1
|
Choi WW, Jeong H, Kim Y, Lee HS. Gene nceA encodes a Ni/Co-sensing transcription factor to regulate metal efflux in Corynebacterium glutamicum. METALLOMICS : INTEGRATED BIOMETAL SCIENCE 2022; 14:6865361. [PMID: 36460048 DOI: 10.1093/mtomcs/mfac094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/23/2022] [Indexed: 12/04/2022]
Abstract
The function of Corynebacterium glutamicum open reading frame (ORF) NCgl2684 (named nceA in this study), which was annotated to encode a metalloregulator, was assessed using physiological, genetic, and biochemical approaches. Cells with deleted-nceA (ΔnceA) showed a resistant phenotype to NiSO4 and CoSO4 and showed faster growth in minimal medium containing 20 μM NiSO4 or 10 μM CoSO4 than both the wild-type and nceA-overexpressing (P180-nceA) cells. In the ΔnceA strain, the transcription of the downstream-located ORF NCgl2685 (nceB), annotated to encode efflux protein, was increased approximately 4-fold, whereas gene transcription decreased down to 30% level in the P180-nceA strain. The transcriptions of the nceA and nceB genes were stimulated, even when as little as 5 nM NiSO4 was added to the growth medium. Protein NceA was able to bind DNA comprising the promoter region (from -14 to + 18) of the nceA--nceB operon. The protein-DNA interaction was abolished in the presence of 20 μM NiSO4, 50 μM CoSO4, or 50 μM CdSO4. Although manganese induced the transcription of the nceA and nceB genes, it failed to interrupt protein-DNA interaction. Simultaneously, the P180-nceA cells showed increased sensitivity to oxidants such as menadione, hydrogen peroxide, and cumene hydroperoxide, but not diamide. Collectively, our data show that NceA is a nickel- and cobalt-sensing transcriptional regulator that controls the transcription of the probable efflux protein-encoding nceB. The genes are able to suppress intracellular levels of nickel to prevent reactions, which can cause oxidative damage to cellular components.
Collapse
Affiliation(s)
- Won-Woo Choi
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea.,Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, Republic of Korea
| | - Haeri Jeong
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| | - Younhee Kim
- Department of Korean Medicine, Semyung University, Jecheon, Chungbuk 27136, Republic of Korea
| | - Heung-Shick Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea.,Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, Republic of Korea
| |
Collapse
|
2
|
Yang HD, Jeong H, Kim Y, Lee HS. The cysS gene (ncgl0127) of Corynebacterium glutamicum is required for sulfur assimilation and affects oxidative stress-responsive cysteine import. Res Microbiol 2022; 173:103983. [PMID: 35931248 DOI: 10.1016/j.resmic.2022.103983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022]
Abstract
The OsnR protein functions as a transcriptional repressor of genes involved in redox-dependent stress responses. Here, we studied Corynebacterium glutamicum ORF ncgl0127 (referred to as cysS in this study), one of the target genes of OsnR, to reveal its role in osnR-mediated stress responses. The ΔcysS strain was found to be a cysteine auxotroph, and the transcription levels of the sulfur assimilatory genes and cysR, the master regulatory gene for sulfur assimilation, were low in this strain. Complementation of the strain with cysR transformed the strain into a cysteine prototroph. Cells challenged with oxidants or cysteine showed transcriptional stimulation of the cysS gene and decreased transcription of the ncgl2463 gene, which encodes a cysteine/cystine importer. The transcription of the ncgl2463 gene was increased in the ΔcysS strain and further stimulated by cysteine. Unlike the wild-type strain, ΔcysS cells grown with an excess amount of cysteine showed an oxidant- and alkylating agent-resistant phenotype, suggesting deregulated cysteine import. Collectively, our data suggest that the cysS gene plays a positive role in sulfur assimilation and a negative role in cysteine import, in particular in cells under oxidative stress.
Collapse
Affiliation(s)
- Han-Deul Yang
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea; Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, Republic of Korea.
| | - Haeri Jeong
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea.
| | - Younhee Kim
- Department of Korean Medicine, Semyung University, Jecheon, Chungbuk 27136, Republic of Korea.
| | - Heung-Shick Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea; Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, Republic of Korea.
| |
Collapse
|
3
|
Liang Y, Yu H. Genetic toolkits for engineering Rhodococcus species with versatile applications. Biotechnol Adv 2021; 49:107748. [PMID: 33823269 DOI: 10.1016/j.biotechadv.2021.107748] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 02/09/2023]
Abstract
Rhodococcus spp. are a group of non-model gram-positive bacteria with diverse catabolic activities and strong adaptive capabilities, which enable their wide application in whole-cell biocatalysis, environmental bioremediation, and lignocellulosic biomass conversion. Compared with model microorganisms, the engineering of Rhodococcus is challenging because of the lack of universal molecular tools, high genome GC content (61% ~ 71%), and low transformation and recombination efficiencies. Nevertheless, because of the high interest in Rhodococcus species for bioproduction, various genetic elements and engineering tools have been recently developed for Rhodococcus spp., including R. opacus, R. jostii, R. ruber, and R. erythropolis, leading to the expansion of the genetic toolkits for Rhodococcus engineering. In this article, we provide a comprehensive review of the important developed genetic elements for Rhodococcus, including shuttle vectors, promoters, antibiotic markers, ribosome binding sites, and reporter genes. In addition, we also summarize gene transfer techniques and strategies to improve transformation efficiency, as well as random and precise genome editing tools available for Rhodococcus, including transposition, homologous recombination, recombineering, and CRISPR/Cas9. We conclude by discussing future trends in Rhodococcus engineering. We expect that more synthetic and systems biology tools (such as multiplex genome editing, dynamic regulation, and genome-scale metabolic models) will be adapted and optimized for Rhodococcus.
Collapse
Affiliation(s)
- Youxiang Liang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Key Laboratory of Industrial Biocatalysis (Tsinghua University), the Ministry of Education, Beijing 100084, China
| | - Huimin Yu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Key Laboratory of Industrial Biocatalysis (Tsinghua University), the Ministry of Education, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
4
|
Hashiro S, Yasueda H. Plasmid copy number mutation in repA gene encoding RepA replication initiator of cryptic plasmid pHM1519 in Corynebacterium glutamicum. Biosci Biotechnol Biochem 2018; 82:2212-2224. [PMID: 30122124 DOI: 10.1080/09168451.2018.1508986] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Cryptic plasmid pHM1519 is a rolling-circular replication mode plasmid of the pCG1 plasmid family in coryneform bacteria. The derived shuttle vector pPK4 is maintained at about 40-50 copies per chromosome in Corynebacterium glutamicum 2256 (ATCC 13869). We found that a mutation (designated copA1) within the repA gene encoding essential initiator protein RepA of the pHM1519-replicon increased the copy number of the mutant plasmid to about 800 copies per chromosome. The mutation was a single G to A base transition, which changed Gly to Glu at position 429 of the amino acid sequence of RepA. In silico secondary structure prediction of RepA suggested that Gly429 is situated in a disordered region in a helix-turn-helix motif, which is a typical DNA-binding domain. This study shows the first example of a high copy number of a C. glutamicum cryptic plasmid caused by an altered replication initiator protein.
