1
|
Loy JD, Hille M, Maier G, Clawson ML. Component Causes of Infectious Bovine Keratoconjunctivitis - The Role of Moraxella Species in the Epidemiology of Infectious Bovine Keratoconjunctivitis. Vet Clin North Am Food Anim Pract 2021; 37:279-293. [PMID: 34049659 DOI: 10.1016/j.cvfa.2021.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Infectious bovine keratoconjunctivitis (IBK) involves multiple factors and opportunistic pathogens, including members of the genus Moraxella, specifically M bovis. The causal role of M bovis is clear, where the presence of virulence factors that facilitate colonization (pili) and host cytotoxicity (RTX toxins) are well characterized, and IBK has been reproduced in many models. Experimental infection with M bovoculi has failed to reproduce IBK-typical lesions in cattle thus far. However, recent work using genomics and mass spectrometry have found genomic diversity and recombination within these species, making species differentiation complex and challenging the ability to assign IBK causality to these organisms.
Collapse
Affiliation(s)
- John Dustin Loy
- Nebraska Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, 4040 East Campus Loop North 115Q NVDC, Lincoln, NE 68583-0907, USA.
| | - Matthew Hille
- Nebraska Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, 4040 East Campus Loop North 115Q NVDC, Lincoln, NE 68583-0907, USA
| | - Gabriele Maier
- Department of Population Health & Reproduction, School of Veterinary Medicine, University of California Davis, 1 Shields Avenue, VM3B, Davis, CA 95616, USA
| | - Michael L Clawson
- US Meat Animal Research Center, USDA Agriculture Research Service, Clay Center, 844 Road 313, Clay Center, NE 68933, USA
| |
Collapse
|
2
|
Dickey AM, Schuller G, Loy JD, Clawson ML. Whole genome sequencing of Moraxella bovoculi reveals high genetic diversity and evidence for interspecies recombination at multiple loci. PLoS One 2018; 13:e0209113. [PMID: 30557405 PMCID: PMC6296526 DOI: 10.1371/journal.pone.0209113] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/29/2018] [Indexed: 12/04/2022] Open
Abstract
Moraxella bovoculi is frequently cultured from the ocular secretions and conjunctiva of cattle with Infectious Bovine Keratoconjunctivitis (IBK). Previous work has shown that single nucleotide polymorphism (SNP) diversity in this species is quite high with 81,284 SNPs identified in eight genomes representing two distinct genotypes isolated from IBK affected eyes (genotype 1) and the nasopharynx of cattle without clinical IBK signs (genotype 2), respectively. The goals of this study were to identify SNPs from a collection of geographically diverse and epidemiologically unlinked M. bovoculi strains from the eyes of IBK positive cattle (n = 183) and another from the eyes of cattle (most from a single population at a single time-point) without signs of IBK (n = 63) and to characterize the genetic diversity. Strains of both genotypes were identified from the eyes of cattle without IBK signs. Only genotype 1 strains were identified from IBK affected eyes, however, these strains were isolated before the discovery of genotype 2, and the protocol for their isolation would have preferentially selected genotype 1 M. bovoculi. The core genome comprised ~74% of the whole and contained >127,000 filtered SNPs. More than 80% of these characterize diversity within genotype 1 while 23,611 SNPs (~18%) delimit the two major genotypes. Genotype 2 strains lacked a repeats-in-toxin (RTX) putative pathogenesis factor and any of ten putative antibiotic resistance genes carried within a genomic island. Within genotype 1, prevalence of these elements was 0.85 and 0.12 respectively in strains from eyes that were IBK positive. Recombination appears to be an important source of genetic diversity for genotype 1 and undermines the utility of ribosomal-locus-based species identification. The extremely high genetic diversity in genotype 1 presents a challenge to the development of an efficacious vaccine directed against them, however, several low-diversity pilin-like genes were identified. Finally, the genotype-defining SNPs described in this study are a resource that can facilitate the development of more accurate M. bovoculi diagnostic tests.
Collapse
Affiliation(s)
- Aaron M. Dickey
- Genetics, Breeding, and Animal Health Research Unit, U.S. Meat Animal Research Center, Agricultural Research Service, United States Department of Agriculture, Clay Center, Nebraska, United States of America
| | - Gennie Schuller
- Genetics, Breeding, and Animal Health Research Unit, U.S. Meat Animal Research Center, Agricultural Research Service, United States Department of Agriculture, Clay Center, Nebraska, United States of America
| | - J. Dustin Loy
- Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Michael L. Clawson
- Genetics, Breeding, and Animal Health Research Unit, U.S. Meat Animal Research Center, Agricultural Research Service, United States Department of Agriculture, Clay Center, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
3
|
Complete Genome Sequence of Moraxella bovis Strain Epp-63 (300), an Etiologic Agent of Infectious Bovine Keratoconjunctivitis. Microbiol Resour Announc 2018; 7:MRA01004-18. [PMID: 30533917 PMCID: PMC6256509 DOI: 10.1128/mra.01004-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 08/06/2018] [Indexed: 11/20/2022] Open
Abstract
We report here the complete closed genome sequence of Moraxella bovis strain Epp-63 (300) (Epp63). This strain was isolated from an infectious bovine keratoconjunctivitis (IBK) case in 1963. Since then, Epp63 has been used extensively for IBK research. Consequently, the genome sequence of Epp63 should help elucidate IBK host-pathogen interactions.
Collapse
|
4
|
Thanassi DG, Bliska JB, Christie PJ. Surface organelles assembled by secretion systems of Gram-negative bacteria: diversity in structure and function. FEMS Microbiol Rev 2012; 36:1046-82. [PMID: 22545799 PMCID: PMC3421059 DOI: 10.1111/j.1574-6976.2012.00342.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 03/08/2012] [Accepted: 04/13/2012] [Indexed: 11/29/2022] Open
Abstract
Gram-negative bacteria express a wide variety of organelles on their cell surface. These surface structures may be the end products of secretion systems, such as the hair-like fibers assembled by the chaperone/usher (CU) and type IV pilus pathways, which generally function in adhesion to surfaces and bacterial-bacterial and bacterial-host interactions. Alternatively, the surface organelles may be integral components of the secretion machinery itself, such as the needle complex and pilus extensions formed by the type III and type IV secretion systems, which function in the delivery of bacterial effectors inside host cells. Bacterial surface structures perform functions critical for pathogenesis and have evolved to withstand forces exerted by the external environment and cope with defenses mounted by the host immune system. Given their essential roles in pathogenesis and exposed nature, bacterial surface structures also make attractive targets for therapeutic intervention. This review will describe the structure and function of surface organelles assembled by four different Gram-negative bacterial secretion systems: the CU pathway, the type IV pilus pathway, and the type III and type IV secretion systems.
Collapse
Affiliation(s)
- David G Thanassi
- Center for Infectious Diseases, Stony Brook University, Stony Brook, NY 11794-5120, USA.
| | | | | |
Collapse
|
5
|
Balakrishna AM, Saxena AM, Mok HYK, Swaminathan K. Structural basis of typhoid: Salmonella typhi type IVb pilin (PilS) and cystic fibrosis transmembrane conductance regulator interaction. Proteins 2009; 77:253-61. [PMID: 19626704 DOI: 10.1002/prot.22500] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The type IVb pilus of the enteropathogenic bacteria Salmonella typhi is a major adhesion factor during the entry of this pathogen into gastrointestinal epithelial cells. Its target of adhesion is a stretch of 10 residues from the first extracellular domain of cystic fibrosis transmembrane conductance regulator (CFTR). The crystal structure of the N-terminal 25 amino acid deleted S. typhi native PilS protein (DeltaPilS), which makes the pilus, was determined at 1.9 A resolution by the multiwavelength anomalous dispersion method. Also, the structure of the complex of DeltaPilS and a target CFTR peptide, determined at 1.8 A, confirms that residues 113-117 (NKEER) of CFTR are involved in binding with the pilin protein and gives us insight on the amino acids that are essential for binding. Furthermore, we have also explored the role of a conserved disulfide bridge in pilus formation. The subunit structure and assembly architecture are crucial for understanding pilus functions and designing suitable therapeutics against typhoid.
