1
|
Jeelani G, Husain A, Sato D, Ali V, Suematsu M, Soga T, Nozaki T. Two atypical L-cysteine-regulated NADPH-dependent oxidoreductases involved in redox maintenance, L-cystine and iron reduction, and metronidazole activation in the enteric protozoan Entamoeba histolytica. J Biol Chem 2010; 285:26889-26899. [PMID: 20592025 DOI: 10.1074/jbc.m110.106310] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We discovered novel catalytic activities of two atypical NADPH-dependent oxidoreductases (EhNO1/2) from the enteric protozoan parasite Entamoeba histolytica. EhNO1/2 were previously annotated as the small subunit of glutamate synthase (glutamine:2-oxoglutarate amidotransferase) based on similarity to authentic bacterial homologs. As E. histolytica lacks the large subunit of glutamate synthase, EhNO1/2 were presumed to play an unknown role other than glutamine/glutamate conversion. Transcriptomic and quantitative reverse PCR analyses revealed that supplementation or deprivation of extracellular L-cysteine caused dramatic up- or down-regulation, respectively, of EhNO2, but not EhNO1 expression. Biochemical analysis showed that these FAD- and 2[4Fe-4S]-containing enzymes do not act as glutamate synthases, a conclusion which was supported by phylogenetic analyses. Rather, they catalyze the NADPH-dependent reduction of oxygen to hydrogen peroxide and L-cystine to L-cysteine and also function as ferric and ferredoxin-NADP(+) reductases. EhNO1/2 showed notable differences in substrate specificity and catalytic efficiency; EhNO1 had lower K(m) and higher k(cat)/K(m) values for ferric ion and ferredoxin than EhNO2, whereas EhNO2 preferred L-cystine as a substrate. In accordance with these properties, only EhNO1 was observed to physically interact with intrinsic ferredoxin. Interestingly, EhNO1/2 also reduced metronidazole, and E. histolytica transformants overexpressing either of these proteins were more sensitive to metronidazole, suggesting that EhNO1/2 are targets of this anti-amebic drug. To date, this is the first report to demonstrate that small subunit-like proteins of glutamate synthase could play an important role in redox maintenance, L-cysteine/L-cystine homeostasis, iron reduction, and the activation of metronidazole.
Collapse
Affiliation(s)
- Ghulam Jeelani
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; Center for Integrated Medical Research, School of Medicine, Keio University, Shinjuku, Tokyo 160-8582, Japan
| | - Afzal Husain
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Dan Sato
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan
| | - Vahab Ali
- Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna-800007, India
| | - Makoto Suematsu
- Department of Biochemistry and Integrative Medical Biology, School of Medicine, Keio University, Shinjuku, Tokyo 160-8582, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan
| | - Tomoyoshi Nozaki
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| |
Collapse
|
2
|
Zalkin H. The amidotransferases. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 66:203-309. [PMID: 8430515 DOI: 10.1002/9780470123126.ch5] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- H Zalkin
- Department of Biochemistry, Purdue University, West Lafayette, Indiana
| |
Collapse
|
3
|
Natera V, Sobrevals L, Fabra A, Castro S. Glutamate Is Involved in Acid Stress Response in Bradyrhizobium sp. SEMIA 6144 (Arachis hypogaea L.) Microsymbiont. Curr Microbiol 2006; 53:479-82. [PMID: 17091217 DOI: 10.1007/s00284-006-0146-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Accepted: 07/24/2006] [Indexed: 10/23/2022]
Abstract
In the present study, the effect of acid stress on ammonium assimilation in Bradyrhizobium sp. SEMIA 6144 (Arachis hypogaea L.) microsymbiont was analyzed. The bacterial growth rate was decreased by 50%, and a significant increase in intracellular glutamate concentration was detected when the strain grew at acid pH (5.5). Assays of the enzymes involved in glutamate synthesis showed increased activities of glutamine synthetase (GS) and glutamate synthase (NADPH-GOGAT) under acid stress condition. This would support the contention that the GS/NADPH-GOGAT pathway contributes to the increase of glutamate synthesis as a compatible solute in response to acid stress.
