elaborated by DNA donor cells. The structure, function, and especially the dynamics of conjugative pili are poorly understood. Here, we have applied live-cell imaging to characterize the dynamics of F-pili (conjugative pili encoded by the F plasmid of Escherichia coli). We establish that F-pili normally undergo cycles of extension and retraction in the absence of any obvious triggering event, such as contact with a recipient cell. When made, such contacts are able to survive the shear forces felt by bacteria in liquid media. Our data emphasize the role of F-pilus flexibility both in efficiently sampling a large volume surrounding donor cells in liquid culture and in establishing and maintaining cell-cell contact. Additionally and unexpectedly, we infer that extension and retraction are accompanied by rotation about the long axis of the filament.
Collapse
|
12
|
Wang YA, Yu X, Silverman PM, Harris RL, Egelman EH. The structure of F-pili. J Mol Biol 2008; 385:22-9. [PMID: 18992755 DOI: 10.1016/j.jmb.2008.10.054] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2008] [Revised: 10/01/2008] [Accepted: 10/16/2008] [Indexed: 10/21/2022]
Abstract
Exchange of DNA between bacteria involves conjugative pili. While the prevailing view has been that F-pili are completely retracted before single-stranded DNA is passed from one cell to another, it has recently been reported that the F-pilus, in addition to establishing the contact between mating cells, serves as a channel for passing DNA between spatially separated cells during conjugation. The structure and function of F-pili are poorly understood. They are built from a single subunit having only 70 residues, and the small size of the subunit has made these filaments difficult to study. Here, we have applied electron cryo-microscopy and single-particle methods to solve the long-existing ambiguity in the packing geometry of F-pilin subunits. We show that the F-pilus has an entirely different symmetry from any of the known bacterial pili as well as any of the filamentous bacteriophages, which have been suggested to be structural homologs. Two subunit packing schemes were identified: one has stacked rings of four subunits axially spaced by approximately 12.8 A, while the other has a one-start helical symmetry with an axial rise of approximately 3.5 A per subunit and a pitch of approximately 12.2 A. Both structures have a central lumen of approximately 30 A diameter that is more than large enough to allow for the passage of single-stranded DNA. Remarkably, both schemes appear to coexist within the same filaments, in contrast to filamentous phages that have been described as belonging to one of two possible symmetry classes. For the segments composed of rings, the twist between adjacent rings is quite variable, while the segments having a one-start helix are in multiple states of both twist and extension. This coexistence of two very different symmetries is similar to what has recently been reported for an archaeal Methanococcus maripaludis pili filament and an archaeal Sulfolobus shibatae flagellar filament.
Collapse
Affiliation(s)
- Ying A Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908-0733, USA
| | | | | | | | | |
Collapse
|
13
|
Shu AC, Wu CC, Chen YY, Peng HL, Chang HY, Yew TR. Evidence of DNA transfer through F-pilus channels during Escherichia coli conjugation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:6796-6802. [PMID: 18522439 DOI: 10.1021/la703384n] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The mechanism of DNA transfer from Escherichia coli ( E. coli) Hfr donor strain AT2453 to recipient strain AB1157 during the conjugation process has been investigated by liquid atomic force microscopy (AFM). With the success of immobilizing both E. coli strains on gelatin-treated glass under aqueous solution, the F-pilus between an E. coli mating pair could be clearly imaged and dissected by an AFM probe. Another AFM probe functionalized with an anti-single-stranded DNA (ssDNA) antibody was then applied to detect transferring ssDNA. According to the AFM force spectrum, the transferring ssDNA could be detected only in the dissected area with a binding force of 109 +/- 5 pN measured. Our results provide direct evidence indicating that the DNA was transferred through the F-pilus channel between an E. coli mating pair during their conjugation.
Collapse
Affiliation(s)
- An-Chi Shu
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, Taiwan 30013
| | | | | | | | | | | |
Collapse
|
14
|
Folkesson A, Haagensen JAJ, Zampaloni C, Sternberg C, Molin S. Biofilm induced tolerance towards antimicrobial peptides. PLoS One 2008; 3:e1891. [PMID: 18382672 PMCID: PMC2270907 DOI: 10.1371/journal.pone.0001891] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Accepted: 02/23/2008] [Indexed: 11/18/2022] Open
Abstract
Increased tolerance to antimicrobial agents is thought to be an important feature of microbes growing in biofilms. We address the question of how biofilm organization affects antibiotic susceptibility. We established Escherichia coli biofilms with differential structural organization due to the presence of IncF plasmids expressing altered forms of the transfer pili in two different biofilm model systems. The mature biofilms were subsequently treated with two antibiotics with different molecular targets, the peptide antibiotic colistin and the fluoroquinolone ciprofloxacin. The dynamics of microbial killing were monitored by viable count determination, and confocal laser microscopy. Strains forming structurally organized biofilms show an increased bacterial survival when challenged with colistin, compared to strains forming unstructured biofilms. The increased survival is due to genetically regulated tolerant subpopulation formation and not caused by a general biofilm property. No significant difference in survival was detected when the strains were challenged with ciprofloxacin. Our data show that biofilm formation confers increased colistin tolerance to cells within the biofilm structure, but the protection is conditional being dependent on the structural organization of the biofilm, and the induction of specific tolerance mechanisms.
Collapse
Affiliation(s)
- Anders Folkesson
- Infection Microbiology Group, BioCentrum-DTU, Technical University of Denmark, Lyngby, Denmark.
| | | | | | | | | |
Collapse
|
15
|
Babic A, Lindner AB, Vulic M, Stewart EJ, Radman M. Direct visualization of horizontal gene transfer. Science 2008; 319:1533-6. [PMID: 18339941 DOI: 10.1126/science.1153498] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Conjugation allows bacteria to acquire genes for antibiotic resistance, novel virulence attributes, and alternative metabolic pathways. Using a fluorescent protein fusion, SeqA-YFP, we have visualized this process in real time and in single cells of Escherichia coli. We found that the F pilus mediates DNA transfer at considerable cell-to-cell distances. Integration of transferred DNA by recombination occurred in up to 96% of recipients; in the remaining cells, the transferred DNA was fully degraded by the RecBCD helicase/nuclease. The acquired integrated DNA was tracked through successive replication rounds and was found to occasionally split and segregate with different chromosomes, leading to the inheritance of different gene clusters within the cell lineage. The incidence of DNA splitting corresponds to about one crossover per cell generation.