Collapse
Affiliation(s)
- Shuhei Hashiro
- a Institute for Innovation , Ajinomoto Co., Inc ., Kawasaki , Japan
| | - Hisashi Yasueda
- a Institute for Innovation , Ajinomoto Co., Inc ., Kawasaki , Japan
| |
Collapse
|
5
|
Lee DS, Kim P, Kim ES, Kim Y, Lee HS. Corynebacterium glutamicum WhcD interacts with WhiA to exert a regulatory effect on cell division genes. Antonie van Leeuwenhoek 2017; 111:641-648. [DOI: 10.1007/s10482-017-0953-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 09/30/2017] [Indexed: 11/30/2022]
|
6
|
Ellinger J, Schmidt-Dannert C. Construction of a BioBrick™ compatible vector system for Rhodococcus. Plasmid 2017; 90:1-4. [DOI: 10.1016/j.plasmid.2017.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 12/21/2022]
|
7
|
Lee DS, Kim Y, Lee HS. The whcD gene of Corynebacterium glutamicum plays roles in cell division and envelope formation. Microbiology (Reading) 2017; 163:131-143. [DOI: 10.1099/mic.0.000399] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Dong-Seok Lee
- Department of Biotechnology and Bioinformatics, Korea University, 2511 Sejong-ro, Sejong-si 339-700, Republic of Korea
| | - Younhee Kim
- Department of Korean Medicine, Semyung University, 65 Semyung-ro, Jecheon-si, Chungbuk 390-711, Republic of Korea
| | - Heung-Shick Lee
- Department of Biotechnology and Bioinformatics, Korea University, 2511 Sejong-ro, Sejong-si 339-700, Republic of Korea
| |
Collapse
|
8
|
Becker J, Wittmann C. Industrial Microorganisms: Corynebacterium glutamicum. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807796.ch6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Judith Becker
- Saarland University; Institute of Systems Biotechnology; Campus A 15 66123 Saarbrücken Germany
| | - Christoph Wittmann
- Saarland University; Institute of Systems Biotechnology; Campus A 15 66123 Saarbrücken Germany
| |
Collapse
|
9
|
SpiE interacts with Corynebacterium glutamicum WhcE and is involved in heat and oxidative stress responses. Appl Microbiol Biotechnol 2016; 100:4063-72. [PMID: 26996627 DOI: 10.1007/s00253-016-7440-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/02/2016] [Accepted: 03/04/2016] [Indexed: 10/22/2022]
Abstract
The gene whcE in Corynebacterium glutamicum positively responds to oxidative and heat stress. To search for proteins that interact with WhcE, we employed a two-hybrid system with WhcE as the bait. Sequencing analysis of the isolated clones revealed peptide sequences, one of which showed high sequence identity to a hydrophobe/amphiphile efflux-1 family transporter encoded by NCgl1497. The interaction of the NCgl1497-encoded protein with WhcE in vivo was verified using reporter gene expression by real-time quantitative PCR (RT-qPCR). The WhcE protein strongly interacted with the NCgl1497-encoded protein in the presence of oxidative and heat stress. Furthermore, purified WhcE and NCgl1497-encoded proteins interacted in vitro, especially in the presence of the oxidant diamide, and the protein-protein interaction was disrupted in the presence of the reductant dithiothreitol. In addition, the transcription of NCgl1497 was activated approximately twofold in diamide- or heat-treated cells. To elucidate the function of the NCgl497 gene, an NCgl1497-deleted mutant strain was constructed. The mutant showed decreased viability in the presence of diamide and heat stress. The mutant strain also exhibited reduced transcription of the thioredoxin reductase gene, which is known to be regulated by whcE. Based on the results, NCgl1497 was named spiE (stress protein interacting with WhcE). Collectively, our data suggest that spiE is involved in the whcE-mediated oxidative stress response pathway of C. glutamicum.
Collapse
|
10
|
Involvement of the NADH oxidase-encoding noxA gene in oxidative stress responses in Corynebacterium glutamicum. Appl Microbiol Biotechnol 2014; 99:1363-74. [DOI: 10.1007/s00253-014-6327-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 12/12/2014] [Accepted: 12/14/2014] [Indexed: 01/26/2023]
|
11
|
Kortmann M, Kuhl V, Klaffl S, Bott M. A chromosomally encoded T7 RNA polymerase-dependent gene expression system for Corynebacterium glutamicum: construction and comparative evaluation at the single-cell level. Microb Biotechnol 2014; 8:253-65. [PMID: 25488698 PMCID: PMC4353339 DOI: 10.1111/1751-7915.12236] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/06/2014] [Accepted: 10/07/2014] [Indexed: 01/09/2023] Open
Abstract
Corynebacterium glutamicum has become a favourite model organism in white biotechnology. Nevertheless, only few systems for the regulatable (over)expression of homologous and heterologous genes are currently available, all of which are based on the endogenous RNA polymerase. In this study, we developed an isopropyl-β-d-1-thiogalactopyranosid (IPTG)-inducible T7 expression system in the prophage-free strain C. glutamicum MB001. For this purpose, part of the DE3 region of Escherichia coli BL21(DE3) including the T7 RNA polymerase gene 1 under control of the lacUV5 promoter was integrated into the chromosome, resulting in strain MB001(DE3). Furthermore, the expression vector pMKEx2 was constructed allowing cloning of target genes under the control of the T7lac promoter. The properties of the system were evaluated using eyfp as heterologous target gene. Without induction, the system was tightly repressed, resulting in a very low specific eYFP fluorescence (= fluorescence per cell density). After maximal induction with IPTG, the specific fluorescence increased 450-fold compared with the uninduced state and was about 3.5 times higher than in control strains expressing eyfp under control of the IPTG-induced tac promoter with the endogenous RNA polymerase. Flow cytometry revealed that T7-based eyfp expression resulted in a highly uniform population, with 99% of all cells showing high fluorescence. Besides eyfp, the functionality of the corynebacterial T7 expression system was also successfully demonstrated by overexpression of the C. glutamicum pyk gene for pyruvate kinase, which led to an increase of the specific activity from 2.6 to 135 U mg−1. It thus presents an efficient new tool for protein overproduction, metabolic engineering and synthetic biology approaches with C. glutamicum.
Collapse
Affiliation(s)
- Maike Kortmann
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, D-52425, Germany
| | | | | | | |
Collapse
|
12
|
Corynebacterium glutamicum sdhA encoding succinate dehydrogenase subunit A plays a role in cysR-mediated sulfur metabolism. Appl Microbiol Biotechnol 2014; 98:6751-9. [DOI: 10.1007/s00253-014-5823-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/08/2014] [Accepted: 05/10/2014] [Indexed: 10/25/2022]
|
13
|
Pátek M, Nešvera J. Promoters and Plasmid Vectors of Corynebacterium glutamicum. CORYNEBACTERIUM GLUTAMICUM 2013. [DOI: 10.1007/978-3-642-29857-8_2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Ikeda M, Takeno S. Amino Acid Production by Corynebacterium glutamicum. CORYNEBACTERIUM GLUTAMICUM 2013. [DOI: 10.1007/978-3-642-29857-8_4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
15
|
Jung S, Chun JY, Yim SH, Lee SS, Cheon CI, Song E, Lee MS. Transcriptional regulation of histidine biosynthesis genes in Corynebacterium glutamicum. Can J Microbiol 2010; 56:178-87. [DOI: 10.1139/w09-115] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Corynebacterium glutamicum , a gram-positive bacterium, has been widely used for industrial amino acid production. Corynebacterium glutamicum his genes are located and transcribed in two unlinked loci, hisEG and hisDCB–orf1–orf2–hisHA–impA–hisFI. The latter his operon starts the transcription at the C residue localized 196 bp upstream of the hisD ATG start codon. Our computer-based sequence analysis showed that the region corresponding to the untranslated 5′ end of the transcript, named the hisD leader region, displays the typical features of the T-box transcriptional attenuation mechanism. Therefore, expression of the cat reporter gene under the control of the wild-type or mutated hisD leader regions was tested in multi-copy (pProm and pTer series) and in single-copy (pInt series) systems under conditions of sufficient or limited histidine. Our mutational studies led to the conclusion that the CAU histidine specifier and 5′-UGGA-3′ sequence in the hisD leader region are required for the hisDCB–orf1–orf2–hisHA–impA–hisFI gene regulation. The cat gene expression from the wild-type leader region was negatively regulated by histidine. However, the cat gene expression from mutated leader regions was irresponsive to the level of histidine in the growth medium. Taken together, we propose that a T-box mediated attenuation mechanism is responsible for the gene expression of the hisDCB–orf1–orf2–hisHA–impA–hisFI operon in C. glutamicum.