Collapse
Affiliation(s)
- V Natera
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, FísicoQuímicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, 5800, Río Cuarto, Córdoba, Argentina
| | | | | | | |
Collapse
|
4
|
Saum SH, Sydow JF, Palm P, Pfeiffer F, Oesterhelt D, Müller V. Biochemical and molecular characterization of the biosynthesis of glutamine and glutamate, two major compatible solutes in the moderately halophilic bacterium Halobacillus halophilus. J Bacteriol 2006; 188:6808-15. [PMID: 16980483 PMCID: PMC1595520 DOI: 10.1128/jb.00781-06] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The moderately halophilic, chloride-dependent bacterium Halobacillus halophilus produces glutamate and glutamine as main compatible solutes at external salinities of 1.0 to 1.5 M NaCl. The routes for the biosynthesis of these solutes and their regulation were examined. The genome contains two genes potentially encoding glutamate dehydrogenases and two genes for the small subunit of a glutamate synthase, but only one gene for the large subunit. However, the expression of these genes was not salt dependent, nor were the corresponding enzymatic activities detectable in cell extracts of cells grown at different salinities. In contrast, glutamine synthetase activity was readily detectable in H. halophilus. Induction of glutamine synthetase activity was strictly salt dependent and reached a maximum at 3.0 M NaCl; chloride stimulated the production of active enzyme by about 300%. Two potential genes encoding a glutamine synthetase, glnA1 and glnA2, were identified. The expression of glnA2 but not of glnA1 was increased up to fourfold in cells adapted to high salt, indicating that GlnA2 is the glutamine synthetase involved in the synthesis of the solutes glutamate and glutamine. Furthermore, expression of glnA2 was stimulated twofold by the presence of chloride ions. Chloride exerted an even more pronounced effect on the enzymatic activity of preformed enzyme: in the absence of chloride in the assay buffer, glutamine synthetase activity was decreased by as much as 90%. These data demonstrate for the first time a regulatory role of a component of common salt, chloride, in the biosynthesis of compatible solutes.
Collapse
Affiliation(s)
- Stephan H Saum
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
5
|
Romero M, Guzmán-León S, Aranda C, González-Halphen D, Valenzuela L, González A. Pathways for glutamate biosynthesis in the yeast Kluyveromyces lactis. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 1):239-245. [PMID: 10658670 DOI: 10.1099/00221287-146-1-239] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Purified glutamate synthase (GOGAT) from Kluyveromyces lactis was characterized as a high-molecular-mass polypeptide, a distinction shared with previously described GOGATs from other eukaryotic micro-organisms. Using degenerate deoxyoligonucleotides, designed from conserved regions of the alfalfa, maize and Escherichia coli GOGAT genes, a 300 bp PCR fragment from the K. lactis GOGAT gene KIGLT1 was obtained. This fragment was used to construct null GOGAT mutants of K. lactis by gene replacement. These mutants showed no growth defect phenotype and were able to grow on ammonium as sole nitrogen source. Double mutants obtained from a cross between a previously described KIGDH1 mutant and the K. lactis null GOGAT strain were full glutamate auxotrophs. These results indicate that glutamate biosynthesis in K. lactis is afforded through the combined action of KIGDH1 and KIGLT1 products.