Collapse
Affiliation(s)
- Asha M Balakrishna
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | | | | | | |
Collapse
|
6
|
Postma GC, Carfagnini JC, Minatel L. Moraxella bovis pathogenicity: An update. Comp Immunol Microbiol Infect Dis 2008; 31:449-58. [DOI: 10.1016/j.cimid.2008.04.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2007] [Indexed: 11/15/2022]
|
7
|
McConnel CS, Shum L, Gleeson BL, House JK. Serologic cross-reactivity of Australian Moraxella bovis to vaccinal bacterin strains as determined by competitive ELISA. Aust Vet J 2008; 86:124-9. [DOI: 10.1111/j.1751-0813.2008.00271.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
8
|
Kakuda T, Sarataphan N, Tanaka T, Takai S. Filamentous-haemagglutinin-like protein genes encoded on a plasmid of Moraxella bovis. Vet Microbiol 2006; 118:141-7. [PMID: 16879933 DOI: 10.1016/j.vetmic.2006.06.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2006] [Revised: 06/20/2006] [Accepted: 06/26/2006] [Indexed: 11/21/2022]
Abstract
The complete nucleotide sequence of a plasmid, pMBO-1, from Moraxella bovis strain Epp63 was determined. We identified 30 open reading frames (ORFs) encoded by the 44,215bp molecule. Two large ORFs, flpA and flpB, encoding proteins with similarity to Bordetella pertussis filamentous haemagglutinin (FHA), were identified on the same plasmid. The gene for a specific accessory protein (Fap), which may play a role in the secretion of Flp protein, was also identified. Reverse transcriptase PCR analysis of total RNA isolated from M. bovis Epp63 indicated that the flpA, flpB, and fap genes are all transcribed. Southern blot analysis indicated that the flp and fap genes are present in other clinical isolates of geographically diverse M. bovis.
Collapse
Affiliation(s)
- Tsutomu Kakuda
- Department of Animal Hygiene, School of Veterinary Medicine and Animal Sciences, Kitasato University, Higashi 23, 35-1, Towada, Aomori 034-8628, Japan.
| | | | | | | |
Collapse
|
9
|
Akahane K, Sakai D, Furuya N, Komano T. Analysis of the pilU gene for the prepilin peptidase involved in the biogenesis of type IV pili encoded by plasmid R64. Mol Genet Genomics 2005; 273:350-9. [PMID: 15838638 DOI: 10.1007/s00438-005-1143-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Accepted: 03/16/2005] [Indexed: 01/04/2023]
Abstract
In many type IV pili, the N-terminal amino acid of the pilin subunit is N-methylated phenylalanine. A prepilin peptidase removes the leader peptide from the precursor and methylates the amino group of the newly formed phenylalanine. PilS, the precursor of the pilin encoded by plasmid R64, is processed by the prepilin peptidase PilU, but the N-terminal amino acid of the mature pilin is a non-methylated tryptophan that is otherwise modified. To study the relationship between the structure and function of PilU, 42 missense pilU mutations were constructed by PCR and site-directed mutagenesis, and the ability of these pilU mutants to complement a pilU null mutant for mating in liquid culture was analyzed. Although practically no conjugation was noted for 21 of the mutants, the remaining 21 supported varying levels of residual plasmid transfer activity. Two mutants with aspartic acid replacements in conserved motifs exhibited no PilU activity, suggesting that the product of the pilU gene is an aspartic acid peptidase, like TcpJ, the prepilin peptidare of Vibrio cholerae. No PilS processing was detected in 21 of the mutants, but the remaining 21 exhibited varying levels of residual PilS processing. A close correlation was noted between residual PilS processing activity and conjugative transfer, suggesting that the pilU gene product possesses prepilin peptidase activity, but is unable to methylate the N-terminal tryptophan. Based on the activity of pilU-phoA and pilU-lacZ fusion genes encoding different segments of PilU, a model for the membrane topology of the protein is also proposed. Furthermore, some amino acid substitutions in the pilU portion of the pilU-phoA and pilU-lacZ fusion genes were found to alter the membrane topology of the product.
Collapse
Affiliation(s)
- K Akahane
- Department of Biology, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo, 192-0397, Japan
| | | | | | | |
Collapse
|
10
|
Craig L, Pique ME, Tainer JA. Type IV pilus structure and bacterial pathogenicity. Nat Rev Microbiol 2004; 2:363-78. [PMID: 15100690 DOI: 10.1038/nrmicro885] [Citation(s) in RCA: 556] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lisa Craig
- Department of Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
11
|
Salaün L, Snyder LA, Saunders NJ. Adaptation by phase variation in pathogenic bacteria. ADVANCES IN APPLIED MICROBIOLOGY 2003; 52:263-301. [PMID: 12964248 DOI: 10.1016/s0065-2164(03)01011-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Laurence Salaün
- Bacterial Pathogenesis and Functional Genomics Group, Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | | | | |
Collapse
|
12
|
Collyn F, Léty MA, Nair S, Escuyer V, Ben Younes A, Simonet M, Marceau M. Yersinia pseudotuberculosis harbors a type IV pilus gene cluster that contributes to pathogenicity. Infect Immun 2002; 70:6196-205. [PMID: 12379698 PMCID: PMC130390 DOI: 10.1128/iai.70.11.6196-6205.2002] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fimbriae have been shown to play an essential role in the adhesion of pathogenic gram-negative bacteria to host cells. In the enteroinvasive bacterium Yersinia pseudotuberculosis, we characterized a previously unknown 11-kb chromosomal locus involved in the synthesis of type IV pili. The locus consists of 11 open reading frames forming a polycistronic unit and encoding putative Pil proteins, PilLMNOPQRSUVW. When introduced into Escherichia coli, the Y. pseudotuberculosis operon reconstituted bundles of filaments at a pole on the bacterial surface, demonstrating that the pil locus was functional in a heterogenous genetic background. Environmental factors regulated transcription of the Y. pseudotuberculosis operon; in particular, temperature, osmolarity, and oxygen tension were critical cues. Deletion of the type IV pilus gene cluster was associated with a reduction of Y. pseudotuberculosis pathogenicity for mice infected orally. Forty-one percent of Y. pseudotuberculosis strains isolated from human or animal sources harbored the type IV pilus locus. Therefore, the pil locus of Y. pseudotuberculosis might constitute an "adaptation island," permitting the microorganism to colonize a vast reservoir.
Collapse
Affiliation(s)
- François Collyn
- Equipe Mixte Inserm (E9919)-Université (JE2225)-Institut Pasteur de Lille, Institut de Biologie de Lille, France
| | | | | | | | | | | | | |
Collapse
|
13
|
Farn JL, Strugnell RA, Hoyne PA, Michalski WP, Tennent JM. Molecular characterization of a secreted enzyme with phospholipase B activity from Moraxella bovis. J Bacteriol 2001; 183:6717-20. [PMID: 11673447 PMCID: PMC95508 DOI: 10.1128/jb.183.22.6717-6720.2001] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A candidate for a vaccine against infectious bovine keratoconjunctivitis (IBK) has been cloned and characterized from Moraxella bovis. The plb gene encodes a protein of 616 amino acids (molecular mass of ~65.8 kDa) that expresses phospholipase B activity. Amino acid sequence analysis revealed that PLB is a new member of the GDSL (Gly-Asp-Ser-Leu) family of lipolytic enzymes.
Collapse
Affiliation(s)
- J L Farn
- CSIRO Livestock Industries, Geelong, Victoria, Australia 3220.
| | | | | | | | | |
Collapse
|
14
|
Greene WH, Grubbs ST, Potgieter LN. Detection of shared magnetic antigenic determinants on whole Moraxella bovis pili by use of antisera to cyanogen bromide-cleaved M. bovis pilus protein. Am J Vet Res 2001; 62:1279-84. [PMID: 11497451 DOI: 10.2460/ajvr.2001.62.1279] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine the ability of antisera against cyanogen bromide-cleaved pili from 4 strains of Moraxella bovis to react with whole or nondenatured pili. SAMPLE POPULATION Antisera to 4 strains of M. bovis produced by New Zealand White rabbits. PROCEDURE Pili from 4 strains of M. bovis were collected and purified. Pilus proteins (pilin) were cleaved, using cyanogen bromide. Whole pilus and cyanogen bromide-cleaved pilin were injected into rabbits. Antisera were serially diluted, reacted with 4 strains of M. bovis, and examined by immunoelectron microscopy and indirect immunofluorescence. RESULTS Antisera to whole pili aggregated and distorted pili from homologous strains, but pili from heterologous strains were unaffected. Antisera to cleaved pilin fragments resulted in partial aggregation and thickening of homologous and heterologous pili, suggestive of heterospecific antibodies. Attachment of antibodies to pili was detected by indirect immunofluorescence, indicating a strong reaction of antisera to whole pili with homologous pili. Weak cross-reactions were evident with certain heterologous strains. In contrast, antisera to cleaved pilin fragments reacted strongly with pili from homologous and heterologous strains. CONCLUSIONS AND CLINICAL RELEVANCE We detected shared antigenic determinants on pili from various strains of M. bovis that were not immunogenic in intact pili. These sites were immunogenic after cleavage of pilus protein with cyanogen bromide, and antisera produced to protein fragments reacted with whole pili from heterologous strains of the organism. Vaccines produced from cyanogen bromide-treated pili may induce broader immunity against infectious bovine keratoconjuctivitis than that provided by currently available vaccines.