Collapse
Affiliation(s)
- Samil Jung
- Division of Biological Science and Research Center for Women’s Diseases, Sookmyung Women’s University, Seoul 140-742, Korea
- Samsung Advanced Institute of Technology, Suwon 440-600, Korea
| | - Jae-Yeon Chun
- Division of Biological Science and Research Center for Women’s Diseases, Sookmyung Women’s University, Seoul 140-742, Korea
- Samsung Advanced Institute of Technology, Suwon 440-600, Korea
| | - Sei-Heun Yim
- Division of Biological Science and Research Center for Women’s Diseases, Sookmyung Women’s University, Seoul 140-742, Korea
- Samsung Advanced Institute of Technology, Suwon 440-600, Korea
| | - Soo-Suk Lee
- Division of Biological Science and Research Center for Women’s Diseases, Sookmyung Women’s University, Seoul 140-742, Korea
- Samsung Advanced Institute of Technology, Suwon 440-600, Korea
| | - Choong-Il Cheon
- Division of Biological Science and Research Center for Women’s Diseases, Sookmyung Women’s University, Seoul 140-742, Korea
- Samsung Advanced Institute of Technology, Suwon 440-600, Korea
| | - Eunsook Song
- Division of Biological Science and Research Center for Women’s Diseases, Sookmyung Women’s University, Seoul 140-742, Korea
- Samsung Advanced Institute of Technology, Suwon 440-600, Korea
| | - Myeong-Sok Lee
- Division of Biological Science and Research Center for Women’s Diseases, Sookmyung Women’s University, Seoul 140-742, Korea
- Samsung Advanced Institute of Technology, Suwon 440-600, Korea
| |
Collapse
|
16
|
Organization and analysis of the histidine biosynthetic genes fromCorynebacterium glutamicum. Genes Genomics 2009. [DOI: 10.1007/bf03191204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Choi WW, Park SD, Lee SM, Kim HB, Kim Y, Lee HS. ThewhcAgene plays a negative role in oxidative stress response ofCorynebacterium glutamicum. FEMS Microbiol Lett 2009; 290:32-8. [DOI: 10.1111/j.1574-6968.2008.01398.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
18
|
Park SD, Youn JW, Kim YJ, Lee SM, Kim Y, Lee HS. Corynebacterium glutamicum
σ
E is involved in responses to cell surface stresses and its activity is controlled by the anti-σ factor CseE. Microbiology (Reading) 2008; 154:915-923. [DOI: 10.1099/mic.0.2007/012690-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Soo-Dong Park
- Graduate School of Biotechnology, Korea University, Anam-Dong, Sungbuk-Ku, Seoul 136-701, Republic of Korea
| | - Jung-Won Youn
- Institute of Biotechnology 1, Heinrich Heine University, Research Center Jülich, D-52425 Jülich, Germany
| | - Young-Joon Kim
- Department of Biotechnology and Bioinformatics, Korea University, Jochiwon, Chungnam 339-700, Republic of Korea
| | - Seok-Myung Lee
- Department of Biotechnology and Bioinformatics, Korea University, Jochiwon, Chungnam 339-700, Republic of Korea
| | - Younhee Kim
- Department of Oriental Medicine, Semyung University, Checheon, Chungbuk 390-230, Republic of Korea
| | - Heung-Shick Lee
- Department of Biotechnology and Bioinformatics, Korea University, Jochiwon, Chungnam 339-700, Republic of Korea
| |
Collapse
|
19
|
Gayen K, Venkatesh KV. A phenomenological model to represent the kinetics of growth by Corynebacterium glutamicum for lysine production. J Ind Microbiol Biotechnol 2007; 34:363-72. [PMID: 17256152 DOI: 10.1007/s10295-007-0205-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Accepted: 12/29/2006] [Indexed: 11/29/2022]
Abstract
Corynebacterium glutamicum is commonly used for lysine production. In the last decade, several metabolic engineering approaches have been successfully applied to C. glutamicum. However, only few studies have been focused on the kinetics of growth and lysine production. Here, we present a phenomenological model that captures the growth and lysine production during different phases of fermentation at various initial dextrose concentrations. The model invokes control coefficients to capture the dynamics of lysine and trehalose synthesis. The analysis indicated that maximum lysine productivity can be obtained using 72 g/L of initial dextrose concentration in the media, while growth was optimum at 27 g/L of dextrose concentration. The predictive capability was demonstrated through a two-stage fermentation strategy to enhance the productivity of lysine by 1.5 times of the maximum obtained in the batch fermentation. Two-stage fermentation indicated that the kinetic model could be further extended to predict the optimal feeding strategy for fed-batch fermentation.
Collapse
Affiliation(s)
- Kalyan Gayen
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | | |
Collapse
|
20
|
Srivastava P, Nath N, Deb JK. Characterization of broad host range cryptic plasmid pCR1 from Corynebacterium renale. Plasmid 2006; 56:24-34. [PMID: 16545871 DOI: 10.1016/j.plasmid.2006.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Revised: 01/25/2006] [Accepted: 01/27/2006] [Indexed: 11/24/2022]
Abstract
Plasmid pCR1 is a cryptic plasmid harboured by Corynebacterium renale. It is the smallest corynebacterial plasmid known to date. Although its natural host is animal corynebacteria, it can replicate in several strains of soil corynebacteria. It can also replicate in Escherichia coli, in which it is stably maintained. The copy number of pCR1 in this host is higher than that of pUC19, with which it shows unidirectional incompatibility. It is also incompatible with pBK2, a plasmid bearing the common corynebacterial replicon pBL1. Its size is 1488bp, as revealed by DNA sequencing. A total of eight open reading frames (ORF) were detected in this plasmid, the largest of which codes for a putative Rep protein of predicted molecular mass of 21kDa. The plasmid pCR1 can be mobilized by the plasmid R6K from E. coli to other corynebacteria. Sequence analysis revealed the presence of an oriT homologous to that of R64. An E. coli plasmid pKL1 shows more than 90% identity with pCR1. Like many coryenbacterial plasmids, pCR1 also replicates by rolling circle mode.
Collapse
Affiliation(s)
- Preeti Srivastava
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Hauz Khas, New Delhi 110 016, India
| | | | | |
Collapse
|
21
|
Tryfona T, Bustard MT. Enhancement of biomolecule transport by electroporation: A review of theory and practical application to transformation ofCorynebacterium glutamicum. Biotechnol Bioeng 2006; 93:413-23. [PMID: 16224791 DOI: 10.1002/bit.20725] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Selective and reversible permeabilization of the cell wall permeability barrier is the focus for many biotechnological applications. In this article, the basic principles for reversible membrane permeabilization, based on biological, chemical, and physical methods are reviewed. Emphasis is given to electroporation (electropermeabilization) which tends to be the most popular method for membrane permeabilization and for introduction of foreign molecules into the cells. The applications of this method in industrial processes as well as the critical factors and parameters which affect the success of this approach are discussed. The different strategies developed throughout the years for increased transformation efficiencies of the industrially important amino acid-overproducing bacterium Corynebacterium glutamicum, are also summarized.
Collapse
Affiliation(s)
- Theodora Tryfona
- Chemical Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
| | | |
Collapse
|
22
|
Ikeda M. Towards bacterial strains overproducing L-tryptophan and other aromatics by metabolic engineering. Appl Microbiol Biotechnol 2005; 69:615-26. [PMID: 16374633 DOI: 10.1007/s00253-005-0252-y] [Citation(s) in RCA: 196] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Revised: 10/31/2005] [Accepted: 11/01/2005] [Indexed: 11/25/2022]
Abstract
The aromatic amino acids, L-tryptophan, L-phenylalanine, and L-tyrosine, can be manufactured by bacterial fermentation. Until recently, production efficiency of classical aromatic amino-acid-producing mutants had not yet reached a high level enough to make the fermentation method the most economic. With the introduction of recombinant DNA technology, it has become possible to apply more rational approaches to strain improvement. Many recent activities in this metabolic engineering have led to several effective approaches, which include modification of terminal pathways leading to removal of bottleneck or metabolic conversion, engineering of central carbon metabolism leading to increased supply of precursors, and transport engineering leading to reduced intracellular pool of the aromatic amino acids. In this review, advances in metabolic engineering for the production of the aromatic amino acids and useful aromatic intermediates are described with particular emphasis on two representative producer organisms, Corynebacterium glutamicum and Escherichia coli.