Collapse
|
16
|
Haft RJF, Gachelet EG, Nguyen T, Toussaint L, Chivian D, Traxler B. In vivo oligomerization of the F conjugative coupling protein TraD. J Bacteriol 2007; 189:6626-34. [PMID: 17631633 PMCID: PMC2045173 DOI: 10.1128/jb.00513-07] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Accepted: 07/05/2007] [Indexed: 11/20/2022] Open
Abstract
Type IV secretory systems are a group of bacterial transporters responsible for the transport of proteins and nucleic acids directly into recipient cells. Such systems play key roles in the virulence of some pathogenic organisms and in conjugation-mediated horizontal gene transfer. Many type IV systems require conserved "coupling proteins," transmembrane polypeptides that are critical for transporting secreted substrates across the cytoplasmic membrane of the bacterium. In vitro evidence suggests that the functional form of coupling proteins is a homohexameric, ring-shaped complex. Using a library of tagged mutants, we investigated the structural and functional organization of the F plasmid conjugative coupling protein TraD by coimmunoprecipitation, cross-linking, and genetic means. We present direct evidence that coupling proteins form stable oligomeric complexes in the membranes of bacteria and that the formation of some of these complexes requires other F-encoded functions. Our data also show that different regions of TraD play distinct roles in the oligomerization process. We postulate a model for in vivo oligomerization and discuss the probable participation of individual domains of TraD in each step.
Collapse
Affiliation(s)
- Rembrandt J F Haft
- Department of Microbiology, University of Washington, Box 357242, Seattle, WA 98195- 7242, USA
| | | | | | | | | | | |
Collapse
|
17
|
Juhas M, Crook DW, Dimopoulou ID, Lunter G, Harding RM, Ferguson DJP, Hood DW. Novel type IV secretion system involved in propagation of genomic islands. J Bacteriol 2007; 189:761-71. [PMID: 17122343 PMCID: PMC1797279 DOI: 10.1128/jb.01327-06] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Accepted: 11/10/2006] [Indexed: 12/30/2022] Open
Abstract
Type IV secretion systems (T4SSs) mediate horizontal gene transfer, thus contributing to genome plasticity, evolution of infectious pathogens, and dissemination of antibiotic resistance and other virulence traits. A gene cluster of the Haemophilus influenzae genomic island ICEHin1056 has been identified as a T4SS involved in the propagation of genomic islands. This T4SS is novel and evolutionarily distant from the previously described systems. Mutation analysis showed that inactivation of key genes of this system resulted in a loss of phenotypic traits provided by a T4SS. Seven of 10 mutants with a mutation in this T4SS did not express the type IV secretion pilus. Correspondingly, disruption of the genes resulted in up to 100,000-fold reductions in conjugation frequencies compared to those of the parent strain. Moreover, the expression of this T4SS was found to be positively regulated by one of its components, the tfc24 gene. We concluded that this gene cluster represents a novel family of T4SSs involved in propagation of genomic islands.
Collapse
Affiliation(s)
- Mario Juhas
- Clinical Microbiology and Infectious Diseases, Nuffield Department of Clinical Laboratory Sciences, University of Oxford, Headington, OX3 9DU Oxford, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
18
|
Haft RJF, Palacios G, Nguyen T, Mally M, Gachelet EG, Zechner EL, Traxler B. General mutagenesis of F plasmid TraI reveals its role in conjugative regulation. J Bacteriol 2006; 188:6346-53. [PMID: 16923902 PMCID: PMC1595373 DOI: 10.1128/jb.00462-06] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria commonly exchange genetic information by the horizontal transfer of conjugative plasmids. In gram-negative conjugation, a relaxase enzyme is absolutely required to prepare plasmid DNA for transit into the recipient via a type IV secretion system. Here we report a mutagenesis of the F plasmid relaxase gene traI using in-frame, 31-codon insertions. Phenotypic analysis of our mutant library revealed that several mutant proteins are functional in conjugation, highlighting regions of TraI that can tolerate insertions of a moderate size. We also demonstrate that wild-type TraI, when overexpressed, plays a dominant-negative regulatory role in conjugation, repressing plasmid transfer frequencies approximately 100-fold. Mutant TraI proteins with insertions in a region of approximately 400 residues between the consensus relaxase and helicase sequences did not cause conjugative repression. These unrestrictive TraI variants have normal relaxase activity in vivo, and several have wild-type conjugative functions when expressed at normal levels. We postulate that TraI negatively regulates conjugation by interacting with and sequestering some component of the conjugative apparatus. Our data indicate that the domain responsible for conjugative repression resides in the central region of TraI between the protein's catalytic domains.