Collapse
Affiliation(s)
- W H Greene
- Department of Comparative Medicine, University of Tennessee College of Veterinary Medicine, Knoxville 37901, USA
| | | | | |
Collapse
|
15
|
Greene WH, Grubbs ST, Potgieter LN. Immunoblot analysis of cyanogen bromide-cleaved Moraxella bovis pilin reveals presence of shared antigenic determinants on pili from heterologous strains. Vet Microbiol 2001; 80:365-72. [PMID: 11348773 DOI: 10.1016/s0378-1135(01)00317-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Moraxella bovis pilus proteins, collected and purified from four strains of M. bovis, were cleaved with cyanogen bromide. Two major fragments were produced. Antisera were produced in rabbits to the pilin protein fragments and to whole uncleaved pili from these strains. Immunoblots of whole and cyanogen bromide-cleaved pilin were reacted with the homologous and heterologous antisera to whole pili and cleaved pilin. Antisera to whole pili reacted strongly with homologous pilin. Weaker and inconsistent reactions were detected with heterologous pilin. Antisera produced to cyanogen bromide-cleaved pilin proteins reacted strongly with homologous and heterologous pilin fragments and uncleaved pilin proteins. These findings demonstrate the presence of conserved antigenic determinants on pili from heterologous strains that are non-immunogenic in the intact pilus but are immunogenic after treatment with cyanogen bromide. Cyanogen bromide-treated pilus preparation might have potential as a vaccine because antibodies are induced against heterologous strains of M. bovis, whether these cross-reactive antibodies are protective remains to be determined.
Collapse
Affiliation(s)
- W H Greene
- Department of Comparative Medicine, College of Veterinary Medicine, University of Tennessee, P.O. Box 850, Knoxville, TN 37901-1071, USA
| | | | | |
Collapse
|
16
|
Graupner S, Wackernagel W. Pseudomonas stutzeri has two closely related pilA genes (Type IV pilus structural protein) with opposite influences on natural genetic transformation. J Bacteriol 2001; 183:2359-66. [PMID: 11244078 PMCID: PMC95145 DOI: 10.1128/jb.183.7.2359-2366.2001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas stutzeri has type IV pili for which the pilA gene (here termed pilAI) provides the structural protein and which are required for DNA uptake and natural genetic transformation. Downstream of pilAI we identified a gene, termed pilAII, coding for a deduced protein with a size similar to that of PilAI with 55% amino acid sequence identity and with a typical leader peptide including a leader peptidase cleavage site. Fusions to lacZ revealed that pilAII is expressed only about 10% compared to pilAI, although the genes are cotranscribed as shown by reverse transcription-PCR. Surprisingly, insertional inactivation of pilAII produced a hypertransformation phenotype giving about 16-fold-increased transformation frequencies. Hypertransformation also occurred in pilAI pilAII double mutants expressing heterologous pilA genes of nontransformable bacteria, like Pseudomonas aeruginosa or Dichelobacter nodosus. The overexpression of pilAII decreased transformation up to 5,000-fold compared to that of the pilAII mutant. However, neither inactivation of pilAII nor its overexpression affected the amounts of [(3)H]thymidine-labeled DNA that were competence-specifically bound and taken up by the cells. In the pilAII mutant, the transformation by purified single-stranded DNA (which depends on comA and exbB, as does transformation by duplex DNA) was also increased 17-fold. It is concluded that PilAII suppresses a step in transformation after the uptake of duplex DNA into the cell and perhaps before its translocation into the cytoplasm. The idea that the degree of the transformability of cells could be permanently adjusted by the expression level of an antagonistic protein is discussed.
Collapse
Affiliation(s)
- S Graupner
- Genetik, Fachbereich Biologie, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany
| | | |
Collapse
|
17
|
McNamara BP, Donnenberg MS. Evidence for specificity in type 4 pilus biogenesis by enteropathogenic Escherichia coli. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 3):719-729. [PMID: 10746776 DOI: 10.1099/00221287-146-3-719] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Type 4 fimbriae (pili) are surface appendages that are expressed by many species of Gram-negative bacteria. Previous studies have demonstrated that Pseudomonas aeruginosa can express and assemble pilin subunits from several unrelated species, indicating a common mechanism for biogenesis of type 4 pili whereby structural subunits from one system may be interchanged with those of another. In this study, an isogenic mutant of enteropathogenic Escherichia coli (EPEC) was constructed containing the entire tcpA gene from Vibrio cholerae 0395, which encodes the major structural subunit of the toxin-coregulated pilus (TCP), in place of bfpA, which encodes the major structural subunit of the bundle-forming pilus (BFP). Surprisingly, expression of type 4 pilin structures and the associated phenotype of bacterial autoaggregation in culture media were not observed for cells of the EPEC strain containing tcpA nor for those containing an additional mutation in bfpF, which otherwise is associated with a hyperfimbriate phenotype. In addition, cells of a bfpA mutant EPEC strain containing plasmids designed to express either of two different chimeric type 4 pilin subunits containing segments of BfpA and TcpA also failed to form bacterial aggregates and express type 4 pilin structures. Collectively, these results indicate that the type 4 pilin assembly system of EPEC exhibits specificity with regard to pilin subunit recognition and assembly.
Collapse
Affiliation(s)
- Barry P McNamara
- Division of Infectious Diseases, Department of Medicine, University of Maryland School of Medicine, 10 South Pine Street, Room 900, Baltimore, MD 21201, USA1
| | - Michael S Donnenberg
- Division of Infectious Diseases, Department of Medicine, University of Maryland School of Medicine, 10 South Pine Street, Room 900, Baltimore, MD 21201, USA1
| |
Collapse
|
18
|
Abstract
Colonisation of host tissue by Gram- negative bacteria is facilitated by various adhesins, one of which is type 4 fimbriae (pili). These structures have been associated with pathogenesis in several bacterial species, and have been shown to mediate colonisation of epithelial surfaces. Recently, type 4 fimbriae were identified and characterised from P. multocida strains A, B and D. The type 4 fimbrial subunit protein (PtfA) was identified as an 18-kDa protein which was isolated from whole membrane fractions. We report here the isolation and characterisation of the gene (ptfA) encoding the PtfA protein from P. multocida VP161 (serotype A:1). Part of the gene was cloned on a 2-kb genomic DNA fragment. The complete ptfA gene was obtained using inverse PCR. The gene and its flanking regions were characterised, and the deduced PtfA amino acid sequence was compared to type 4 subunit protein sequences from other bacterial species. The ptfA gene was amplified and sequenced from several P. multocida strains. Comparison of these sequences revealed variation within the type 4 subunit gene of P. multocida.
Collapse
Affiliation(s)
- S W Doughty
- Department of Microbiology, Monash University, Clayton, Australia.
| | | | | |
Collapse
|
19
|
Taniguchi T, Yasuda Y, Tochikubo K, Yamamoto K, Honda T. The gene encoding the prepilin peptidase involved in biosynthesis of pilus colonization factor antigen III (CFA/III) of human enterotoxigenic Escherichia coli. Microbiol Immunol 1999; 43:853-61. [PMID: 10553678 DOI: 10.1111/j.1348-0421.1999.tb01220.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The assembly of pilus colonization factor antigen III (CFA/III) of human enterotoxigenic Escherichia coli requires the processing of CFA/III major pilin (CofA) by a peptidase, likely another type IV pilus formation system. Western blot analysis of CofA reveals that CofA is produced initially as a 26.5-kDa preform pilin (prepilin) and then processed to 20.5-kDa mature pilin by a prepilin peptidase. This processing is essential for exportation of the CofA from the cytoplasm to the periplasm. In this experiment, the structural gene, cofP, encoding CFA/III prepilin peptidase which cleavages at the Gly-30-Met-31 junction of CofA was identified, and the nucleotide sequence of the gene was determined. CofP consists of 819 bp encoding a 273-amino acid protein with a relative molecular mass of 30,533 Da. CofP is predicted to be localized in the inner membrane based on its hydropathy index. The amino acid sequence of CofP shows a high degree of homology with other prepilin peptidases which play a role in the assembly of type IV pili in several gram-negative bacteria.