Collapse
Affiliation(s)
- Mauricio Romero
- Departamento de Genética Molecular, Instituto de Fisiologı́a Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, 04510 Mexico City, Mexico1
| | - Simón Guzmán-León
- Departamento de Genética Molecular, Instituto de Fisiologı́a Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, 04510 Mexico City, Mexico1
| | - Cristina Aranda
- Departamento de Genética Molecular, Instituto de Fisiologı́a Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, 04510 Mexico City, Mexico1
| | - Diego González-Halphen
- Departamento de Genética Molecular, Instituto de Fisiologı́a Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, 04510 Mexico City, Mexico1
| | - Lourdes Valenzuela
- Departamento de Genética Molecular, Instituto de Fisiologı́a Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, 04510 Mexico City, Mexico1
| | - Alicia González
- Departamento de Genética Molecular, Instituto de Fisiologı́a Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, 04510 Mexico City, Mexico1
| |
Collapse
|
6
|
Hirayama C, Saito H, Konno K, Shinbo H. Purification and characterization of NADH-dependent glutamate synthase from the silkworm fat body (Bombyx mori). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 1998; 28:473-482. [PMID: 9718680 DOI: 10.1016/s0965-1748(98)00019-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
NADH-dependent glutamate synthase (Nadh-Gogat; EC 1.41.14) was purified 766-fold from the fat body of 5th instar larvae of the silkworm with a final specific activity of 13.8 units/mg protein by a produce including ammonium sulfate fraction, Q-Sepharose HP ion exchange column chromatography, Blue Sepharose FF affinity column chromatography and Superdex 200 HR gel filtration. The purified enzyme yielded a single band corresponding to a molecular mass of 195kDa by SDS-polyacrylamide gel electrophoresis. Molecular mass of the native enzyme was estimated to be 190 kDa by Superdex 200HR gel filtration, suggesting that the enzyme is composed of a monomeric polypeptide. The enzyme showed an absorption spectrum with maximum values at 272, 375, and 435 nm, suggesting the presence of a flavin prosthetic group in the enzyme. The N-terminal amino acid sequence showed a high similarity to those of other GOGATs from plants, yeast and bacteria, but no similarity to other known proteins was detected. The enzyme exhibited a strong specificity to the electron donor and substrates; NADH as electron donor, 2-oxoglutarate as amino acceptor and glutamine as amino donor were essential for the catalytic activity. The optimum pH was around 7.5, at which Km values for 2-oxoglutarate, glutamine and NADH were 17, 220 and 5.7 micro M, respectively. Azaserine, 6-diazo-5-oxonorleucine and p-chloromercuribenzoic acid were strong inhibitors of the activity. These result show that NADH-GOGAT in the silkworm fat body strongly resembles other eukaryotic NADH-GOGATs, suggesting that it plays a significant role in ammonia assimilation in the same manner as the other enzymes.
Collapse
Affiliation(s)
- C Hirayama
- National Institute of Sericultural and Entomological Science, Ibaraki, Japan.
| | | | | | | |
Collapse
|
7
|
Zalkin H, Smith JL. Enzymes utilizing glutamine as an amide donor. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 1998; 72:87-144. [PMID: 9559052 DOI: 10.1002/9780470123188.ch4] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Amide nitrogen from glutamine is a major source of nitrogen atoms incorporated biosynthetically into other amino acids, purine and pyrimidine bases, amino-sugars, and coenzymes. A family comprised of at least sixteen amidotransferases are known to catalyze amide nitrogen transfer from glutamine to their acceptor substrates. Recent fine structural advances, largely as a result of X-ray crystallography, now provide structure-based mechanisms that help to explain fundamental aspects of the catalytic and regulatory interactions of several of these aminotransferases. This chapter provides an overview of this recent progress made on the characterization of amidotransferase structure and mechanism.