Collapse
Affiliation(s)
- Masato Ikeda
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Shinshu University, Minami-minowa, Nagano, 399-4598, Japan.
| |
Collapse
|
23
|
Kim TH, Park JS, Kim HJ, Kim Y, Kim P, Lee HS. The whcE gene of Corynebacterium glutamicum is important for survival following heat and oxidative stress. Biochem Biophys Res Commun 2005; 337:757-64. [PMID: 16212936 DOI: 10.1016/j.bbrc.2005.09.115] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Accepted: 09/09/2005] [Indexed: 10/25/2022]
Abstract
In this study, we have analyzed an ORF from Corynebacterium glutamicum, which codes for a homologue of the Streptomyces coelicolor WhiB-family of proteins known to be involved in sporulation. This ORF encoded a putative protein which harbors a helix-turn-helix DNA-binding motif and a probable redox-sensing motif, and has been designated whcE. We constructed a whcE mutant strain and analyzed the strain under a variety of growth conditions. This mutant strain exhibited a prolonged lag phase and earlier death within the stationary phase, suggesting that the relevant gene may play a role in both growth adaptation and stress responses. Further analysis determined that the mutant strain was not only sensitive with regard to survival under heat stress, but was also markedly susceptible to thiol-specific oxidant diamide and redox cycling compounds, including menadione and plumbagin. The mutant strain also exhibited reductions in thioredoxin reductase activity, which indicates that the trxB gene encoding thioredoxin reductase is under the control of WhcE. Expression of whcE was stimulated during the stationary phase of cell growth and could be modulated by diamide. We also delineated the relationship between whcE and the sigH gene, which is located downstream of whcE, and has been shown to be involved in heat stress responses, via the encoding of an ECF sigma factor. In a sigH mutant strain, the whcE gene was no longer expressed, thereby suggesting that the sigmaH sigma factor is involved in whcE expression. Our results suggest that WhcE functions as a transcription factor which can activate the trxB gene, as well as other genes, possibly by sensing redox changes during the metabolic downshifting of cells from exponential growth to the stationary phase, whereas sigmaH appears to function as the sigma factor for these genes, including whcE.
Collapse
Affiliation(s)
- Tae-Hyun Kim
- Graduate School of Biotechnology, Korea University, Anam-Dong, Sungbuk-Ku, Seoul 136-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|
24
|
Yang C, Hua Q, Shimizu K. Development of a kinetic model for L-lysine biosynthesis in Corynebacterium glutamicum and its application to metabolic control analysis. J Biosci Bioeng 2005; 88:393-403. [PMID: 16232634 DOI: 10.1016/s1389-1723(99)80216-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/1999] [Accepted: 07/14/1999] [Indexed: 11/30/2022]
Abstract
A mathematical model describing intracellular lysine synthesis by Corynebacterium glutamicum in batch fermentation was developed. The model is based on material balance equations of the key metabolites, and includes mechanistically based, experimentally matched rate equations for individual enzymes. From the measurements of the levels of intra- and extracellular metabolites during cultivation, the kinetic parameters in the model were identified through the decomposition of the network of reactions. The model predictions and experimental observations were in reasonable agreement. Using the model developed, metabolic control analysis was carried out to identify the rate-limiting steps, by evaluating the control on the overall lysine synthesis flux exerted by individual enzymatic reactions, which suggested how the control on lysine synthesis changes from aspartokinase to lysine permease as fermentation proceeded and indicated that lysine production could be enhanced by improving aspartokinase activity of this strain through genetic manipulation.
Collapse
Affiliation(s)
- C Yang
- Department of Biochemical Engineering & Science, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| | | | | |
Collapse
|
25
|
Kim TH, Kim HJ, Park JS, Kim Y, Kim P, Lee HS. Functional analysis of sigH expression in Corynebacterium glutamicum. Biochem Biophys Res Commun 2005; 331:1542-7. [PMID: 15883048 DOI: 10.1016/j.bbrc.2005.04.073] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Indexed: 10/25/2022]
Abstract
The sigH gene of Corynebacterium glutamicum encodes ECF sigma factor sigmaH. The gene apparently plays an important role in other stress responses as well as heat stress response. In this study, we found that deleting the sigH gene made C. glutamicum cells sensitive to the thiol-specific oxidant diamide. In the sigH mutant strain, the activity of thioredoxin reductase markedly decreased, suggesting that the trxB gene encoding thioredoxin reductase is probably under the control of sigmaH. The expression of sigH was stimulated in the stationary growth phase and modulated by diamide. In addition, the SigH protein was required for the expression of its own gene. These data indicate that the sigH gene of C. glutamicum stimulates and regulates its own expression in the stationary growth phase in response to environmental stimuli, and participates in the expression of other genes which are important for survival following heat and oxidative stress response.
Collapse
Affiliation(s)
- Tae-Hyun Kim
- Graduate School of Biotechnology, Korea University, Anam-Dong, Sungbuk-Ku, Seoul 136-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|
26
|
Comparison of the cell surface barrier and enzymatic modification system inBrevibacterium flavum andB. lactofermentum. BIOTECHNOL BIOPROC E 2005. [DOI: 10.1007/bf02932017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Srivastava P, Deb JK. Gene expression systems in corynebacteria. Protein Expr Purif 2005; 40:221-9. [PMID: 15766862 DOI: 10.1016/j.pep.2004.06.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2004] [Revised: 06/13/2004] [Indexed: 11/29/2022]
Abstract
Corynebacterium belongs to a group of gram-positive bacteria having moderate to high G+C content, the other members being Mycobacterium, Nocardia, and Rhodococcus. Considerable information is now available on the plasmids, gene regulatory elements, and gene expression in corynebacteria, especially in soil corynebacteria such as Corynebacterium glutamicum. These bacteria are non-pathogenic and, unlike Bacillus and Streptomyces, are low in proteolytic activity and thus have the potential of becoming attractive systems for expression of heterologous proteins. This review discusses recent advances in our understanding of the organization of various regulatory elements, such as promoters, transcription terminators, and development of vectors for cloning and gene expression.
Collapse
Affiliation(s)
- Preeti Srivastava
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, New Delhi 110 016, India
| | | |
Collapse
|
28
|
Kim HJ, Kim TH, Kim Y, Lee HS. Identification and characterization of glxR, a gene involved in regulation of glyoxylate bypass in Corynebacterium glutamicum. J Bacteriol 2004; 186:3453-60. [PMID: 15150232 PMCID: PMC415749 DOI: 10.1128/jb.186.11.3453-3460.2004] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2003] [Accepted: 02/11/2004] [Indexed: 11/20/2022] Open
Abstract
A corynebacterial clone, previously isolated by scoring repression of lacZYA fused to the aceB promoter of Corynebacterium glutamicum, was analyzed further. In the clone, an open reading frame designated glxR, consisting of 681 nucleotides and encoding a 24,957-Da protein, was found. The molecular mass of a native GlxR protein was estimated by gel filtration column chromatography to be 44,000 Da, suggesting that the protein formed dimers. The predicted amino acid sequence contained both cyclic AMP (cAMP)- and DNA-binding motifs and was homologous with the cAMP receptor protein family of proteins. The aceB-repressing activity of the glxR clone was markedly relieved in an Escherichia coli cya mutant, but the activity was restored in growth medium containing cAMP. In glucose medium, the intracellular cAMP concentration of C. glutamicum reached 22 nmol/mg of protein in the early exponential phase and then decreased further; but in acetate medium, the intracellular cAMP concentration was only 5 nmol/mg of protein and remained low throughout the growth phase. The expression of glxR was not affected by the carbon source. Binding of purified GlxR to the promoter region of aceB could be demonstrated only in the presence of cAMP. These data suggest that GlxR may form dimers which bind to the aceB promoter region in the presence of cAMP and repress the glyoxylate bypass genes.