Collapse
Affiliation(s)
- T Taniguchi
- Department of Microbiology, Nagoya City University Medical School, Nagoya, Aichi, Japan
| | | | | | | | | |
Collapse
|
20
|
Roine E, Raineri DM, Romantschuk M, Wilson M, Nunn DN. Characterization of type IV pilus genes in Pseudomonas syringae pv. tomato DC3000. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 1998; 11:1048-1056. [PMID: 9805392 DOI: 10.1094/mpmi.1998.11.11.1048] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Many strains of Pseudomonas syringae produce retractile pili that act as receptors for lytic bacteriophage phi 6. As these are also characteristics of type IV pili, it was postulated that P. syringae may possess genes for type IV pilus biogenesis. A cosmid clone bank of P. syringae pv. tomato DC3000 genomic DNA was used to complement a mutant of Pseudomonas aeruginosa defective in the PilD (XcpA) prepilin peptidase gene by selection for restoration of extracellular protein secretion, a function also known to require PilD. A cosmid able to complement this mutant was also able to complement mutations in the pilB and pilC genes, suggesting that, if the organization of these genes is similar to that of P. aeruginosa, the cosmid may contain the P. syringae pilA. This was confirmed by sequencing a region from this plasmid that was shown to hybridize at low stringency to the P. aeruginosa pilA gene. The deduced P. syringae PilA polypeptide possesses the characteristic properties of the type IV pilins. Heterologous expression of the P. syringae pilA in P. aeruginosa was also shown, conferring not only phi 6 phage sensitivity to P. aeruginosa pilA mutants but also sensitivity to PO4, a lytic bacteriophage specific for the pilus of P. aeruginosa. This suggests that additional components might be present in the mature pilus of P. aeruginosa that are the true receptors for this phage. Chromosomal mutations in P. syringae pv. tomato DC3000 pilA and pilD genes were shown to abolish its sensitivity to bacteriophage phi 6. To determine the importance of P. syringae pilus in plant leaf interactions, these mutations were tested under laboratory and field conditions. Although little effect was seen on pathogenicity, culturable leaf-associated population sizes of the pilA mutant were significantly different from those of the wild-type parent. In addition, the expression of the DC3000 pilA gene appears to contribute to the UV tolerance of P. syringae and may play a role in survival on the plant leaf surface.
Collapse
Affiliation(s)
- E Roine
- Department of Biosciences, University of Helsinki, Finland.
| | | | | | | | | |
Collapse
|
21
|
Stone BJ, Abu Kwaik Y. Expression of multiple pili by Legionella pneumophila: identification and characterization of a type IV pilin gene and its role in adherence to mammalian and protozoan cells. Infect Immun 1998; 66:1768-75. [PMID: 9529112 PMCID: PMC108119 DOI: 10.1128/iai.66.4.1768-1775.1998] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Legionella pneumophila expresses pili of variable lengths, either long (0.8 to 1.5 microm) or short (0.1 to 0.6 microm), that can be observed by transmission electron microscopy. We have identified a gene in L. pneumophila with homology to the type IV pilin genes (pilEL). An insertion mutation was constructed in pilEL and introduced into the L. pneumophila wild-type strain by allelic exchange. The pilin mutant is defective for expression of long pili. Reintroduction of the pilin locus on a cosmid vector restores expression of the long pili. The L. pneumophila pilEL mutant exhibited approximately a 50% decrease in adherence to human epithelial cells (HeLa and WI-26 cells), macrophages (U937 cells), and Acanthamoeba polyphaga but had a wild-type phenotype for intracellular replication within these cells. Southern hybridization analysis showed that the pilEL locus is present in L. pneumophila serogroups 1 through 13 but is variable in 16 other Legionella species. The presence of a type IV pilin gene and its expression by L. pneumophila may provide an advantage for colonization of lung tissues during Legionnaires' disease and invasion of amoebas in the environment.
Collapse
Affiliation(s)
- B J Stone
- Department of Microbiology and Immunology, University of Kentucky Chandler Medical Center, Lexington 40536-0084, USA
| | | |
Collapse
|
22
|
Abstract
The toxin co-regulated pilus (TCP) has been identified as a critical colonization factor in both animal models and humans for Vibrio cholerae O1. The major pilin subunit, TcpA (and also TcpB), is similar to type-4 pilins but TCP probably more appropriately belongs to a sub-class which includes the bundle-forming pilus of enteropathogenic Escherichia coli. The genes for TCP biosynthesis and assembly are clustered with the exception of housekeeping functions such as TcpG (=DsbA, a periplasmic disulfide bond epimerase). The nt sequences from El Tor and classical strains show only minor differences corresponding to the major regulatory regions and in TcpA itself. These differences are thought to account for the alternate conditions required for expression of TCP by the two biotypes and the antigenic variation and lack of cross-protection. Aside from the TcpA only a few of the proteins have had their roles in TCP biogenesis defined. Regulation of TCP is controlled by the ToxR regulon via ToxT with a possible involvement of TcpP and the cAMP-CRP system. Experiments using the infant mouse cholera model have now shown that TCP is a colonization factor and protective antigen for both classical and El Tor O1 strains and in the O139 Bengal serotype and that the mannose-sensitive haemagglutinin pilus does not appear to play a comparable role.
Collapse
Affiliation(s)
- P A Manning
- Department of Microbiology and Immunology, University of Adelaide, Australia.
| |
Collapse
|
23
|
Ojanen-Reuhs T, Kalkkinen N, Westerlund-Wikström B, van Doorn J, Haahtela K, Nurmiaho-Lassila EL, Wengelnik K, Bonas U, Korhonen TK. Characterization of the fimA gene encoding bundle-forming fimbriae of the plant pathogen Xanthomonas campestris pv. vesicatoria. J Bacteriol 1997; 179:1280-90. [PMID: 9023213 PMCID: PMC178827 DOI: 10.1128/jb.179.4.1280-1290.1997] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The fimA gene of Xanthomonas campestris pv. vesicatoria was identified and characterized. A 20-mer degenerate oligonucleotide complementary to the N-terminal amino acid sequence of the purified 15.5-kDa fimbrillin was used to locate fimA on a 2.6-kb SalI fragment of the X. campestris pv. vesicatoria 3240 genome. The nucleotide sequence of a 1.4-kb fragment containing the fimA region revealed two open reading frames predicting highly homologous proteins FimA and FimB. FimA, which was composed of 136 amino acids and had a calculated molecular weight of 14,302, showed high sequence identity to the type IV fimbrillin precursors. fimB predicted a protein product of 135 amino acids and a molecular weight of 13,854. The open reading frame for fimB contained near the 5' end a palindromic sequence with a terminator loop potential, and the expression level of fimB in vitro and in Xanthomonas was considerably lower than that of fimA. We detected an efficiently transcribed fimA-specific mRNA of 600 bases as well as two weakly expressed, longer mRNA species that reacted with both fimA and fimB. A homolog of fimA but not of fimB was detected by Southern hybridization in strains of X. campestris pv. vesicatoria, campestris, begoniae, translucens, and graminis. A fimA::omega mutant of strain 3240 was not significantly reduced in virulence or adhesiveness to tomato leaves. However, the fimA mutant was dramatically reduced in cell aggregation in laboratory cultures and on infected tomato leaves. The fimA mutant strain also exhibited decreased tolerance to UV light.
Collapse
Affiliation(s)
- T Ojanen-Reuhs
- Department of Biosciences, University of Helsinki, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Ruffolo CG, Tennent JM, Michalski WP, Adler B. Identification, purification, and characterization of the type 4 fimbriae of Pasteurella multocida. Infect Immun 1997; 65:339-43. [PMID: 8975936 PMCID: PMC174600 DOI: 10.1128/iai.65.1.339-343.1997] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The presence of fimbriae on Pasteurella multocida has been reported, but there have been no prior studies aimed at conclusively characterizing these structures. We now report on the identification and characterization of type 4 fimbriae on serogroup A, B, and D strains of P. multocida. Under microaerophilic conditions P. multocida showed an increased expression of the fimbriae, which were observed to form bundles. Fimbriae purified by high-performance reverse-phase liquid chromatography constituted a single 18-kDa subunit, the first 21 amino acids of which shared very high similarity with the N-terminal amino acid sequence of other type 4 fimbrial subunits. Antiserum against the P. multocida 18-kDa protein immunostained the type 4 fimbrial subunit of Moraxella bovis and Dichelobacter nodosus. Based on these observations we conclude that P. multocida possesses type 4 fimbriae and have designated the P. multocida fimbrial subunit PtfA.
Collapse
Affiliation(s)
- C G Ruffolo
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | | | | | | |
Collapse
|
25
|
Weir S, Lee LW, Marrs CF. Identification of four complete type 4 pilin genes in a single Kingella denitrificans genome. Infect Immun 1996; 64:4993-9. [PMID: 8945537 PMCID: PMC174479 DOI: 10.1128/iai.64.12.4993-4999.1996] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have cloned and sequenced four complete type 4 pilin genes from the type strain (ATCC 33394) of Kingella denitrificans. Two of these pilin genes, kdpB and kdpD, are in tandem, oriented in the same direction, and encode pilins of only 50% amino acid identity. The kdpA and kdpC loci are separately located from the kdpB-kdpD locus and from each other. At the DNA level kdpA and kdpC are nearly identical to kdpB and encode pilin proteins that are identical to KdpB. Bands of multiple hybridization previously hypothesized to be due to partial silent pilin gene loci are now shown to be due to the presence of 18-bp repeat sequences (IR18) associated with the pilin gene coding regions. These IR18 sequences exist most often as inverted repeats separated by 8 bp. IR18 sequences are structurally similar to the repetitive extragenic palindromic sequences of Escherichia coli, although they have different DNA sequences. The IR18 sequences also demonstrate homology to the DNA uptake sequences of Neisseria gonorrhoeae and may serve a similar function for K. denitrificans.