Collapse
|
8
|
Vanoni MA, Fischer F, Ravasio S, Verzotti E, Edmondson DE, Hagen WR, Zanetti G, Curti B. The recombinant alpha subunit of glutamate synthase: spectroscopic and catalytic properties. Biochemistry 1998; 37:1828-38. [PMID: 9485308 DOI: 10.1021/bi972342w] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
As part of our studies of Azospirillum brasilense glutamate synthase, a complex iron-sulfur flavoprotein, we have overproduced the two enzyme subunits separately in Escherichia coli. The beta subunit (53.2 kDa) was demonstrated to contain the site of NADPH oxidation of glutamate synthase and the FAD cofactor, which was identified as Flavin 1 of glutamate synthase, the flavin located at the site of NADPH oxidation. We now report the overproduction of the glutamate synthase alpha subunit (162 kDa), which is purified to homogeneity in a stable form. This subunit contains FMN as the flavin cofactor which exhibits the properties of Flavin 2 of glutamate synthase: reactivity with sulfite to yield a flavin-N(5)-sulfite addition product (Kd = 2.6 +/- 0.22 mM), lack of reactivity with NADPH, reduction by L-glutamate, and reoxidation by 2-oxoglutarate and glutamine. Thus, FMN is the flavin located at the site of reduction of the iminoglutarate formed on the addition of glutamine amide group to the C(2) carbon of 2-oxoglutarate. The glutamate synthase alpha subunit contains the [3Fe-4S] cluster of glutamate synthase, as shown by low-temperature EPR spectroscopy experiments. The glutamate synthase alpha subunit catalyzes the synthesis of glutamate from L-glutamine and 2-oxoglutarate, provided that a reducing system (dithionite and methyl viologen) is present. The FMN moiety but not the [3Fe-4S] cluster of the subunit appears to participate in this reaction. Furthermore, the isolated alpha subunit of glutamate synthase exhibits a glutaminase activity, which is absent in the glutamate synthase holoenzyme. These findings support a model for glutamate synthase according to which the enzymes prepared from various sources share a common glutamate synthase function (the alpha subunit of the bacterial enzyme, or its homologous polypeptide forming the ferredoxin-dependent plant enzyme) but differ for the chosen electron donor. The pyridine nucleotide-dependent forms of the enzyme have recruited a FAD-dependent oxidoreductase (the bacterial beta subunit) to mediate electron transfer from the NAD(P)H substrate to the glutamate synthase polypeptide. However, it appears that the presence of the enzyme beta subunit and/or of the additional iron-sulfur clusters (Centers II and III) of the bacterial glutamate synthase is required for communication between Center I (the [3Fe-4S] center) and the FMN moiety within the alpha subunit, and for ensuring coupling of glutamine hydrolysis to the transfer of the released ammonia molecule to 2-oxoglutarate in the holoenzyme.
Collapse
Affiliation(s)
- M A Vanoni
- Dipartimento di Fisiologia e Biochimica Generali, Università degli Studi di Milano, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Purification and properties of glutamate synthase fromStreptomyces lincolnensis. ACTA ACUST UNITED AC 1998; 41:37-46. [DOI: 10.1007/bf02882704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/1997] [Indexed: 11/25/2022]
|
10
|
Suzuki A, Rothstein S. Structure and regulation of ferredoxin-dependent glutamase synthase from Arabidopsis thaliana. Cloning of cDNA expression in different tissues of wild-type and gltS mutant strains, and light induction. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 243:708-18. [PMID: 9057836 DOI: 10.1111/j.1432-1033.1997.00708.