Collapse
Affiliation(s)
- Hyung-Joon Kim
- Graduate School of Biotechnology, Korea University, Anam-Dong, Sungbuk-Ku, Seoul 136-701, Korea
| | | | | | | |
Collapse
|
29
|
Venkova-Canova T, Pátek M, Nesvera J. Characterization of the cryptic plasmid pCC1 from Corynebacterium callunae and its use for vector construction. Plasmid 2004; 51:54-60. [PMID: 14711530 DOI: 10.1016/j.plasmid.2003.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The complete nucleotide sequence of the cryptic plasmid pCC1 from Corynebacterium callunae (4109 bp) was determined. DNA sequence analysis revealed five open reading frames longer than 200 bp. One of the deduced polypeptides showed homology with the Rep proteins encoded by plasmids of the pIJ101/pJV1 family of plasmids replicating by the rolling-circle (RC) mechanism. Within this plasmid family, the Rep protein of pCC1 showed the highest degree of similarity to the Rep proteins of corynebacterial plasmids pAG3 and pBL1. These data suggest that the plasmid pCC1 replicates by the RC mechanism. The Escherichia coli/Corynebacterium glutamicum shuttle cloning vector pSCCD1, carrying the pCC1 rep gene on the 2.1-kb DNA fragment and the streptomycin/spectinomycin resistance determinant, was constructed. This vector is stably maintained in population of C. glutamicum cells grown in the absence of selection pressure and it is compatible with plasmid vectors based on corynebacterial plasmids pBL1 and pSR1.
Collapse
Affiliation(s)
- Tatiana Venkova-Canova
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídenská 1083, CZ-142 20 Praha 4, Czech Republic
| | | | | |
Collapse
|
30
|
Kirchner O, Tauch A. Tools for genetic engineering in the amino acid-producing bacterium Corynebacterium glutamicum. J Biotechnol 2003; 104:287-99. [PMID: 12948646 DOI: 10.1016/s0168-1656(03)00148-2] [Citation(s) in RCA: 240] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During the last decades, the gram-positive soil bacterium Corynebacterium glutamicum has been shown to be a very versatile microorganism for the large-scale fermentative production of L-amino acids. Up to now, a vast amount of techniques and tools for genetic engineering and amplification of relevant structural genes have been developed. The objectives of this study are to summarize the published literature on tools for genetic engineering in C. glutamicum and to focus on new sophisticated and highly efficient methods in the fields of DNA transfer techniques, cloning vectors, integrative genetic tools, and antibiotic-free self-cloning. This repertoire of C. glutamicum methodology provides an experimental basis for efficient genetic analyses of the recently completed genome sequence.
Collapse
Affiliation(s)
- Oliver Kirchner
- Lehrstuhl für Gentechnologie/Mikrobiologie, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| | | |
Collapse
|
31
|
Tauch A, Pühler A, Kalinowski J, Thierbach G. Plasmids in Corynebacterium glutamicum and their molecular classification by comparative genomics. J Biotechnol 2003; 104:27-40. [PMID: 12948627 DOI: 10.1016/s0168-1656(03)00157-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Endogenous plasmids and selectable resistance markers are a fundamental prerequisite for the development of efficient recombinant DNA techniques in industrial microorganisms. In this article, we therefore summarize the current knowledge about endogenous plasmids in amino acid-producing Corynebacterium glutamicum isolates. Screening studies identified a total of 24 different plasmids ranging in size from 2.4 to 95 kb. Although most of the C. glutamicum plasmids were cryptic, four plasmids carried resistance determinants against the antibiotics chloramphenicol, tetracycline, streptomycin-spectinomycin, and sulfonamides. Considerable information is now available on the molecular genetic organization of 12 completely sequenced plasmid genomes from C. glutamicum. The deduced mechanism of plasmid DNA replication and the degree of amino acid sequence similarity among replication initiator proteins was the basis for performing a classification of the plasmids into four distinct C. glutamicum plasmid families.
Collapse
Affiliation(s)
- Andreas Tauch
- Institut für Genomforschung, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany.
| | | | | | | |
Collapse
|
32
|
Abstract
With the exploitation of new uses and the growing markets of amino acids, amino acid production technology has made large progress during the latter half of the 20th century. Fermentation technology has played crucial roles in this progress, and currently the fermented amino acids represent chief products of biotechnology in both volume and value. This area is highly competitive in the world market and process economics are of primary importance. For cost-effective production, many technologies have been developed to establish high-productive fermentation and recovery processes. The producer organisms used in large-scale, well-established processes have been developed to a high level of production efficiency. The tools of genetic engineering of amino acid-producing organisms have been well developed and are now being applied for enlargement of biosynthetic and transport capacity, which is beginning to have a great impact on the amino acid industry. Furthermore, the rapid strides in genome analysis are bound to revolutionize the strain improvement methodology.
Collapse
Affiliation(s)
- Masato Ikeda
- Tokyo Research Laboratories, Kyowa Hakko Kogyo Co., Ltd, 3-6-6, Asahi-machi, Machida, Tokyo 194-8533, Japan.
| |
Collapse
|
33
|
Liebl W, Kloos WE, Ludwig W. Plasmid-borne macrolide resistance in Micrococcus luteus. MICROBIOLOGY (READING, ENGLAND) 2002; 148:2479-2487. [PMID: 12177341 DOI: 10.1099/00221287-148-8-2479] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A plasmid designated pMEC2 which confers resistance to erythromycin, other macrolides, and lincomycin was detected in Micrococcus luteus strain MAW843 isolated from human skin. Curing of this approximately 4.2 kb plasmid from the host organism resulted in erythromycin sensitivity of the strain. Introduction of pMEC2 into a different M. luteus strain conferred erythromycin resistance upon this strain. Macrolide resistance in M. luteus MAW843 was an inducible trait. Induction occurred at subinhibitory erythromycin concentrations of about 0.02-0.05 micro g ml(-1). Erythromycin and oleandomycin were inducers, while spiramycin and tylosin exerted no significant inducer properties. With heterologous expression experiments in Corynebacterium glutamicum, using hybrid plasmid constructs and deletion derivatives thereof, it was possible to narrow down the location of the plasmid-borne erythromycin-resistance determinant to a region of about 1.8 kb of pMEC2. Sequence analysis of the genetic determinant, designated erm(36), identified an ORF putatively encoding a 281-residue protein with similarity to 23S rRNA adenine N(6)-methyltransferases. erm(36) was most related (about 52-54% identity) to erythromycin-resistance proteins found in high-G+C Gram-positive bacteria, including the (opportunistic) pathogenic corynebacteria Corynebacterium jeikeium, C. striatum, C. diphtheriae and Propionibacterium acnes. This is believed to be the first report of a plasmid-borne, inducible antibiotic resistance in micrococci. The possible role of non-pathogenic, saprophytic micrococci bearing antibiotic-resistance genes in the spreading of these determinants is discussed.
Collapse
Affiliation(s)
- Wolfgang Liebl
- Institut für Mikrobiologie und Genetik, Georg-August-Universität, Grisebachstr. 8, D-37077 Göttingen, Germany1
| | - Wesley E Kloos
- Department of Genetics, North Carolina State University, Raleigh, USA2
| | - Wolfgang Ludwig
- Lehrstuhl für Mikrobiologie, Technische Universität München, Freising-Weihenstephan, Germany3
| |
Collapse
|
34
|
Srivastava P, Deb JK. Construction of fusion vectors of corynebacteria: expression of glutathione-S-transferase fusion protein in Corynebacterium acetoacidophilum ATCC 21476. FEMS Microbiol Lett 2002; 212:209-16. [PMID: 12113936 DOI: 10.1111/j.1574-6968.2002.tb11268.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
A series of fusion vectors containing glutathione-S-transferase (GST) were constructed by inserting GST fusion cassette of Escherichia coli vectors pGEX4T-1, -2 and -3 in corynebacterial vector pBK2. Efficient expression of GST driven by inducible tac promoter of E. coli was observed in Corynebacterium acetoacidophilum. Fusion of enhanced green fluorescent protein (EGFP) and streptokinase genes in this vector resulted in the synthesis of both the fusion proteins. The ability of this recombinant organism to produce several-fold more of the product in the extracellular medium than in the intracellular space would make this system quite attractive as far as the downstream processing of the product is concerned.