Collapse
Affiliation(s)
- S Weir
- Department of Epidemiology, University of Michigan, Ann Arbor 48109, USA
| | | | | |
Collapse
|
26
|
Onoe T, Hoover CI, Nakayama K, Ideka T, Nakamura H, Yoshimura F. Identification of Porphyromonas gingivalis prefimbrilin possessing a long leader peptide: possible involvement of trypsin-like protease in fimbrilin maturation. Microb Pathog 1995; 19:351-64. [PMID: 8778568 DOI: 10.1016/s0882-4010(96)80006-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Fimbriae of Porphyromonas gingivalis have been shown to be important as one of the virulence factors for colonization on mucosal surfaces. The gene (fimA) encoding the fimbrial subunit (fimbrilin) was overexpressed in Escherichia coli by using a bacteriophage T7 promoter-polymerase expression vector system. Analysis of the resulting fimA gene product revealed that the prefimbrilin had a 46 amino acid leader peptide. This extremely long leader peptide was cleaved from the prefimbrilin by treatment with trypsin or P. gingivalis extracts containing trypsin-like protease activity, resulting in production of a mature fimbrilin. We also found that some transposon-induced trypsin-like protease deficient mutants of P. gingivalis exhibited deficiency in fimbriation and that one of the mutants accumulated a fimbrilin precursor possessing a 25 amino acid leader peptide in the cell. The presence of an extremely long leader peptide and the requirement for a leader peptidase with a substrate specificity similar to that of P. gingivalis trypsin-like protease for fimbrilin maturation indicate that P. gingivalis fimbrilin is a novel type that is different from fimbrilins of type I and IV families.
Collapse
Affiliation(s)
- T Onoe
- Department of Endodontics, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Tønjum T, Bøvre K, Juni E. Fastidious gram-negative bacteria: meeting the diagnostic challenge with nucleic acid analysis. APMIS 1995; 103:609-27. [PMID: 7488382 DOI: 10.1111/j.1699-0463.1995.tb01414.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The extended panorama of fastidious Gram-negative bacteria (FGNB) as opportunistic etiological agents of infectious diseases in immunocompromised patients is largely due to improved medical expertise and technology. The heightened awareness of infectious diseases due to FGNB species mandates comprehensive classification and identification systems as a basis for rapid and reliable diagnostics. The most useful approaches are combinations of nucleic acid techniques such as hybridization, genetic transformation, amplification and base sequence analysis with selected conventional criteria. Among these approaches, the widely distributed feature of natural competence in these organisms facilitates the use of the biological method of genetic transformation as a valuable addition to the more common nucleic acid techniques. We describe the development of the taxonomy of FGNB through the last four decades, with particular emphasis on the families Neisseriaceae, Moraxellaceae, and Pasteurellaceae.
Collapse
Affiliation(s)
- T Tønjum
- Department of Microbiology, Ullevål University Hospital, Oslo, Norway
| | | | | |
Collapse
|
28
|
Lepper AW, Atwell JL, Lehrbach PR, Schwartzkoff CL, Egerton JR, Tennent JM. The protective efficacy of cloned Moraxella bovis pili in monovalent and multivalent vaccine formulations against experimentally induced infectious bovine keratoconjunctivitis (IBK). Vet Microbiol 1995; 45:129-38. [PMID: 7571364 DOI: 10.1016/0378-1135(94)00123-e] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Calves were vaccinated with cloned Moraxella bovis pili of serogroup C (experiment 1) or B (experiment 2) either as a monovalent formulation or as part of a multivalent preparation with pili of six other serogroups. Within 4 weeks of the second vaccine dose vaccinated calves and non-vaccinated controls were challenged via the ocular route with either virulent M. bovis strain Dal2d (serogroup C) or M. bovis strain 3WO7 (serogroup B) in experiments 1 and 2, respectively. Calves vaccinated with multivalent vaccines had significantly lower antibody titres than those vaccinated with monovalent preparations. Nevertheless, the levels of protection against infectious bovine keratoconjunctivitis (IBK) achieved with multivalent vaccines were 72% and 83% for the groups challenged with M. bovis strains of serogroups B and C, respectively. The serogroup C monovalent vaccine gave 100% protection against experimentally induced IBK and M. bovis isolates cultured from the eyes 6 days post-challenge were identified as belonging solely to serogroup C. Unexpectedly, only 25% protection was achieved against homologous strain challenge of calves that received the monovalent serogroup B vaccine. Furthermore, the majority of M. bovis isolates recovered from calves in this group belonged to serogroup C, as did half of those isolates cultured from the multivalent vaccinates. The remaining bacterial isolates from the latter group, together with all isolates from the non-vaccinated controls, belonged to serogroup B. Results are consistent with the hypothesis that derivatives of the serogroup B challenge inoculum had expressed serogroup C pilus antigen within 6 days of the challenge, possibly as a result of pilus gene inversion occurring in response to the presence of specific antibody in eye tissues and tears.
Collapse
Affiliation(s)
- A W Lepper
- CSIRO Division of Animal Health, Animal Health Research Laboratory, Parkville, Vic., Australia
| | | | | | | | | | | |
Collapse
|
29
|
Castric P. pilO, a gene required for glycosylation of Pseudomonas aeruginosa 1244 pilin. MICROBIOLOGY (READING, ENGLAND) 1995; 141 ( Pt 5):1247-1254. [PMID: 7773418 DOI: 10.1099/13500872-141-5-1247] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Nucleotide sequencing of a region downstream from the Pseudomonas aeruginosa 1244 pilin structural gene, pilA, revealed an ORF potentially able to code for a protein of M(r) 50,862. This ORF, called pilO, was flanked by a tRNAthr gene, which was followed by a transcriptional termination sequence. The tRNAthr gene and the termination sequence were nearly identical to sequences found immediately adjacent to the pilA gene of several P. aeruginosa strains. A 2200 base mRNA strand, which contained both the pilO and pilA transcripts, was produced from this region, while a 650 base transcript containing only pilA was present in a 100-fold excess over the longer transcript. Hyperexpression of the pilA gene in a PilO- strain resulted in normal pilus-specific phage sensitivity and twitching motility. The pilin produced by this strain had a lower apparent M(r) and a more neutral pl compared to that produced by a strain containing a functional pilO gene. This pilin failed to react with a sugar-specific reagent which recognized pilin produced by the strain containing a functional pilO gene.
Collapse
MESH Headings
- Amino Acid Sequence
- Bacterial Outer Membrane Proteins/biosynthesis
- Bacterial Outer Membrane Proteins/genetics
- Bacterial Proteins/biosynthesis
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Base Sequence
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Fimbriae Proteins
- Fimbriae, Bacterial
- Genes, Bacterial
- Genes, Regulator
- Glycosylation
- Molecular Sequence Data
- Protein Processing, Post-Translational
- Pseudomonas aeruginosa/genetics
- Pseudomonas aeruginosa/metabolism
- RNA, Messenger/analysis
- RNA, Messenger/biosynthesis
- RNA, Transfer, Thr/genetics
- Sequence Homology, Nucleic Acid
- Transcription, Genetic
Collapse
Affiliation(s)
- Peter Castric
- Department of Biological Sciences, Duquesne University,Pittsburgh, Pennsylvania 15282,USA
| |
Collapse
|
30
|
Freitag NE, Seifert HS, Koomey M. Characterization of the pilF-pilD pilus-assembly locus of Neisseria gonorrhoeae. Mol Microbiol 1995; 16:575-86. [PMID: 7565116 DOI: 10.1111/j.1365-2958.1995.tb02420.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Expression of Type IV pili by the bacterial pathogen Neisseria gonorrhoeae appears to be essential for colonization of the human host. Several N. gonorrhoeae gene products have been recently identified which bear homology to proteins involved in pilus assembly and protein export in other bacterial systems. We report here the isolation and characterization of transposon insertion mutants in N. gonorrhoeae whose phenotypes indicate that the N. gonorrhoeae pilF and pilD gene products are required for gonoccocal pilus biogenesis. Mutants lacking the pilD gene product, a pre-pilin peptidase, were unable to process the pre-pilin subunit into pilin and thus were non-piliated. pilF mutants processed pilin but did not assemble the mature subunit. Both classes of mutants released S-pilin, a soluble, truncated form of the pilin subunit previously correlated with defects in pilus assembly. In addition, mutants containing transposon insertions in pilD or in a downstream gene, orfX, exhibited a severely restricted growth phenotype. Deletion analysis of pilD indicated that the poor growth phenotype observed for the pilD transposon mutants was a result of polar effects of the insertions on orfX expression. orfX encodes a predicted polypeptide of 23 kDa which contains a consensus nucleotide-binding domain and has apparent homologues in Pseudomonas aeruginosa, Pseudomonas putida, Thermus thermophilus, and the eukaryote Caenorhabditis elegans. Although expression of orfX and pilD appears to be transcriptionally coupled, mutants containing transposon insertions in orfX expressed pili. Unlike either pilF or pilD mutants, orfX mutants were also competent for DNA transformation.