Collapse
Affiliation(s)
- Rembrandt J F Haft
- Department of Microbiology, University of Washington, Seattle, WA 98195-7242, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Daehnel K, Harris R, Maddera L, Silverman P. Fluorescence assays for F-pili and their application. MICROBIOLOGY-SGM 2005; 151:3541-3548. [PMID: 16272377 DOI: 10.1099/mic.0.28159-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Conjugative pili are extracellular filaments elaborated by Gram-negative bacteria expressing certain type IV secretion systems. They are required at the earliest stages of conjugal DNA transfer to establish specific and secure cell-cell contacts. Conjugative pili also serve as adsorption organelles for both RNA and DNA bacteriophages. Beyond these facts, the structure, formation and function of these filaments are poorly understood. This paper describes a rapid, quantitative assay for F-pili encoded by the F plasmid type IV secretion system. The assay is based on the specific lateral adsorption of icosahedral RNA bacteriophage R17 by F-pili. Bacteriophage particles conjugated with a fluorescent dye, Alexa 488, and bound to F-pili defined filaments visible by immunofluorescence microscopy. F-pili attached to F+ cells and free F-pili were both visible by this method. For quantification, cell-bound bacteriophage were separated from free bacteriophage particles by sedimentation and released by suspending cell pellets in 0.1 % SDS. Fluorescence in cell-free supernatant fractions was measured by fluorometry. The authors present a characterization of this assay and its application to F-pilus formation by cells carrying mutations in the gene for the F-pilus subunit F-pilin. Each mutation introduced a cysteine, which F-pilin normally lacks, at a different position in its primary structure. Cysteine residues in the N-terminal domain I abolished filament formation as measured by fluorescent R17 binding. This was confirmed by measurements of DNA donor activity and filamentous DNA bacteriophage infection. With one exception (G53C), cysteines elsewhere in the F-pilin primary structure did not abolish filament formation, although some mutations differentially affected F-pilus functions.
Collapse
Affiliation(s)
- Katrin Daehnel
- Program in Cell, Molecular, and Developmental Biology, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA
| | - Robin Harris
- Program in Cell, Molecular, and Developmental Biology, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA
| | - Lucinda Maddera
- Program in Cell, Molecular, and Developmental Biology, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA
| | - Philip Silverman
- Program in Cell, Molecular, and Developmental Biology, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA
| |
Collapse
|
20
|
Lu J, Frost LS. Mutations in the C-terminal region of TraM provide evidence for in vivo TraM-TraD interactions during F-plasmid conjugation. J Bacteriol 2005; 187:4767-73. [PMID: 15995191 PMCID: PMC1169504 DOI: 10.1128/jb.187.14.4767-4773.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Conjugation is a major mechanism for disseminating genetic information in bacterial populations, but the signal that triggers it is poorly understood in gram-negative bacteria. F-plasmid-mediated conjugation requires TraM, a homotetramer, which binds cooperatively to three binding sites within the origin of transfer. Using in vitro assays, TraM has previously been shown to interact with the coupling protein TraD. Here we present evidence that F conjugation also requires TraM-TraD interactions in vivo. A three-plasmid system was used to select mutations in TraM that are defective for F conjugation but competent for tetramerization and cooperative DNA binding to the traM promoter region. One mutation, K99E, was particularly defective in conjugation and was further characterized by affinity chromatography and coimmunoprecipitation assays that suggested it was defective in interacting with TraD. A C-terminal deletion (S79*, where the asterisk represents a stop codon) and a missense mutation (F121S), which affects tetramerization, also reduced the affinity of TraM for TraD. We propose that the C-terminal region of TraM interacts with TraD, whereas its N-terminal domain is involved in DNA binding. This arrangement of functional domains could in part allow TraM to receive the mating signal generated by donor-recipient contact and transfer it to the relaxosome, thereby triggering DNA transfer.
Collapse
Affiliation(s)
- Jun Lu
- Department of Biological Sciences, University of Alberta, Canada
| | | |
Collapse
|
21
|
The Cytology of Bacterial Conjugation. EcoSal Plus 2004; 1. [PMID: 26443357 DOI: 10.1128/ecosalplus.2.2.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This review focuses on the membrane-associated structures present at cell-cell contact sites during bacterial conjugation. These transfer proteins/structures have roles in the formation and stabilization of mating contacts and ultimately the passage of substrate across the cell envelope between two bacterial cells. The review presents evidence for the dynamic interaction between donor and recipient cells, including the assembly of a transmembrane protein complex, and concludes with a refined model for the mechanism of bacterial conjugation. Bacterial conjugation, in addition to being a mechanism for genome evolution, can be considered as a mechanism for macromolecular secretion. In particular, plasmid-conjugative transfer is classified as a type IV secretion (T4S) system and represents the only known bacterial system for secretion of DNA. In all known conjugative transfer systems, a multitude of proteins are required for both plasmid transfer and pilus production. The plasmids discussed in the review include the F factor; the P group of plasmids, including RP4 and R751 (rigid); and the H plasmid group, including R27 (also thick flexible). With the LacI-GFP/lacO system, the F, P, and H plasmids were observed to reside at well-defined positions located at the mid and quarter-cell positions of Escherichia coli throughout the vegetative cycle. In this review, recent observations based on bacterial cell biology techniques, including visualization of plasmid DNA and proteins at the subcellular level, have been combined with electron and light microscopy studies of mating cells to create an integrated overview of gram-negative bacterial conjugation, a concept referred to as the conjugative cycle.
Collapse
|
22
|
Beranek A, Zettl M, Lorenzoni K, Schauer A, Manhart M, Koraimann G. Thirty-eight C-terminal amino acids of the coupling protein TraD of the F-like conjugative resistance plasmid R1 are required and sufficient to confer binding to the substrate selector protein TraM. J Bacteriol 2004; 186:6999-7006. [PMID: 15466052 PMCID: PMC522193 DOI: 10.1128/jb.186.20.6999-7006.2004] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coupling proteins (CPs) are present in type IV secretion systems of plant, animal, and human pathogens and are essential for DNA transfer in bacterial conjugation systems. CPs connect the DNA-processing machinery to the mating pair-forming transfer apparatus. In this report we present in vitro and in vivo data that demonstrate specific binding of CP TraD of the IncFII R1 plasmid transfer system to relaxosomal protein TraM. With overlay assays and enzyme-linked immunosorbent assays we showed that a truncated version of TraD, termed TraD11 (DeltaN155), interacted strongly with TraM. The apparent TraD11-TraM association constant was determined to be 2.6 x 10(7) liters/mol. Electrophoretic mobility shift assays showed that this variant of TraD also strongly bound to TraM when it was in complex with its target DNA. When 38 amino acids were additionally removed from the C terminus of TraD, no binding to TraM was observed. TraD15, comprising the 38 amino-acid-long C terminus of TraD, bound to TraM, indicating that the main TraM interaction domain resides in these 38 amino acids of TraD. TraD15 exerted a dominant negative effect on DNA transfer but not on phage infection by pilus-specific phage R17, indicating that TraM-TraD interaction is important for conjugative DNA transfer but not for phage infection. We also observed that TraD encoded by the closely related F factor bound to TraM encoded by the R1 plasmid. Our results thus provide evidence that substrate selection within the IncF plasmid group is based on TraM's capability to select the correct DNA molecule for transport and not on substrate selection by the CP.