Collapse
Affiliation(s)
- Preeti Srivastava
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, New Delhi 110 016, India
| | | |
Collapse
|
35
|
Hwang BJ, Yeom HJ, Kim Y, Lee HS. Corynebacterium glutamicum utilizes both transsulfuration and direct sulfhydrylation pathways for methionine biosynthesis. J Bacteriol 2002; 184:1277-86. [PMID: 11844756 PMCID: PMC134843 DOI: 10.1128/jb.184.5.1277-1286.2002] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A direct sulfhydrylation pathway for methionine biosynthesis in Corynebacterium glutamicum was found. The pathway was catalyzed by metY encoding O-acetylhomoserine sulfhydrylase. The gene metY, located immediately upstream of metA, was found to encode a protein of 437 amino acids with a deduced molecular mass of 46,751 Da. In accordance with DNA and protein sequence data, the introduction of metY into C. glutamicum resulted in the accumulation of a 47-kDa protein in the cells and a 30-fold increase in O-acetylhomoserine sulfhydrylase activity, showing the efficient expression of the cloned gene. Although disruption of the metB gene, which encodes cystathionine gamma-synthase catalyzing the transsulfuration pathway of methionine biosynthesis, or the metY gene was not enough to lead to methionine auxotrophy, an additional mutation in the metY or the metB gene resulted in methionine auxotrophy. The growth pattern of the metY mutant strain was identical to that of the metB mutant strain, suggesting that both methionine biosynthetic pathways function equally well. In addition, an Escherichia coli metB mutant could be complemented by transformation of the strain with a DNA fragment carrying corynebacterial metY and metA genes. These data clearly show that C. glutamicum utilizes both transsulfuration and direct sulfhydrylation pathways for methionine biosynthesis. Although metY and metA are in close proximity to one another, separated by 143 bp on the chromosome, deletion analysis suggests that they are expressed independently. As with metA, methionine could also repress the expression of metY. The repression was also observed with metB, but the degree of repression was more severe with metY, which shows almost complete repression at 0.5 mM methionine in minimal medium. The data suggest a physiologically distinctive role of the direct sulfhydrylation pathway in C. glutamicum.
Collapse
Affiliation(s)
- Byung-Joon Hwang
- Graduate School of Biotechnology, Korea University, Anam-Dong, Sungbuk-Ku, Seoul 136-701, Korea
| | | | | | | |
Collapse
|
36
|
Abstract
Corynebacteria are pleomorphic, asporogenous, Gram-positive bacteria. Included in this group are nonpathogenic soil corynebacteria, which are widely used for the industrial production of amino acids and detergents, and in biotransformation of steroids. Other members of this group are plant and animal pathogens. This review summarizes the current information available about the plasmids of corynebacteria. The emphasis is mainly on the small plasmids, which have been used for construction of vectors for expression of genes in these bacteria. Moreover, considerable information is now available on their nucleotide sequence, gene organization and modes of replication, which would make it possible to further manipulate these plasmids. Other plasmid properties, such as incompatibility and host range, are also discussed. Finally, use of these plasmids as cloning vectors for the expression of heterologous proteins using corynebacteria as hosts is also summarized to highlight the potential of these bacteria as hosts for recombinant DNA.
Collapse
Affiliation(s)
- J K Deb
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi, India.
| | | |
Collapse
|
37
|
Ikeda M, Katsumata R. A novel system with positive selection for the chromosomal integration of replicative plasmid DNA in Corynebacterium glutamicum. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 7):1863-1868. [PMID: 9695919 DOI: 10.1099/00221287-144-7-1863] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A simple system has been developed for generating Corynebacterium glutamicum strains containing stable replicative plasmids integrated into the chromosome via homologous recombination. The system is based upon extremely strong incompatibility between two plasmids, which cannot be co-maintained even under antibiotic selective pressure. Integration of the resident plasmid that contained the trpD gene of C. glutamicum was achieved by introduction of a second plasmid and subsequent selection for the maintenance of both plasmids. Plasmid integrates positive for both plasmid markers were obtained at a frequency about 10(-3) of the normal transformation frequency with selection for the maintenance of only the second plasmid. Southern analysis revealed that the integration had occurred through a single-crossover homologous recombination between the trpD regions of the host genome and the plasmid. On the basis of the Campbell-type integration, chromosome walking was attempted by using Escherichia coli replication origins that were also present in the integrated plasmid. The chromosomal DNA was digested, ligated, and used to transform E. coli, which enabled recovery of the expected adjacent genomic DNA regions. The plasmid integrate was stably maintained for 30 generations under non-selective culture conditions, suggesting that the integrated sequences carrying a replicon active in the host were maintained as a stable chromosomal insert in C. glutamicum.
Collapse
Affiliation(s)
- Masato Ikeda
- Technical Research Laboratories, Kyowa Hakko Kogyo Co., LtdHofu, Yamaguchi 747-8522Japan
| | - Ryoichi Katsumata
- Laboratory of Animal Microbiology, Faculty of Agriculture, Tohoku UniversityAobaku, Sendai 981-0914Japan
| |
Collapse
|
38
|
|
39
|
Jang KH, Pierotti D, Kemp GW, Best GR, Britz ML. Mycotic acid composition of Corynebacterium glutamicum and its cell surface mutants: effects of growth with glycine and isonicotinic acid hydrazide. Microbiology (Reading) 1997; 143:3209-3221. [DOI: 10.1099/00221287-143-10-3209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Auxotrophic mutants of Corynebacterium glutamicum strain ATCC 13059 (parent of AS019, a rifampicin-resistant variant), which were morphologically distinct from the parent and formed protoplasts more readily, had been isolated previously. Mutants MLB130-133 and MLB194 were more sensitive to growth inhibition by isonicotinic acid hydrazide (INH) and glycine, which caused branching and budding. Fatty acid and mycolic acid (MA) profiles were determined after growth in LBG (Luria broth plus glucose), LBG-glycine (LBG- and LBG-INH (LBG-I). The fatty acid profiles of all strains were similar, except that mutant MLB133 showed some increase in stearic acid (C18:0), normally a minor component, late in the growth cycle and oleic acid proportionately decreased. All strains had five major types of MAs (C32:0, C34:0, C34:1, C36:1, C36:2) but the relative proportion of each varied with the strain, age of culture and medium composition. Mutants MLB133 and MLB194 showed slightly higher levels of non-covalentiy bound MAs than the parent and normally showed a higher proportion of longer-chained, unsaturated MAs. The proportion of extracellular MAs increased with culture age for these mutants. Typically, by late stationary phase, mycolic acids in culture fluids increased to 6.5% of the total MAs for MLB194 and 7.9% for MLB133 compared with 3.5% for the parent strain grown in LBG. The main effect of glycine (2%, w/v) addition was to increase the proportion of mycolic acids found in extracellular fluids (16.1 % for AS019 and 31% for MLB133). The most significant effects of INH were seen when strains were cultured in LBG with 8 mg INH ml−1. When harvested at late stationary phase, strains MLB133 and MLB194 had 18.8% and 21.2% extracellular mycolic acids respectively, with a significant increase in the relative proportion of unsaturated mycolic acids. This effect was not as marked for AS019, which also showed a similar decrease in C32:0 relative to increases in the proportion of C34:1 and C36:2 plus a corresponding increase in the overall proportion of unsaturated mycolic acids and increased extracellular mycolates (8.5%). These results suggest that the mutations in strains MLB133 and MLB194 are associated with synthesis of specific mycolic acids (e.g. C32:0) and attachment of mycolic acids to the cell surface, both of which are likely target sites for glycine and INH action for cell-surface modifications. In addition to previously reported targeting of the peptidoglycan cross-linking, these results show that glycine affects mycolic acid attachment to the cell surface of C. glutamicum.