Collapse
Affiliation(s)
- N E Freitag
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor 48109-0620, USA
| | | | | |
Collapse
|
31
|
Taniguchi T, Fujino Y, Yamamoto K, Miwatani T, Honda T. Sequencing of the gene encoding the major pilin of pilus colonization factor antigen III (CFA/III) of human enterotoxigenic Escherichia coli and evidence that CFA/III is related to type IV pili. Infect Immun 1995; 63:724-8. [PMID: 7822050 PMCID: PMC173060 DOI: 10.1128/iai.63.2.724-728.1995] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The plasmid-encoded structural gene cofA necessary for the production of the major pilin subunit of pilus colonization factor antigen III (CFA/III) of human enterotoxigenic Escherichia coli was identified, and the nucleotide sequence of the gene was determined. cofA consists of 714 nucleotides encoding a 238-amino-acid protein (molecular weight of 25,309). CofA seems to be a precursor of CFA/III pilin, because the first 23 residues of the N-terminal amino acid sequence of the purified CFA/III pili coincided with the deduced amino acid sequence for residues 32 to 54 of CofA. Western blot (immunoblot) analysis of CofA also indicated its processing to form mature pilin in the presence of the downstream region of cofA. These results suggest that the major pilin of CFA/III pili is produced as a precursor form which is posttranslationally modified to the mature pilin and forms morphological pili after cleavage of the Gly-30-Met-31 junction, probably by a protease encoded by an as-yet-unknown gene located downstream of cofA. Interestingly, the N-terminal 30-amino-acid sequence of mature CFA/III shows the highest identity (76.7%) to TcpA pilin of Vibrio cholerae, which is a type IV class B pilin.
Collapse
Affiliation(s)
- T Taniguchi
- Department of Bacteriology, Research Institute for Microbial Diseases, Osaka University, Japan
| | | | | | | | | |
Collapse
|
32
|
Spangenberg C, Fislage R, Sierralta W, Tümmler B, Römling U. Comparison of type IV-pilin genes of Pseudomonas aeruginosa of various habitats has uncovered a novel unusual sequence. FEMS Microbiol Lett 1995; 125:265-73. [PMID: 7875574 DOI: 10.1111/j.1574-6968.1995.tb07367.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
All known pilin sequences in Pseudomonas aeruginosa were amplified by a set of consensus primers located in the 5"-conserved region of pilA and the threonine-specific t-RNA following pilA. This also enabled the discovery of a novel pilin gene in a strain pair of clonal variants, which differs from known pilin genes in its increased GC-content. The mature protein has 173 amino acids making it the longest pilin known to date in P. aeruginosa. Different inserted sequences detected between the 3"-end of the pilin gene and the t-RNA in this strain and in strains with group I pilin genes seemed to be specific for each pilin group indicating a horizontal cotransfer of sequences.
Collapse
Affiliation(s)
- C Spangenberg
- Klinische Forschergruppe, Medizinsche Hochschule Hannover, Germany
| | | | | | | | | |
Collapse
|
33
|
Atwell JL, Tennent JM, Lepper AW, Elleman TC. Characterization of pilin genes from seven serologically defined prototype strains of Moraxella bovis. J Bacteriol 1994; 176:4875-82. [PMID: 8051000 PMCID: PMC196322 DOI: 10.1128/jb.176.16.4875-4882.1994] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Numerous field isolates of Moraxella bovis have previously been classified by serological techniques into seven serogroups, each defined by homologous cross-reaction with antisera prepared against purified pili of a single prototype strain. The gene encoding pilin from each of the prototype strains has been characterized by nucleotide sequence determination. The coding sequences show extensive homology (70 to 80%) while the proximal downstream sequences show a dichotomy into nonhomologous sets. The pilin genes of three more strains were also characterized. The presence of an additional, partial pilin gene in each prototype strain was confirmed by Southern blot analysis, and the partial pilin genes from two strains of one serogroup were characterized by sequence determination. Features of the pilin gene sequences are considered in relation to pilin gene inversion and the serological variants of strains which may arise from gene inversion events.
Collapse
Affiliation(s)
- J L Atwell
- Division of Biomolecular Engineering, Commonwealth Scientific and Industrial Research Organisation, Parkville, Victoria, Australia
| | | | | | | |
Collapse
|
34
|
Lenich AG, Glasgow AC. Amino acid sequence homology between Piv, an essential protein in site-specific DNA inversion in Moraxella lacunata, and transposases of an unusual family of insertion elements. J Bacteriol 1994; 176:4160-4. [PMID: 8021196 PMCID: PMC205616 DOI: 10.1128/jb.176.13.4160-4164.1994] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Deletion analysis of the subcloned DNA inversion region of Moraxella lacunata indicates that Piv is the only M. lacunata-encoded factor required for site-specific inversion of the tfpQ/tfpI pilin segment. The predicted amino acid sequence of Piv shows significant homology solely with the transposases/integrases of a family of insertion sequence elements, suggesting that Piv is a novel site-specific recombinase.
Collapse
Affiliation(s)
- A G Lenich
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322
| | | |
Collapse
|
35
|
Jonson G, Lebens M, Holmgren J. Cloning and sequencing of Vibrio cholerae mannose-sensitive haemagglutinin pilin gene: localization of mshA within a cluster of type 4 pilin genes. Mol Microbiol 1994; 13:109-18. [PMID: 7984085 DOI: 10.1111/j.1365-2958.1994.tb00406.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The mannose-sensitive haemagglutinin (MSHA) pilus that is associated with Vibrio cholerae strains of El Tor biotype has been shown to be a potential colonization factor and protective antigen. The gene encoding the structural subunit of MSHA pili was cloned from size-fractionated SacI-cleaved chromosomal DNA in the expression phage vector lambda ZAPII. Positive clones carried a c. 5.3 kb SacI fragment and were identified on the basis of MSHA expression and hybridization with a synthetic oligonucleotide probe based upon the N-terminus of MshA, the structural subunit of MSHA. The mshA gene was localized to a 2.6 kb SalI-EcoRI fragment, which was subcloned and shown to express MshA from its own promoter in Escherichia coli. Nucleotide sequencing of the entire fragment revealed six open reading frames (ORFs) of which four were complete. The mshA gene encodes an 18,094 Da prepilin protein, which in its mature form has a size of 17,436 Da. MshA is a type 4 (N-MePhe) pilin protein that is more homologous to pilins produced by Pseudomonas aeruginosa and Neisseria gonorrhoeae than to TcpA, the structural subunit of the toxin-coregulated pilus of V. cholerae. The protein seems to be directly involved in receptor binding, as an in-frame mutation in the mshA gene was found to abolish both D-mannose-dependent haemagglutination and binding of V. cholerae bacteria to D-mannose-containing agarose beads. Three additional ORFs, all in the same transcriptional orientation as mshA, were found to encode type 4 pilin-like proteins. A potential promoter with a sequence homologous to that of cAMP-CRP-activated promoters in E. coli was identified upstream of ORF3, the gene preceding mshA.
Collapse
Affiliation(s)
- G Jonson
- Department of Medical Microbiology and Immunology, Göteborg University, Sweden
| | | | | |
Collapse
|
36
|
Boyd JM, Koga T, Lory S. Identification and characterization of PilS, an essential regulator of pilin expression in Pseudomonas aeruginosa. MOLECULAR & GENERAL GENETICS : MGG 1994; 243:565-74. [PMID: 7911557 DOI: 10.1007/bf00284205] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Expression of the pilin gene, pilA, of Pseudomonas aeruginosa requires the alternative sigma factor, sigma 54, and also two other transcriptional regulators encoded by the pilS and pilR genes. These two linked genes, which have been identified by transposon insertion mutagenesis, share significant amino acid sequence homology with members of the two-component family of regulators. The transcriptional regulator, PilR, has been described previously. PilS, a 37,285 Dalton protein, shares significant homology with the protein kinase sensors of the two-component regulatory family. PilS, however, has no hydrophobic domains which might be membrane-spanning alpha-helices, suggesting that PilS is a cytoplasmic protein. Characterization of the pilS gene revealed that when overexpressed in Escherichia coli by the bacteriophage T7 promoter it specifies a protein of approximately 40,000 daltons, corresponding to the molecular weight of PilS predicted from the deduced amino acid sequence. Deletion analysis of the pilS promoter fused to a promoterless lacZ gene further showed that a significant region upstream of pilS is essential for expression of pilS and pilR, suggesting a need for transcriptional activation. The pilA promoter can be activated in E. coli but only when PilR and sigma 54 are present. This work suggests that the PilS activation signal is received in the bacterial cytoplasm, and that the mechanism of PilS/PilR-mediated signal transduction resulting in activation of the pilin gene promoter is likely to be similar to that of other two-component systems.