Collapse
Affiliation(s)
- Andreas Beranek
- Institut für Molekulare Biowissenschaften, Karl-Franzens-Universität Graz, Universitätsplatz 2, A-8010 Graz, Austria
| | | | | | | | | | | |
Collapse
|
23
|
Lawley TD, Klimke WA, Gubbins MJ, Frost LS. F factor conjugation is a true type IV secretion system. FEMS Microbiol Lett 2003; 224:1-15. [PMID: 12855161 DOI: 10.1016/s0378-1097(03)00430-0] [Citation(s) in RCA: 317] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The F sex factor of Escherichia coli is a paradigm for bacterial conjugation and its transfer (tra) region represents a subset of the type IV secretion system (T4SS) family. The F tra region encodes eight of the 10 highly conserved (core) gene products of T4SS including TraAF (pilin), the TraBF, -KF (secretin-like), -VF (lipoprotein) and TraCF (NTPase), -EF, -LF and TraGF (N-terminal region) which correspond to TrbCP, -IP, -GP, -HP, -EP, -JP, DP and TrbLP, respectively, of the P-type T4SS exemplified by the IncP plasmid RP4. F lacks homologs of TrbBP (NTPase) and TrbFP but contains a cluster of genes encoding proteins essential for F conjugation (TraFF, -HF, -UF, -WF, the C-terminal region of TraGF, and TrbCF) that are hallmarks of F-like T4SS. These extra genes have been implicated in phenotypes that are characteristic of F-like systems including pilus retraction and mating pair stabilization. F-like T4SS systems have been found on many conjugative plasmids and in genetic islands on bacterial chromosomes. Although few systems have been studied in detail, F-like T4SS appear to be involved in the transfer of DNA only whereas P- and I-type systems appear to transport protein or nucleoprotein complexes. This review examines the similarities and differences among the T4SS, especially F- and P-like systems, and summarizes the properties of the F transfer region gene products.
Collapse
Affiliation(s)
- T D Lawley
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9
| | | | | | | |
Collapse
|
24
|
Reisner A, Haagensen JAJ, Schembri MA, Zechner EL, Molin S. Development and maturation of Escherichia coli K-12 biofilms. Mol Microbiol 2003; 48:933-46. [PMID: 12753187 DOI: 10.1046/j.1365-2958.2003.03490.x] [Citation(s) in RCA: 248] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The development and maturation of E. coli biofilms in flow-chambers was investigated. We found that the presence of transfer constitutive IncF plasmids induced biofilm development forming structures resembling those reported for Pseudomonas aeruginosa. The development occurred in a step-wise process: (i). attachment of cells to the substratum, (ii). clonal growth and microcolony formation, and (iii). differentiation into expanding structures rising 70-100 microm into the water phase. The first two steps were the same in the plasmid-carrying and plasmid-free strains, whereas the third step only occurred in conjugation pilus proficient plasmid-carrying strains. The final shapes of the expanding structures in the mature biofilm seem to be determined by the pilus configuration, as various mutants affected in the processing and activity of the transfer pili displayed differently structured biofilms. We further provide evidence that flagella, type 1 fimbriae, curli and Ag43 are all dispensable for the observed biofilm maturation. In addition, our results indicate that cell-to-cell signalling mediated by autoinducer 2 (AI-2) is not required for differentiation of E. coli within a biofilm community. We suggest on the basis of these results that E. coli K-12 biofilm development and maturation is dependent on cell-cell adhesion factors, which may act as inducers of self-assembly processes that result in differently structured biofilms depending on the adhesive properties on the cell surface.
Collapse
Affiliation(s)
- Andreas Reisner
- Institut für Molekularbiologie, Biochemie und Mikrobiologie, Karl-Franzens-Universität Graz, Universitätsplatz 2, A-8010 Graz, Austria
| | | | | | | | | |
Collapse
|
25
|
Llosa M, Gomis-Rüth FX, Coll M, de la Cruz Fd F. Bacterial conjugation: a two-step mechanism for DNA transport. Mol Microbiol 2002; 45:1-8. [PMID: 12100543 DOI: 10.1046/j.1365-2958.2002.03014.x] [Citation(s) in RCA: 264] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bacterial conjugation is a promiscuous DNA transport mechanism. Conjugative plasmids transfer themselves between most bacteria, thus being one of the main causal agents of the spread of antibiotic resistance among pathogenic bacteria. Moreover, DNA can be transferred conjugatively into eukaryotic host cells. In this review, we aim to address several basic questions regarding the DNA transfer mechanism. Conjugation can be visualized as a DNA rolling-circle replication (RCR) system linked to a type IV secretion system (T4SS), the latter being macromolecular transporters widely involved in pathogenic mechanisms. The scheme 'replication + secretion' suggests how the mechanism would work on the DNA substrate and at the bacterial membrane. But, how do these two parts come into contact? Furthermore, how is the DNA transported? T4SS are known to be involved in protein secretion in different organisms, but DNA is a very different macromolecule. The so-called coupling proteins could be the answer to both questions by performing a dual role in conjugation: coupling the two main components of the machinery (RCR and T4SS) and actively mediating DNA transport. We postulate that the T4SS is responsible for transport of the pilot protein (the relaxase) to the recipient. The DNA that is covalently linked to it is initially transported in a passive manner, trailing on the relaxase. We speculate that the pilus appendage could work as a needle, thrusting the substrate proteins to cross one or several membrane barriers into the recipient cytoplasm. This is the first step in conjugation. The second step is the active pumping of the DNA to the recipient, using the already available T4SS transport conduit. It is proposed that this second step is catalysed by the coupling proteins. Our 'shoot and pump' model solves the protein-DNA transport paradox of T4SS.