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Ferredoxin (Fd)-dependent glutamate synthase is present in green leaves, etiolated leaves, shoots and roots of Arabidopsis thaliana (ecotype Columbia). In photosynthetic green leaves and shoots, Fd-dependent glutamate synthase accounts for more than 96% of the total glutamate synthase activity in vitro with the remaining activity derived from an enzyme that uses NADH as the electron donor. In etiolated leaves and roots, Fd-dependent glutamate synthase is 3-4-fold less active than in green leaves, but represents 70-85% of the total glutamate synthase activity in these tissues. Fd-dependent glutamate synthase is detected as a single peptide of 165 kDa on a western blot of green leaf and shoot tissues, and this Fd-dependent glutamate synthase polypeptide is 3-4-fold less abundant in etiolated leaves and roots. In these non-photosynthetic tissues, there is a higher activity of NADH-dependent glutamate synthase. The A. thaliana gltS mutant (strain CS254) contains only 1.7% and 17.5% of the wild-type Fd-dependent glutamate synthase activity in leaves and roots, respectively. Western blots indicate that the Fd-dependent glutamate synthase peptide of 165 kDa is absent from leaves and roots of the gltS mutant. In contrast, NADH-dependent glutamate synthase activity in leaves and roots is unaffected. During illumination of wild-type dark-grown leaves for 72 h, the levels of Fd-dependent glutamate synthase protein and its activity increased threefold to levels equivalent to those in green leaves. In contrast, NADH-dependent glutamate synthase activity decrease twofold during illumination. The complete nucleotide sequence of the complementary DNA for A. thaliana Fd-dependent glutamate synthase has been determined. Analysis of the amino acid sequence deduced from the complete cDNA sequence (5178 bp) has revealed that A. thaliana Fd-dependent glutamate synthase is synthesized as a 1648-amino-acid precursor protein (180090 Da) which consists of a 131-amino-acid transit peptide (14603 Da) and a 1517-amino-acid mature peptide (165487 Da). The A. thaliana Fd-dependent glutamate synthase has a high similarity to maize Fd-dependent glutamate synthase (83%) and to the analogous region of NADH-dependent glutamate synthase (42%) and NADPH-dependent glutamate synthases (40-43%) from different organisms. The A. thaliana Fd-dependent glutamate synthase contains the purF-type glutamine-amido-transfer domain as well as flavin and iron-sulfur-cluster-binding domains. The deduced primary structures of A. thaliana Fd-dependent glutamate synthase and of glutamate synthases from other organisms indicate that Fd-dependent glutamate synthase may have evolved from bacterial NADPH-dependent glutamate synthase. The cDNA hybridized to RNA of about 5.3 kb from different tissues of A. thaliana. A high steady-state level of Fd-dependent glutamate synthase mRNA is found in photosynthetic green leaves and shoots, and roots contain less mRNA for Fd-dependent glutamate synthase. In the gltS mutant, there are twofold and fourfold lower levels of Fd-dependent glutamate synthase mRNA in leaves and roots, respectively, relative to those in wild-type A. thaliana. Under continuous illumination of dark-grown leaves, the Fd-dependent glutamate synthase mRNA is induced twofold to a level equivalent to that in green leaves.
Collapse
Affiliation(s)
- A Suzuki
- Laboratoire du Métabolisme et de la Nutrition des Plantes, Institut National de la Recherche Agronomique, Versailles, France
| | | |
Collapse
|
11
|
Filetici P, Martegani MP, Valenzuela L, González A, Ballario P. Sequence of the GLT1 gene from Saccharomyces cerevisiae reveals the domain structure of yeast glutamate synthase. Yeast 1996; 12:1359-66. [PMID: 8923741 DOI: 10.1002/(sici)1097-0061(199610)12:13<1359::aid-yea3>3.0.co;2-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Glutamate synthase (GOGAT) and glutamine synthetase play a crucial role in ammonium assimilation and glutamate biosynthesis in the yeast Saccharomyces cerevisiae. The GOGAT enzyme has been purified and the GOGAT structural gene (GLT1) has been cloned, showing that this enzyme is a homotrimeric protein with a monomeric size of 199 kDa. We report the GLT1 nucleotide sequence and the amino acid sequence of its deduced protein product. Our results show that there is a high conservation with the corresponding genes of Escherichia coli, Medicago sativa (alfalfa) and Zea mais (maize). Binding domains for glutamine, cofactors (FMN and NADH) and the cysteine clusters (which comprise the iron-sulfur centres) were tentatively identified on the basis of sequence comparison with GOGAT sequences from E. coli, alfalfa and maize.