Collapse
Affiliation(s)
- J M Boyd
- Department of Microbiology, University of Washington, Seattle 98195
| | | | | |
Collapse
|
37
|
Castric PA, Deal CD. Differentiation of Pseudomonas aeruginosa pili based on sequence and B-cell epitope analyses. Infect Immun 1994; 62:371-6. [PMID: 7507890 PMCID: PMC186117 DOI: 10.1128/iai.62.2.371-376.1994] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The nucleotide sequences of three previously undescribed Pseudomonas aeruginosa pilin structural genes are presented. Comparisons of deduced pilin primary structure and flanking DNA sequence allowed placement of these and six previously published sequences into one of two groups. Epitope mapping, using overlapping immobilized peptides representing the pilin primary structure, with antipilin monoclonal antibodies revealed several B-cell determinants grouped near the carboxyl terminus of P. aeruginosa 1244 pilin. One determinant was found to reside near the pilin constant region. These determinants were found associated with the pili of 31 of 95 P. aeruginosa clinical isolates.
Collapse
Affiliation(s)
- P A Castric
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282
| | | |
Collapse
|
38
|
de Groot A, Heijnen I, de Cock H, Filloux A, Tommassen J. Characterization of type IV pilus genes in plant growth-promoting Pseudomonas putida WCS358. J Bacteriol 1994; 176:642-50. [PMID: 7905475 PMCID: PMC205100 DOI: 10.1128/jb.176.3.642-650.1994] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In a search for factors that could contribute to the ability of the plant growth-stimulating Pseudomonas putida WCS358 to colonize plant roots, the organism was analyzed for the presence of genes required for pilus biosynthesis. The pilD gene of Pseudomonas aeruginosa, which has also been designated xcpA, is involved in protein secretion and in the biogenesis of type IV pili. It encodes a peptidase that processes the precursors of the pilin subunits and of several components of the secretion apparatus. Prepilin processing activity could be demonstrated in P. putida WCS358, suggesting that this nonpathogenic strain may contain type IV pili as well. A DNA fragment containing the pilD (xcpA) gene of P. putida was cloned and found to complement a pilD (xcpA) mutation in P. aeruginosa. Nucleotide sequencing revealed, next to the pilD (xcpA) gene, the presence of two additional genes, pilA and pilC, that are highly homologous to genes involved in the biogenesis of type IV pili. The pilA gene encodes the pilin subunit, and pilC is an accessory gene, required for the assembly of the subunits into pili. In comparison with the pil gene cluster in P. aeruginosa, a gene homologous to pilB is lacking in the P. putida gene cluster. Pili were not detected on the cell surface of P. putida itself, not even when pilA was expressed from the tac promoter on a plasmid, indicating that not all the genes required for pilus biogenesis were expressed under the conditions tested. Expression of pilA of P. putida in P. aeruginosa resulted in the production of pili containing P. putida PilA subunits.
Collapse
Affiliation(s)
- A de Groot
- Department of Molecular Cell Biology, Utrecht University, The Netherlands
| | | | | | | | | |
Collapse
|
39
|
Strom MS, Nunn DN, Lory S. Posttranslational processing of type IV prepilin and homologs by PilD of Pseudomonas aeruginosa. Methods Enzymol 1994; 235:527-40. [PMID: 8057924 DOI: 10.1016/0076-6879(94)35168-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have described the characterization of a protein initially identified as having an essential function in biogenesis of polar pili of P. aeruginosa by processing precursors of pilin. Other findings have also expanded the range of substrates for PilD to include a set of proteins that are essential components of the extracellular secretion machinery. Direct demonstration of prepilin processing necessitates use of purified substrates and enzymes, and we present general protocols for purification of both enzymes and substrates, as well as an assay for prepilin peptidase activity. For a source of enzyme and substrates, mutants of P. aeruginosa defective in pilin processing as well as clones overexpressing the pilin gene and PilD were developed. These methods are applicable to other bacterial systems that express Type IV pili and/or possess the PilD-dependent machinery of extracellular protein secretion. PilD is a bifunctional enzyme, which carries out not only cleavage but also amino-terminal methylation of the mature pilin. Cleavage and N-methylation of the pilin-like Xcp proteins involved in extracellular protein secretion have also been shown to be dependent on PilD. The leader peptidase activity of PilD is inhibited by sulfhydryl blocking reagents such as NEM and PCMB, whereas the methyltransferase activity of the purified enzyme is dependent on reduction with dithiothreitol. The conserved region containing the cysteine residues lies within the largest hydrophilic domain of the protein as predicted from hydrophobicity analysis, and it is probably exposed to the cytoplasmic side of the cytoplasmic membrane. Identification of the active site residues involved in recognition of the substrates for processing and subsequent methylation is currently underway. Studies on substrate specificities of PilD, with respect to its leader peptidase and methyltransferase activity, may prove to be useful in designing inhibitors which would interfere with maturation of Type IV prepilins and components of the extracellular protein secretion machinery. In light of the fact that an increasing number of both mammalian and plant pathogens are being shown to have extracellular secretion pathways homologous to that seen for P. aeruginosa, such inhibitors may be useful tools in the study of the role these peptidases play in bacterial virulence.
Collapse
Affiliation(s)
- M S Strom
- Utilization Research Division, Northwest Fisheries Science Center, NMFS, NOAA, Seattle, Washington 98112
| | | | | |
Collapse
|
40
|
Progulske-Fox A, Rao V, Han N, Lepine G, Witlock J, Lantz M. Molecular characterization of hemagglutinin genes of periodontopathic bacteria. J Periodontal Res 1993; 28:473-4. [PMID: 8263716 DOI: 10.1111/j.1600-0765.1993.tb02106.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- A Progulske-Fox
- Department of Oral Biology, University of Florida, Gainesville 32610-0424
| | | | | | | | | | | |
Collapse
|
41
|
Strom M, Bergman P, Lory S. Identification of active-site cysteines in the conserved domain of PilD, the bifunctional type IV pilin leader peptidase/N-methyltransferase of Pseudomonas aeruginosa. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)82324-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
42
|
Tønjum T, Weir S, Bøvre K, Progulske-Fox A, Marrs CF. Sequence divergence in two tandemly located pilin genes of Eikenella corrodens. Infect Immun 1993; 61:1909-16. [PMID: 8478080 PMCID: PMC280783 DOI: 10.1128/iai.61.5.1909-1916.1993] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Eikenella corrodens normally inhabits the human respiratory and gastrointestinal tracts but is frequently the cause of abscesses at various sites. Using the N-terminal portion of the Moraxella nonliquefaciens pilin gene as a hybridization probe, we cloned two tandemly located pilin genes of E. corrodens 31745, ecpC and ecpD, and expressed the two pilin genes separately in Escherichia coli. A comparison of the predicted amino acid sequences of E. corrodens 31745 EcpC and EcpD revealed considerable divergence between the sequences of these two pilins and even less similarity to EcpA and EcpB of E. corrodens type strain ATCC 23834. EcpC from E. corrodens 31745 displayed high degrees of homology to the pilins of Neisseria gonorrhoeae and Pseudomonas aeruginosa. EcpD from E. corrodens 31745 showed the highest homologies with the pilin of one of the three P. aeruginosa classes, whereas EcpA and EcpB of strain ATCC 23834 most closely resemble Moraxella bovis pilins. These findings raise interesting questions about potential genetic transfer between different bacterial species, as opposed to convergent evolution.
Collapse
Affiliation(s)
- T Tønjum
- Kaptein W. Wilhelmsen og Frues Bakteriologiske Institutt, Rikshospitalet, Oslo, Norway
| | | | | | | | | |
Collapse
|
43
|
Ogierman MA, Zabihi S, Mourtzios L, Manning PA. Genetic organization and sequence of the promoter-distal region of the tcp gene cluster of Vibrio cholerae. Gene X 1993; 126:51-60. [PMID: 8097178 DOI: 10.1016/0378-1119(93)90589-u] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The nucleotide sequence of the promoter distal region of the major operon associated with biosynthesis of TCP, the toxin coregulated pilus of Vibrio cholerae has been determined. The genes tcpR, tcpD, tcpS, tcpT, tcpE and tcpF are organized to permit translational coupling and are followed by an inverted repeat structure which is likely to act as a strong Rho-independent terminator. TcpS and TcpF possess N-terminal signal sequences and would be expected to be periplasm and outer membrane located, respectively. TcpT and, to a lesser extent, TcpE show homology to protein transport and secretion proteins identified in a number of other bacteria. TcpR and TcpD are also predicted to be localized in the membrane based on their hydrophobicity profiles. In the case of TcpD, this may be in the outer membrane, as the N terminus is reminiscent of the TcpA signal sequence processed by TcpJ. Taken together with other data on the tcp region, it is clear that the types of proteins involved in the biogenesis of TCP are, at least in some cases, related to those associated with type-4 pilus biosynthesis but differ markedly from those for other well-described fimbrial systems, such as Type I, K88, K99 or Pap pili. The complete sequence data for TCP biosynthesis-controlling genes are now available and represent the only complete example of a type-4 pilus-like system.