Collapse
Affiliation(s)
- Matxalen Llosa
- Dipartmento de Biología Molecular, Unidad Asociada al CIB-CSIC, Universidad de Cantabria, Santander, Spain.
| | | | | | | |
Collapse
|
26
|
Kelly BA, Kado CI. Agrobacterium-mediated T-DNA transfer and integration into the chromosome of Streptomyces lividans. MOLECULAR PLANT PATHOLOGY 2002; 3:125-134. [PMID: 20569318 DOI: 10.1046/j.1364-3703.2002.00104.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Summary Agrobacterium tumefaciens is the prototype of a prokaryotic organism transmitting DNA across natural kingdom barriers into higher cells. In nature, a specific segment (T-DNA) of the resident Ti plasmid is transferred from this bacterium into plant cells and integrated into the plant cell genome. Expression of the integrated oncogenes contained in the T-DNA results in the tumour disease known as crown gall. Besides plants, the range of transformable recipients is broad and includes fungi and mammalian cells. We now show further extension of this host range, whereby the actinomycete Streptomyces lividans is also a recipient of the T-DNA. A. tumefaciens cells containing a binary vector system with a vir helper plasmid, pUCD2614, and a T-DNA donor plasmid, pUCD5801, were co-cultured with S. lividans hyphae. A. tumefaciens-S. lividans aggregate when the vir genes are induced with acetosyringone, resulting in the transfer of the T-DNA, as evidenced by the formation of transconjugants containing T-DNA genetic markers and the appearance of the T-DNA in these transconjugants. Close examination of the interacted cells revealed a presumably coiled thread-like interconnection with an average width of approximately 30 nm between A. tumefaciens and S. lividans. This interconnecting structure is dependent on virB genes and appears only under the same conditions as that required for T-pilus formation. Insertion of the T-DNA via A. tumefaciens into the S. lividans genome provides a useful genetic tool for generating novel mutants.
Collapse
Affiliation(s)
- Brian A Kelly
- Davis Crown Gall Group, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
27
|
Lee MH, Kosuk N, Bailey J, Traxler B, Manoil C. Analysis of F factor TraD membrane topology by use of gene fusions and trypsin-sensitive insertions. J Bacteriol 1999; 181:6108-13. [PMID: 10498725 PMCID: PMC103640 DOI: 10.1128/jb.181.19.6108-6113.1999] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This report describes a procedure for characterizing membrane protein topology which combines the analysis of reporter protein hybrids and trypsin-sensitive 31-amino-acid insertions generated by using transposons ISphoA/in and ISlacZ/in. Studies of the F factor TraD protein imply that the protein takes on a structure with two membrane-spanning sequences and amino and carboxyl termini facing the cytoplasm. It was possible to assign the subcellular location of one region for which the behavior of fused reporter proteins was ambiguous, based on the trypsin cleavage behavior of a 31-residue insertion.
Collapse
Affiliation(s)
- M H Lee
- Departments of Genetics, University of Washington, Seattle, Washington 98195-7360, USA
| | | | | | | | | |
Collapse
|
28
|
Anthony KG, Klimke WA, Manchak J, Frost LS. Comparison of proteins involved in pilus synthesis and mating pair stabilization from the related plasmids F and R100-1: insights into the mechanism of conjugation. J Bacteriol 1999; 181:5149-59. [PMID: 10464182 PMCID: PMC94017 DOI: 10.1128/jb.181.17.5149-5159.1999] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
F and R100-1 are closely related, derepressed, conjugative plasmids from the IncFI and IncFII incompatibility groups, respectively. Heteroduplex mapping and genetic analyses have revealed that the transfer regions are extremely similar between the two plasmids. Plasmid specificity can occur at the level of relaxosome formation, regulation, and surface exclusion between the two transfer systems. There are also differences in pilus serology, pilus-specific phage sensitivity, and requirements for OmpA and lipopolysaccharide components in the recipient cell. These phenotypic differences were exploited in this study to yield new information about the mechanism of pilus synthesis, mating pair stabilization, and surface and/or entry exclusion, which are collectively involved in mating pair formation (Mpf). The sequence of the remainder of the transfer region of R100-1 (trbA to traS) has been completed, and the complete sequence is compared to that of F. The differences between the two transfer regions include insertions and deletions, gene duplications, and mosaicism within genes, although the genes essential for Mpf are conserved in both plasmids. F+ cells carrying defined mutations in each of the Mpf genes were complemented with the homologous genes from R100-1. Our results indicate that the specificity in recipient cell recognition and entry exclusion are mediated by TraN and TraG, respectively, and not by the pilus.
Collapse
Affiliation(s)
- K G Anthony
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
| | | | | | | |
Collapse
|
29
|
Soubrier F, Cameron B, Manse B, Somarriba S, Dubertret C, Jaslin G, Jung G, Caer CL, Dang D, Mouvault JM, Scherman D, Mayaux JF, Crouzet J. pCOR: a new design of plasmid vectors for nonviral gene therapy. Gene Ther 1999; 6:1482-8. [PMID: 10467373 DOI: 10.1038/sj.gt.3300968] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A totally redesigned host/vector system with improved properties in terms of safety has been developed. The pCOR plasmids are narrow-host range plasmid vectors for nonviral gene therapy. These plasmids contain a conditional origin of replication and must be propagated in a specifically engineered E. coli host strain, greatly reducing the potential for propagation in the environment or in treated patients. The pCOR backbone has several features that increase safety in terms of dissemination and selection: (1) the origin of replication requires a plasmid-specific initiator protein, pi protein, encoded by the pir gene limiting its host range to bacterial strains that produce this trans-acting protein; (2) the plasmid's selectable marker is not an antibiotic resistance gene but a gene encoding a bacterial suppressor tRNA. Optimized E. coli hosts supporting pCOR replication and selection were constructed. High yields of supercoiled pCOR monomers were obtained (100 mg/l) through fed-batch fermentation. pCOR vectors carrying the luciferase reporter gene gave high levels of luciferase activity when injected into murine skeletal muscle.