Collapse
Affiliation(s)
- Ki-Hyo Jang
- Centre for Bioprocessing and Food Technology, Werribee Campus, Victoria University of Technology, PO Box 14428, MCMC, Melbourne 8001, Australia
| | - David Pierotti
- Department of Applied Biology and Biotechnology, Royal Melbourne Institute of Technology, PO Box 2476V, Melbourne, Victoria 3001, Australia
| | - Gregory W. Kemp
- CSIRO Division of Biomolecular Engineering, Parkville, Victoria 3052, Australia
| | - Geoffrey R. Best
- Department of Applied Biology and Biotechnology, Royal Melbourne Institute of Technology, PO Box 2476V, Melbourne, Victoria 3001, Australia
| | - Margaret L. Britz
- Centre for Bioprocessing and Food Technology, Werribee Campus, Victoria University of Technology, PO Box 14428, MCMC, Melbourne 8001, Australia
| |
Collapse
|
40
|
Nesvera J, Pátek M, Hochmannová J, Abrhámová Z, Becvárová V, Jelínkova M, Vohradský J. Plasmid pGA1 from Corynebacterium glutamicum codes for a gene product that positively influences plasmid copy number. J Bacteriol 1997; 179:1525-32. [PMID: 9045809 PMCID: PMC178862 DOI: 10.1128/jb.179.5.1525-1532.1997] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The complete nucleotide sequence (4,826 bp) of the cryptic plasmid pGA1 from Corynebacterium glutamicum was determined. DNA sequence analysis revealed four putative coding regions (open reading frame A [ORFA], ORFA2, ORFB, and ORFC). ORFC was identified as a rep gene coding for an initiator of plasmid replication (Rep) according to the high level of homology of its deduced amino acid sequence with the Rep proteins of plasmids pSR1 (from C. glutamicum) and pNG2 (from Corynebacterium diphtheriae). This function was confirmed by deletion mapping of the minimal replicon of pGA1 (1.7 kb) which contains only ORFC. Deletion derivatives of pGA1 devoid of ORFA exhibited significant decreases in the copy number in C. glutamicum cells and displayed segregational instability. Introduction of ORFA in trans into the cells harboring these deletion plasmids dramatically increased their copy number and segregational stability. The ORFA gene product thus positively influences plasmid copy number. This is the first report on such activity associated with a nonintegrating bacterial plasmid. The related plasmids pGA1, pSR1, and pNG2 lacking significant homology with any other plasmid seem to be representatives of a new group of plasmids replicating in the rolling-circle mode.
Collapse
Affiliation(s)
- J Nesvera
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague.
| | | | | | | | | | | | | |
Collapse
|
41
|
Dreier J, Meletzus D, Eichenlaub R. Characterization of the plasmid encoded virulence region pat-1 of phytopathogenic Clavibacter michiganensis subsp. michiganensis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 1997; 10:195-206. [PMID: 9057325 DOI: 10.1094/mpmi.1997.10.2.195] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The tomato pathogen Clavibacter michiganensis subsp. michiganensis NCPPB382, causing bacterial wilt and canker, harbors two plasmids, pCM1 (27.5 kb) and pCM2 (72 kb), carrying genes involved in virulence. The region of plasmid pCM2 encoding the pathogenicity locus pat-1 was mapped by deletion analysis and complementation studies to a 1.5-kb Bg/II/SmaI DNA fragment. Introduction of the pat-1 region into endophytic, plasmid-free isolates of C. michiganensis subsp. michiganensis converted these bacteria into virulent pathogens. Based on the nucleotide sequence of the pat-1 region, an open reading frame (ORF1) can be predicted, coding for a protein of 280 amino acids and 29.7 kDa with homology to serine proteases. Introduction of a frame-shift mutation in ORF1 leads to a loss of the pathogenic phenotype. Northern (RNA) hybridizations identified an 1.5-knt transcript of the pat-1 structural gene. The site of transcription initiation was mapped by primer extension and a typical -10/-35 region was located with significant homology to the consensus Escherichia coli sigma 70 and Bacillus subtilis sigma 43 promoters. Downstream of the pat-1 structural gene, a peculiar repetitive sequence motif (pat-1rep) is located, consisting of 20 direct tandem repeats preceded by a run of 14 guanosine residues. DNA sequences homologous to pat-1rep were isolated and characterized from four virulent C. michiganensis subsp. michiganensis strains exhibiting a high extent of structural conservation. The deletion of this repetitive sequence reduced virulence significantly but did not lead to a complete loss of the virulence phenotype.
Collapse
Affiliation(s)
- J Dreier
- Universität Bielefeld, Fakultät für Biologie, Gentechnologie/Mikrobiologie, Germany
| | | | | |
Collapse
|
42
|
Johnson N, Pickett MA, Watt PJ, Clarke IN, Heckels JE. Construction of an epitope vector utilising the diphtheria toxin B-subunit. FEMS Microbiol Lett 1997; 146:91-6. [PMID: 8997711 DOI: 10.1111/j.1574-6968.1997.tb10176.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
An immunogenic loop within the diphtheria toxin has been deleted from the B-subunit by a modification of the inverse polymerase chain reaction (IPCR) and replaced by a unique restriction endonuclease site. An oligonucleotide encoding an identified epitope sequence from the major outer membrane protein of Neisseria meningitidis of similar size and structure to that deleted has been introduced into the restriction site. Expression of the resulting chimeric B-subunit from Escherichia coli yielded a protein that was recognised by a panel of antibodies specific for the meningococcal epitope. Initial immunisation data suggest that this protein could elicit an antibody response against both diphtheria toxin and meningococcal proteins.
Collapse
Affiliation(s)
- N Johnson
- University Department of Molecular Microbiology, Southampton General Hospital, UK
| | | | | | | | | |
Collapse
|
43
|
Laine MJ, Nakhei H, Dreier J, Lehtilä K, Meletzus D, Eichenlaub R, Metzler MC. Stable transformation of the gram-positive phytopathogenic bacterium Clavibacter michiganensis subsp. sepedonicus with several cloning vectors. Appl Environ Microbiol 1996; 62:1500-6. [PMID: 8633849 PMCID: PMC167925 DOI: 10.1128/aem.62.5.1500-1506.1996] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In this paper we describe transformation of Clavibacter michiganensis subsp. sepedonicus, the potato ring rot bacterium, with plasmid vectors. Three of the plasmids used, pDM100, pDM302, and pDM306, contain the origin of replication from pCM1, a native plasmid of C. michiganensis subsp. michiganensis. We constructed two new cloning vectors, pHN205 and pHN216, by using the origin of replication of pCM2, another native plasmid of C. michiganensis subsp. michiganensis. Plasmids pDM302, pHN205, and pHN216 were stably maintained without antibiotic selection in various strains of C. michiganensis subsp. sepedonicus. We observed that for a single plasmid, different strains of C. michiganensis subsp. sepedonicus showed significantly different transformation efficiencies. We also found unexplained strain-to-strain differences in stability with various plasmid constructions containing different arrangements of antibiotic resistance genes and origins of replication. We examined the effect of a number of factors on transformation efficiency. The best transformation efficiencies were obtained when C. michiganensis subsp. sepedonicus cells were grown on DM agar plates, harvested during the early exponential growth phase, and used fresh (without freezing) for electroporation. The maximal transformation efficiency obtained was 4.6 x 10(4) CFU/microgram of pHN216 plasmid DNA. To demonstrate the utility of this transformation system, we cloned a beta-1,4-endoglucanase-encoding gene from C. michiganensis subsp. sepedonicus into pHN216. When this construction, pHN216:C8, was electroporated into competent cells of a cellulase-deficient mutant, it restored cellulase production to almost wild-type levels.