Collapse
Affiliation(s)
- M A Ogierman
- Department of Microbiology and Immunology, University of Adelaide, Australia
| | | | | | | |
Collapse
|
44
|
Lauer P, Albertson NH, Koomey M. Conservation of genes encoding components of a type IV pilus assembly/two-step protein export pathway in Neisseria gonorrhoeae. Mol Microbiol 1993; 8:357-68. [PMID: 8100347 DOI: 10.1111/j.1365-2958.1993.tb01579.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Three gonococcal genes have been identified which encode proteins with substantial similarities to known components of the type IV pilus biogenesis pathway in Pseudomonas aeruginosa. Two of the genes were identified based on their hybridization with a DNA probe derived from the pilB gene of P. aeruginosa under conditions of reduced stringency. The product of the gonococcal pilF gene is most closely related to the pilus assembly protein PilB of P. aeruginosa while the product of the gonococcal pilT gene is most similar to the PilT protein of P. aeruginosa which is involved in pilus-associated twitching motility and colony morphology. The products of both of these genes display canonical nucleoside triphosphate binding sites and are predicted to be to cytoplasmically localized based on their overall hydrophilicity. The gonococcal pilD gene, identified by virtue of its linkage to the pilF gene, is homologous to a family of prepilin leader peptidase genes. When expressed in Escherichia coli, the gonococcal PilD protein functions to process gonococcal prepilin in a manner consistent with its being gonococcal prepilin peptidase. These results suggest that Neisseria gonorrhoeae is capable of expressing many of the essential elements of a highly conserved protein translocation system and that these gene products are probably involved in pilus biogenesis.
Collapse
Affiliation(s)
- P Lauer
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor 48109-0620
| | | | | |
Collapse
|
45
|
Koga T, Ishimoto K, Lory S. Genetic and functional characterization of the gene cluster specifying expression of Pseudomonas aeruginosa pili. Infect Immun 1993; 61:1371-7. [PMID: 7681046 PMCID: PMC281373 DOI: 10.1128/iai.61.4.1371-1377.1993] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The genetic organization of the gene cluster containing pilA, the structural gene for type IV pilin of Pseudomonas aeruginosa, as well as the accessory genes pilB, pilC, and pilD, has been studied. DNA sequences capable of initiating transcription when fused to a promoterless lacZ gene have been identified in the pilA-pilB and pilB-pilC intergenic regions. Unlike pilA, which requires rpoN (encoding the sigma 54 subunit of RNA polymerase) and products of two regulatory genes, pilS and pilR, expression of pilB, pilC, or pilD did not depend on any of these transcriptional regulators. Moreover, transcription of pilA from the tac promoter in an rpoN mutant background resulted in piliated bacteria, suggesting that the RpoN-based regulatory network is specific for pilA and does not control expression of any other genes necessary for formation of pili. Insertion of the omega fragment containing strong transcriptional terminators into pilB, pilC, and pilD failed to have a polar effect on expression of downstream genes, as determined by the ability of each cloned gene to complement, in trans, the corresponding insertionally inactivated chromosomal copy. Insertions into pilC, however, resulted in decreased synthesis of PilD as determined by quantitation of PilD enzymatic activity in processing prepilin in vitro and by immunoassay. This finding suggests that PilD may require PilC for its optimal stability or correct membrane localization.
Collapse
Affiliation(s)
- T Koga
- Department of Microbiology, School of Medicine, University of Washington, Seattle 98195
| | | | | |
Collapse
|
46
|
Strom MS, Nunn DN, Lory S. A single bifunctional enzyme, PilD, catalyzes cleavage and N-methylation of proteins belonging to the type IV pilin family. Proc Natl Acad Sci U S A 1993; 90:2404-8. [PMID: 8096341 PMCID: PMC46095 DOI: 10.1073/pnas.90.6.2404] [Citation(s) in RCA: 200] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Precursors of the type IV pilins of a number of bacterial pathogens, as well as related proteins involved in extracellular protein export and DNA uptake, are synthesized with short basic leader sequences. Maturation of these proteins involves two consecutive posttranslational modifications. The leader sequence is first proteolytically removed by specialized endopeptidases, of which the prototype is encoded by the pilD gene of Pseudomonas aeruginosa. Subsequently, the amino termini of these proteins are methylated. Here we demonstrate that PilD, in addition to cleaving the amino-terminal leader sequences of prepilin, also catalyzes N-methylation of the amino-terminal phenylalanine of the mature pilin, using S-adenosyl-L-methionine as a methyl donor. Thus, to our knowledge, PilD is the first characterized bacterial N-methyltransferase. Complete inhibition of N-methylation, but not peptide cleavage, by structural analogues of S-adenosyl-L-methionine suggests that PilD is a bifunctional enzyme with proteolytic and methylation activities carried out within two distinct active sites.
Collapse
Affiliation(s)
- M S Strom
- Department of Microbiology, School of Medicine, University of Washington, Seattle 98195
| | | | | |
Collapse
|
47
|
Sohel I, Puente JL, Murray WJ, Vuopio-Varkila J, Schoolnik GK. Cloning and characterization of the bundle-forming pilin gene of enteropathogenic Escherichia coli and its distribution in Salmonella serotypes. Mol Microbiol 1993; 7:563-75. [PMID: 8096320 DOI: 10.1111/j.1365-2958.1993.tb01147.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
bfp, the structural gene of the major repeating bundle-forming pilus (BFP) subunit, was cloned from the enteroadherent factor (EAF) plasmid of enteropathogenic Escherichia coli (EPEC) strain B171 (O111:NM). The bfp open reading frame encoded a 193-amino-acid protein; comparison of this sequence with the biochemically determined N-terminal amino acid sequence showed that the mature pilin protein is comprised of 180 amino acids, that this sequence is similar to other members of the type IV pilin family, and that it is preceded by a 13-amino-acid signal peptide. Expression of the cloned bfp structural gene in an EPEC strain that had been cured of the EAF plasmid yielded a 21,000 dalton protein that co-migrated with the BFP precursor protein. Thus, other genes, probably carried by the EAF plasmid, are required for the maturation of the bfp product and for the production of extracellular pilus filaments. Use of bfp as a hybridization probe showed that homologous sequences are present in all tested EPEC strains and in 13 of 16 tested Salmonella serotypes. Fifty per cent of these bfp probe-sensitive salmonellae exhibited the localized-adherence (LA) phenotype when incubated with tissue culture cell monolayers, a trait previously associated with EAF plasmid-containing EPEC strains. Scanning electron micrographs of a bfp probe-sensitive, LA-positive Salmonella dublin strain showed that it grows as adherent colonies on infected monolayers and that within these colonies, BFP-like fibres form inter-bacterial linkages. For EAF plasmid-containing EPEC strains and for several Salmonella serotypes, BFP expression may lead to the development of adherent colonies on epithelial surfaces early in the infective process.
Collapse
Affiliation(s)
- I Sohel
- Department of Microbiology and Immunology, Stanford University Medical School, California 90305
| | | | | | | | | |
Collapse
|
48
|
Ruehl WW, Marrs C, Beard MK, Shokooki V, Hinojoza JR, Banks S, Bieber D, Mattick JS. Q pili enhance the attachment of Moraxella bovis to bovine corneas in vitro. Mol Microbiol 1993; 7:285-8. [PMID: 8095318 DOI: 10.1111/j.1365-2958.1993.tb01119.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Moraxella bovis, the causative agent of infectious bovine keratoconjunctivitis, exhibits several virulence factors, including pili, haemolysin, leukotoxin, and proteases. The pili are filamentous appendages which mediate bacterial adherence. Prior studies have shown that Q-piliated M. bovis Epp63 are more infectious and more pathogenic than I-piliated and non-piliated isogenic variants, suggesting that Q pili per se, or traits associated with Q-pilin expression, promote the early association of Q-piliated bacteria with bovine corneal tissue. In order to better evaluate the role of Q pili in M. bovis attachment, several M. bovis strains and a recombinant P. aeruginosa strain which elaborates M. bovis Q pili but not P. aeruginosa PAK pili, were evaluated using an in vitro corneal attachment assay. For each strain tested, piliated organisms attached better than non-piliated bacteria. M. bovis Epp63 Q-piliated bacteria adhered better than either the I-piliated or non-piliated isogenic variants. Finally, recombinant P. aeruginosa organisms elaborating M. bovis Q pili adhered better than the parent P. aeruginosa strain which did not produce M. bovis pili. These results indicate that the presence of pili, especially Q pili, enhances the attachment of bacteria to bovine cornea in vitro.
Collapse
Affiliation(s)
- W W Ruehl
- Department of Pathology, Stanford University School of Medicine, California
| | | | | | | | | | | | | | | |
Collapse
|
49
|
|
50
|
|