Collapse
Affiliation(s)
- F Soubrier
- Rhône-Poulenc Rorer, Centre de Recherche de Vitry Alfortville, 13 Quai J Guesde, 94403 Vitry-sur-Seine, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Klimke WA, Frost LS. Genetic analysis of the role of the transfer gene, traN, of the F and R100-1 plasmids in mating pair stabilization during conjugation. J Bacteriol 1998; 180:4036-43. [PMID: 9696748 PMCID: PMC107396 DOI: 10.1128/jb.180.16.4036-4043.1998] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/1998] [Accepted: 06/03/1998] [Indexed: 11/20/2022] Open
Abstract
Mating pair stabilization occurs during conjugative DNA transfer whereby the donor and recipient cells form a tight junction which requires pili as well as TraN and TraG in the donor cell. The role of the outer membrane protein, TraN, during conjugative transfer was examined by introduction of a chloramphenicol resistance cassette into the traN gene on an F plasmid derivative, pOX38, to produce pOX38N1::CAT. pOX38N1::CAT was greatly reduced in its ability to transfer DNA, indicating that TraN plays a greater role in conjugation than previously thought. F and R100-1 traN were capable of complementing pOX38N1::CAT transfer equally well when wild-type recipients were used. F traN, but not R100-1 traN, supported a much lower level of transfer when there was an ompA mutation or lipopolysaccharide (LPS) deficiency in the recipient cell, suggesting receptor specificity. The R100-1 traN gene was sequenced, and the gene product was found to exhibit 82.3% overall similarity with F TraN. The differences were mainly located within a central region of the proteins (amino acids 162 to 333 of F and 162 to 348 of R100-1). Deletion analysis of F traN suggested that this central portion might be responsible for the receptor specificity displayed by TraN. TraN was not responsible for TraT-dependent surface exclusion. Thus, TraN, and not the F pilus, appears to interact with OmpA and LPS moieties during conjugation, resulting in mating pair stabilization, the first step in efficient mobilization of DNA.
Collapse
Affiliation(s)
- W A Klimke
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
| | | |
Collapse
|
31
|
Affiliation(s)
- A J Dijkstra
- Pharma Research Department, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | | |
Collapse
|
32
|
Sundberg C, Meek L, Carroll K, Das A, Ream W. VirE1 protein mediates export of the single-stranded DNA-binding protein VirE2 from Agrobacterium tumefaciens into plant cells. J Bacteriol 1996; 178:1207-12. [PMID: 8576060 PMCID: PMC177787 DOI: 10.1128/jb.178.4.1207-1212.1996] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Agrobacterium tumefaciens transfers single-stranded DNAs (T strands) into plant cells. VirE1 and VirE2, which is a single-stranded DNA binding protein, are important for tumorigenesis. We show that T strands and VirE2 can enter plant cells independently and that export of VirE2, but not of T strands, depends on VirE1.
Collapse
Affiliation(s)
- C Sundberg
- Program in Molecular Biology, Oregon State University, Corvallis 97331, USA
| | | | | | | | | |
Collapse
|
33
|
Frost LS, Ippen-Ihler K, Skurray RA. Analysis of the sequence and gene products of the transfer region of the F sex factor. Microbiol Rev 1994; 58:162-210. [PMID: 7915817 PMCID: PMC372961 DOI: 10.1128/mr.58.2.162-210.1994] [Citation(s) in RCA: 275] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Bacterial conjugation results in the transfer of DNA of either plasmid or chromosomal origin between microorganisms. Transfer begins at a defined point in the DNA sequence, usually called the origin of transfer (oriT). The capacity of conjugative DNA transfer is a property of self-transmissible plasmids and conjugative transposons, which will mobilize other plasmids and DNA sequences that include a compatible oriT locus. This review will concentrate on the genes required for bacterial conjugation that are encoded within the transfer region (or regions) of conjugative plasmids. One of the best-defined conjugation systems is that of the F plasmid, which has been the paradigm for conjugation systems since it was discovered nearly 50 years ago. The F transfer region (over 33 kb) contains about 40 genes, arranged contiguously. These are involved in the synthesis of pili, extracellular filaments which establish contact between donor and recipient cells; mating-pair stabilization; prevention of mating between similar donor cells in a process termed surface exclusions; DNA nicking and transfer during conjugation; and the regulation of expression of these functions. This review is a compendium of the products and other features found in the F transfer region as well as a discussion of their role in conjugation. While the genetics of F transfer have been described extensively, the mechanism of conjugation has proved elusive, in large part because of the low levels of expression of the pilus and the numerous envelope components essential for F plasmid transfer. The advent of molecular genetic techniques has, however, resulted in considerable recent progress. This summary of the known properties of the F transfer region is provided in the hope that it will form a useful basis for future comparison with other conjugation systems.