Collapse
Affiliation(s)
- M J Laine
- Department of Biology, University of Turku, Finland
| | | | | | | | | | | | | |
Collapse
|
44
|
Jang KH, Chambers PJ, Britz ML. Analysis of nucleotide methylation in DNA from Corynebacterium glutamicum and related species. FEMS Microbiol Lett 1996; 136:309-15. [PMID: 8867385 DOI: 10.1111/j.1574-6968.1996.tb08066.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Plasmid DNA (pCSL17) isolated from Corynebacterium glutamicum transformed recipient McrBC+ strains of Escherichia coli with lower efficiency than McrBC- strains, confirming a previous report by Tauch et al. (FEMS Microbiol. Lett. 123 (1994) 343-348) which inferred that C. glutamicum DNA contains methylcytidine. Analysis of nucleotides in C. glutamicum-derived chromosomal and plasmid DNA failed to detect significant levels of methylated adenosine, but methylated cytidine was readily detected. Restriction enzymes which are inhibited by the presence of methylcytidine in their recognition sequence failed to cut pCSL17 from C. glutamicum, whereas enzymes which require methylation at adenosine in GATC sequences failed to cut. Failure of HaeIII to cut two specific sites of C. glutamicum-derived pCSL17 identified the first cytidine in the sequence GGCCGC as one target of methylation in this species, which contains the methyltransferase recognition sequence. Although Brevibacterium lactofermentum-derived DNA showed a similar methylation pattern by HPLC analysis, HaeIII cleaved these GGCCGC sites, suggesting differences in the specificity of methylation between these two species. Results for all analyses of B. flavum DNA were identical to those for C. glutamicum.
Collapse
Affiliation(s)
- K H Jang
- Centre for Bioprocessing and Food Technology, Victoria University of Technology, Melbourne, Australia
| | | | | |
Collapse
|
45
|
Ugorcáková J, Jucovic M, Bukovská G, Timko J. Construction and characterization of new corynebacterial plasmids carrying the alpha-amylase gene. Folia Microbiol (Praha) 1996; 41:10-4. [PMID: 9090819 DOI: 10.1007/bf02816332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Novel corynebacterial plasmids carrying alpha-amylase gene from Bacillus have been constructed. The level of alpha-amylase expression depends on the size of the vector. The highest expression levels were measured in brevibacteria harboring pA61 plasmid.
Collapse
Affiliation(s)
- J Ugorcáková
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | | | | | | |
Collapse
|
46
|
O'Gara JP, Dunican LK. Mutations in the trpD gene of Corynebacterium glutamicum confer 5-methyltryptophan resistance by encoding a feedback-resistant anthranilate phosphoribosyltransferase. Appl Environ Microbiol 1995; 61:4477-9. [PMID: 8534114 PMCID: PMC167758 DOI: 10.1128/aem.61.12.4477-4479.1995] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The trpD gene from tryptophan-hyperproducing Corynebacterium glutamicum ATCC 21850 was isolated on the basis of its ability to confer resistance to 5-methyltryptophan on wild-type C. glutamicum AS019. Comparative sequence analysis of the genes from the wild-type AS019 and ATCC 21850 trpD genes revealed two amino acid substitutions at the protein level. Further analysis demonstrated that the trpD gene product from ATCC 21850, anthranilate phosphoribosyltransferase, was more resistant to feedback inhibition by either tryptophan or 5-methyltryptophan than its wild-type counterpart. It is proposed that phosphoribosyltransferase insensitivity to tryptophan in ATCC 21850 contributes to an elevated level of tryptophan biosynthesis.
Collapse
Affiliation(s)
- J P O'Gara
- Department of Microbiology, University College Galway, Ireland
| | | |
Collapse
|
47
|
Colón GE, Nguyen TT, Jetten MS, Sinskey AJ, Stephanopoulos G. Production of isoleucine by overexpression of ilvA in a Corynebacterium lactofermentum threonine producer. Appl Microbiol Biotechnol 1995; 43:482-8. [PMID: 7632398 DOI: 10.1007/bf00218453] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Overproduction of isoleucine, an essential amino acid, was achieved by amplification of the gene encoding threonine dehydratase, the first enzyme in the threonine to isoleucine pathway, in a Corynebacterium lactofermentum threonine producer. Threonine overproduction was previously achieved with C. lactofermentum ATCC 21799, a lysine-hyperproducing strain, by introduction of plasmid pGC42 containing the Corynebacterium homdr and thrB genes (encoding homoserine dehydrogenase and homoserine kinase respectively) under separate promoters. The pGC42 derivative, pGC77, also contains ilvA, which encodes threonine dehydratase. In a shake-flask fermentation, strain 21799(pGC77) produced 15 g/l isoleucine, along with small amounts of lysine and glycine. A molar carbon balance indicates that most of the carbon previously converted to threonine, lysine, glycine and isolecine was incorporated into isoleucine by the new strain. Thus, in our system, simple overexpression of wild-type ilvA sufficed to overcome the effects of feedback inhibition of threonine dehydratase by the end-product, isoleucine.
Collapse
Affiliation(s)
- G E Colón
- Department of Chemical Engineering, MIT, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
48
|
Billman-Jacobe H, Wang L, Kortt A, Stewart D, Radford A. Expression and secretion of heterologous proteases by Corynebacterium glutamicum. Appl Environ Microbiol 1995; 61:1610-3. [PMID: 7747974 PMCID: PMC167416 DOI: 10.1128/aem.61.4.1610-1613.1995] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Genes encoding the basic protease of Dichelobacter nodosus (bprV) and the subtilisin of Bacillus subtilis (aprE) were cloned and expressed in Corynebacterium glutamicum. In each case, enzymatically active protein was detected in the supernatants of liquid cultures. While the secretion of subtilisin was directed by its own signal peptide, the natural signal peptide of the bprV basic protease did not facilitate secretion. A hybrid aprE-bprV gene in which the promoter and signal peptide coding sequences of subtilisin replaced those of bprV could be expressed, and basic protease was secreted by C. glutamicum. Expression of these proteases in C. glutamicum provides an opportunity to compare protein secretion from this gram-positive host with that from other gram-positive and gram-negative bacteria.
Collapse
Affiliation(s)
- H Billman-Jacobe
- Commonwealth Scientific and Industrial Research Organization, Division of Animal Health, Parkville, Victoria, Australia
| | | | | | | | | |
Collapse
|
49
|
Jetten MS, Sinskey AJ. Recent advances in the physiology and genetics of amino acid-producing bacteria. Crit Rev Biotechnol 1995; 15:73-103. [PMID: 7736600 DOI: 10.3109/07388559509150532] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Corynebacterium glutamicum and its close relatives, C. flavum and C. lactofermentum, have been used for over 3 decades in the industrial production of amino acids by fermentation. Since 1984, several research groups have started programs to develop metabolic engineering principles for amino acid-producing Corynebacterium strains. Initially, the programs concentrated on the isolation of genes encoding (deregulated) biosynthetic enzymes and the development of general molecular biology tools such as cloning vectors and DNA transfer methods. With most of the genes and tools now available, recombinant DNA technology can be applied in strain improvement. To accomplish these improvements, it is critical and advantageous to understand the mechanisms of gene expression and regulation as well as the biochemistry and physiology of the species being engineered. This review explores the advances made in the understanding and application of amino acid-producing bacteria in the early 1990s.
Collapse
Affiliation(s)
- M S Jetten
- Department of Microbiology and Enzymology, Kluyyer Laboratory for Biotechnology, Delft University of Technology, The Netherlands
| | | |
Collapse
|
50
|
Colón GE, Jetten MS, Nguyen TT, Gubler ME, Follettie MT, Sinskey AJ, Stephanopoulos G. Effect of inducible thrB expression on amino acid production in Corynebacterium lactofermentum ATCC 21799. Appl Environ Microbiol 1995; 61:74-8. [PMID: 7887627 PMCID: PMC167261 DOI: 10.1128/aem.61.1.74-78.1995] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Amplification of the operon homdr-thrB encoding a feedback-insensitive homoserine dehydrogenase and a wild-type homoserine kinase in a Corynebacterium lactofermentum lysine-producing strain resulted in both homoserine and threonine accumulation, with some residual lysine production. A plasmid enabling separate transcriptional control of each gene was constructed to determine the effect of various enzyme activity ratios on metabolite accumulation. By increasing the activity of homoserine kinase relative to homoserine dehydrogenase activity, homoserine accumulation in the medium was essentially eliminated and the final threonine titer was increased by about 120%. Furthermore, a fortuitous result of the cloning strategy was an unexplained increase in homoserine dehydrogenase activity. This resulted in a further decrease in lysine production along with a concomitant increase in threonine accumulation.
Collapse
Affiliation(s)
- G E Colón
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge 02139
| | | | | | | | | | | | | |
Collapse
|