Collapse
Affiliation(s)
- L S Frost
- Department of Microbiology, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
34
|
Palmen R, Driessen AJ, Hellingwerf KJ. Bioenergetic aspects of the translocation of macromolecules across bacterial membranes. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1183:417-51. [PMID: 8286395 DOI: 10.1016/0005-2728(94)90072-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Bacteria are extremely versatile in the sense that they have gained the ability to transport all three major classes of biopolymers through their cell envelope: proteins, nucleic acids, and polysaccharides. These macromolecules are translocated across membranes in a large number of cellular processes by specific translocation systems. Members of the ABC (ATP binding cassette) superfamily of transport ATPases are involved in the translocation of all three classes of macromolecules, in addition to unique transport ATPases. An intriguing aspect of these transport processes is that the barrier function of the membrane is preserved despite the fact the dimensions of the translocated molecules by far surpasses the thickness of the membrane. This raises questions like: How are these polar compounds translocated across the hydrophobic interior of the membrane, through a proteinaceous pore or through the lipid phase; what drives these macromolecules across the membrane; which energy sources are used and how is unidirectionality achieved? It is generally believed that macromolecules are translocated in a more or less extended, most likely linear form. A recurring theme in the bioenergetics of these translocation reactions in bacteria is the joint involvement of free energy input in the form of ATP hydrolysis and via proton sym- or antiport, driven by a proton gradient. Important similarities in the bioenergetic mechanisms of the translocation of these biopolymers therefore may exist.
Collapse
Affiliation(s)
- R Palmen
- Department of Microbiology, University of Amsterdam, The Netherlands
| | | | | |
Collapse
|
35
|
Sabelnikov AG. Nucleic acid transfer through cell membranes: towards the underlying mechanisms. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1994; 62:119-52. [PMID: 7524111 DOI: 10.1016/0079-6107(94)90009-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Various cases of DNA (RNA) transfer through membranes of living cells are reviewed. They are classified into two major categories: those which occur in Nature (natural transfer) and those imposed by various physical and chemical treatments of cells (induced transfer). Among the examples of natural transfer surveyed are the transfer during bacterial conjugation, genetic transformation, viral infection of bacteria, and nuclear membrane trafficking. Consideration of the induced transfer is focused on the two methods most widely used at present to introduce foreign genetic information into pro- and eukaryotic cells: Ca2+ (and some other divalent cations)-induced and calcium phosphate-induced transfer, and transfer during electroporation of cells. Emphasis is made on the underlying mechanisms of transfer, or rather on what is currently known about them. Energetic aspects of transfer are also discussed and different tentative models of transfer are presented.
Collapse
Affiliation(s)
- A G Sabelnikov
- Biology Department, Brookhaven National Laboratory, Upton, N.Y. 11973
| |
Collapse
|
36
|
Paiva W, Grossman T, Silverman P. Characterization of F-pilin as an inner membrane component of Escherichia coli K12. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)35734-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
37
|
Purification and properties of the F sex factor TraD protein, an inner membrane conjugal transfer protein. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42341-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
38
|
Dürrenberger MB, Villiger W, Bächi T. Conjugational junctions: morphology of specific contacts in conjugating Escherichia coli bacteria. J Struct Biol 1991; 107:146-56. [PMID: 1807350 DOI: 10.1016/1047-8477(91)90018-r] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
F-plasmid-mediated bacterial conjugation was studied with hfr (traDts) and tra I mutant Escherichia coli donor strains. This allowed us to observe a statistically significant number of conjugation-specific contacts by video and electron microscopy. Single mating events between E. coli were observed in real time by video-enhanced light microscopy. Conjugation in vivo takes place by initial contact formation via pili, followed by direct and transient wall-to-wall contact, during which DNA is transferred and disaggregated. Electron microscopic observations of the contact zone between donor and recipient bacteria were made by thin sectioning of mating pairs that were arranged in monolayers. We defined the conjugation-specific contact found in stabilized mating pairs as the conjugational junction. Within this junction no specific substructure such as plasma bridges by fusion could be detected during transfer of DNA.
Collapse
|
39
|
Viljanen P, Boratynski J. The susceptibility of conjugative resistance transfer in gram-negative bacteria to physicochemical and biochemical agents. FEMS Microbiol Rev 1991; 8:43-54. [PMID: 1931138 DOI: 10.1111/j.1574-6968.1991.tb04956.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Over thirty years of studies have established that conjugative transfer of plasmid-encoded resistance to drugs and heavy metals can take place at high frequency between various organisms under laboratory conditions. The detected transfer frequencies in soil, in aquatic environments, and in the urogenital and respiratory tracts of healthy animals and man have generally been low. However, the conversion of bacteria from susceptible to resistant to antibiotics has been observed often during antimicrobial therapy. This has formed a challenge for the antibacterial treatment of pathogenic bacteria and called for the evaluation of the extent of conjugative transfer in various environments. Several biochemical and physicochemical factors inhibit conjugation, show preferential toxicity against plasmid-bearing cells, or stimulate plasmid curing. These factors include various agents such as detergents, anesthetics, mutagens and antibiotics which affect membrane potential, membrane permeability, protein synthesis and the processing of DNA. The application of the data on these agents, summarized in this review, might be helpful in preventing drug multi-resistance from spreading. Also these data might be valuable in studies which use conjugation as a tool or which treat the molecular mechanisms involved in conjugation.
Collapse
Affiliation(s)
- P Viljanen
- Miyazaki University, Faculty of Agriculture, Japan
| | | |
Collapse
|
40
|
The F pilus of Escherichia coli appears to support stable DNA transfer in the absence of wall-to-wall contact between cells. J Bacteriol 1990; 172:7263-4. [PMID: 1979324 PMCID: PMC210852 DOI: 10.1128/jb.172.12.7263-7264.1990] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Separation of HfrC-F- mating pairs of Escherichia coli by a filter 6 microns thick with straight-through pores 0.01 to 0.1 micron in diameter did not prevent DNA transfer. We conclude that the F pilus alone is capable of acting as a stable conduit for cell-to-cell DNA transfer.
Collapse
|
41
|
Barroso G, Salvado JC, Labarère J. Influence of genetic markers and of the fusing agent polyethylene glycol on chromosomal gene transfer inSpiroplasma citri. Curr Microbiol 1990. [DOI: 10.1007/bf02094025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
42
|
|
43
|
Sabelnikov A. DNA transfer through cell membranes in bacteria. J Electroanal Chem (Lausanne) 1989. [DOI: 10.1016/0022-0728(89)87270-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
44
|
Abstract
The complete nucleotide sequence has been determined of a 3635-bp region, extending from the HpaI site in traT, at F coordinate 90.3 kb, to beyond the end of traD, of the F sex factor plasmid of Escherichia coli K-12. This region contains the C-terminal coding part of traT and the entire traD gene. An open reading frame (ORF) of 2148 bp within the sequence confirms that traD encodes an 81.4-kDa cytoplasmic membrane protein. The TraD protein has several regions with an unusually high pI (greater than 10), suggesting that they may correspond to the DNA-binding domains. Several other ORFs were detected within the region including the gene (ORF1) for a 26.3-kDa protein and ORF2, probably corresponding to traI, which continues to the end of the sequence. An ORF for an 8.5-kDa protein preceded by an excellent promoter and ribosome-binding site is present in the region following traD but on the opposite strand. This promoter is thought to correspond to the major RNA polymerase binding site in this region, implying that traI does not have its own promoter. The lack of a typical terminator following traD and ORF1 and the translational coupling provided by overlapping stop and start codons is consistent with this conclusion.
Collapse
Affiliation(s)
- M B Jalajakumari
- Department of Microbiology and Immunology, University of Adelaide, South Australia
| | | |
Collapse
|
45
|
Grossman TH, Silverman PM. Structure and function of conjugative pili: inducible synthesis of functional F pili by Escherichia coli K-12 containing a lac-tra operon fusion. J Bacteriol 1989; 171:650-6. [PMID: 2563366 PMCID: PMC209646 DOI: 10.1128/jb.171.2.650-656.1989] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In vivo and in vitro recombination methods were used to construct the recombinant plasmid pTG801, in which the F-plasmid DNA transfer (tra) genes required for the formation of functional F pili were placed under the lac transcriptional control sequences of pUC19. The 20 kilobases of cloned F DNA includes genes traA through the 5'-terminal part of traG; the plasmid lacks the positive regulatory gene traJ and all of the known tra genes required for the DNA transfer stage of conjugation. pTG801 transformants were sensitive to the donor-specific bacteriophages Q beta and f1, as measured by the formation of infectious centers. They were relatively insensitive to bacteriophage R17, as expected from the absence of traD. In the presence of a lacIq allele, sensitivity of pTG801 transformants to f1 and Q beta depended on the concentration of inducer (isopropyl-beta-D-thiogalactopyranoside [IPTG]). Viewed by electron microscopy, pTG801 transformants elaborated 7- to 10-nm-diameter filaments that could be laterally decorated with RNA bacteriophage particles, consistent with the formation of F pili. In stationary-phase cultures, these filaments formed massive aggregates and could be seen to adhere lengthwise to the cell surface; few pili accumulated in the medium as single filaments.
Collapse
Affiliation(s)
- T H Grossman
- Department of Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10462
| | | |
Collapse
|
46
|
Abstract
The study of resistance marker rearrangement in Spiroplasma citri mutants provides evidence of transfer of chromosomal information followed by recombination. This is the first report of such a transfer in vivo in the mollicutes--that is, in the smallest self-replicating organisms. The double-resistant phenotypes obtained are stable even without selection pressure. The mechanism of gene transfer is insensitive to deoxyribonuclease, requires contact, and possibly, areas of fusion of the cell membranes; it shares properties with the transfer by protoplast fusion in Gram-positive bacteria. The extensive degenerative evolution of mollicutes has retained, in S. citri, bacterial functions of chromosomal transfer and recombination.
Collapse
Affiliation(s)
- G Barroso
- Laboratoire de Génétique Moléculaire, Université de Bordeaux II-INRA, C.R.A. de Bordeaux, Pont-de-la-Maye, France
| | | |
Collapse
|
47
|
Affiliation(s)
- W Paranchych
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
48
|
Traxler BA, Minkley EG. Revised genetic map of the distal end of the F transfer operon: implications for DNA helicase I, nicking at oriT, and conjugal DNA transport. J Bacteriol 1987; 169:3251-9. [PMID: 3036780 PMCID: PMC212377 DOI: 10.1128/jb.169.7.3251-3259.1987] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The DNA transfer stage of conjugation requires the products of the F sex factor genes traMYDIZ and the cis-acting site oriT. Previous interpretation of genetic and protein analyses suggested that traD, traI, and traZ mapped as contiguous genes at the distal end of the transfer operon and saturated this portion of the F transfer region (which ends with an IS3 element). Using antibodies prepared against the purified TraD and TraI proteins, we analyzed the products encoded by a collection of chimeric plasmids constructed with various segments of traDIZ DNA. We found the traI gene to be located 1 kilobase to the right of the position suggested on previous maps. This creates an unsaturated space between traD and traI where unidentified tra genes may be located and leaves insufficient space between traI and IS3 for coding the 94-kilodalton protein previously thought to be the product of traZ. We found that the 94-kilodalton protein arose from a translational restart and corresponds to the carboxy terminus of traI; we named it TraI*. The precise physical location of the traZ gene and the identity of its product are unknown. The oriT nicking activity known as TraZ may stem from unassigned regions between traD and traI and between traI and IS3, but a more interesting possibility is that it is actually a function of traI. On our revised map, the position of a previously detected RNA polymerase-binding site corresponds to a site at the amino terminus of traI rather than a location 1 kilobase into the coding region of the gene. Furthermore, the physical and genetic comparison of the F traD and traI genes with those of the closely related F-like conjugative plasmids R1 and R100 is greatly simplified. The translational organization we found for traI, together with its identity as the structural gene for DNA helicase I, suggests a possible functional link to several other genes from which translational restart polypeptides are expressed. These include the primases of the conjugative plasmids ColI and R16, the primase-helicase of bacteriophage T7, and the cisA product (nickase) of phage phi X174.
Collapse
|
49
|
|