Collapse
Affiliation(s)
- P Filetici
- Dipartimento di Genetica e Biologia Molecolare, Universitá di Roma La Sapienza, Italy
| | | | | | | | | |
Collapse
|
12
|
Vanoni MA, Verzotti E, Zanetti G, Curti B. Properties of the recombinant beta subunit of glutamate synthase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 236:937-46. [PMID: 8665916 DOI: 10.1111/j.1432-1033.1996.00937.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Glutamate synthase is a complex iron-sulfur flavoprotein containing one molecule each of FAD and FMN and three distinct iron-sulfur centers/alpha beta protomer. Production of the beta subunit was observed in total extracts of Escherichia coli BL21 (DE) cells harbouring a pT7-7 derivative carrying gltD, the gene encoding the Azospirillum brasilense glutamate synthase beta subunit. The protein was soluble, and the identity of the purified protein with the Azospirillum glutamate synthase beta subunit was confirmed by N-terminal sequence analysis. The kinetic and spectroscopic characterization of the glutamate synthase beta subunit confirmed that it contains the NADPH binding site, but, in contrast with earlier proposals that assigned both FAD and FMN binding sites to the alpha subunit of glutamate synthase, the beta subunit was shown to contain stoichiometric amounts of FAD. No iron-sulfur centers were detected by EPR spectroscopy measurements of the recombinant beta subunit. Under steady-state conditions, the glutamate synthase beta subunit can catalyze the NADPH-dependent reduction of several synthetic electron acceptors but no glutamate synthase or glutamate dehydrogenase reactions in either direction. The results are in agreement with previous data from our laboratory and, together with the absence of amino acid sequence similarity between glutamate synthase beta subunit and glutamate dehydrogenases, are against the hypothesis that glutamate synthase is evolutionarily derived from the association of an ancestral glutamate dehydrogenase (the beta subunit) and an amidotransferase (the alpha subunit). The protein-bound FAD is reduced by NADPH at a rate much faster than turnover with synthetic electron acceptors, leading to formation of a stable reduced flavin-NADP+ charge-transfer complex. The rate of reduction of the bound FAD by NADPH is also similar to the rate at which one of the flavins is reduced in the native glutamate synthase, as measured in a stopped-flow spectrophotometer under pre-steady-state conditions. The ability of FAD bound to the beta subunit of glutamate synthase to react with NADPH and the lack of reactivity with sulfite lead us to conclude that FAD is Flavin 1 of glutamate synthase [Vanoni, M.A., Edmondson, D.E., Zanetti, G. & Curti, B. (1992) Biochemistry 31, 4613-4623].
Collapse
Affiliation(s)
- M A Vanoni
- Dipartimento di Fisiologia e Biochimica Generali, Sezione di Chimica Biologica, Università degli Studi di Milano, Italy
| | | | | | | |
Collapse
|
13
|
Cogoni C, Valenzuela L, González-Halphen D, Olivera H, Macino G, Ballario P, González A. Saccharomyces cerevisiae has a single glutamate synthase gene coding for a plant-like high-molecular-weight polypeptide. J Bacteriol 1995; 177:792-8. [PMID: 7836314 PMCID: PMC176658 DOI: 10.1128/jb.177.3.792-798.1995] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Purification of the glutamate synthase (GOGAT) enzyme from Saccharomyces cerevisiae showed that it is an oligomeric enzyme composed of three identical 199-kDa subunits. The GOGAT structural gene was isolated by screening a yeast genomic library with a yeast PCR probe. This probe was obtained by amplification with degenerate oligonucleotides designed from conserved regions of known GOGAT genes. The derived amino-terminal sequence of the GOGAT gene was confirmed by direct amino-terminal sequence analysis of the purified protein of 199 kDa. Northern (RNA) analysis allowed the identification of an mRNA of about 7 or 8 kb. An internal fragment of the GOGAT gene was used to obtain null GOGAT mutants completely devoid of GOGAT activity. The results show that S. cerevisiae has a single NADH-GOGAT enzyme, consisting of three 199-kDa monomers, that differs from the one found in prokaryotic microorganisms but is similar to those found in other eukaryotic organisms such as alfalfa.
Collapse
Affiliation(s)
- C Cogoni
- Dipartimento di Biopatologia Umana Policlinico Umberto I. Universitá di Roma La Sapienza, Italy
| | | | | | | | | | | | | |
Collapse
|
14
|
Vanoni MA, Mazzoni A, Fumagalli P, Negri A, Zanetti G, Curti B. Interdomain loops and conformational changes of glutamate synthase as detected by limited proteolysis. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 226:505-15. [PMID: 8001567 DOI: 10.1111/j.1432-1033.1994.tb20075.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Azospirillum brasilense glutamate synthase, a complex iron-sulfur flavoprotein, was subjected to limited proteolysis using trypsin and chymotrypsin, in the absence or presence of its substrates or their analogs. Time-dependent degradation of glutamate synthase alpha and beta subunits, to yield several fragments of different stability, was observed, the alpha subunit being more sensitive than the beta to proteolytic attack. The main sites of proteolytic cleavage were determined by densitometric analysis of the electrophoretic patterns obtained under denaturing conditions and by N-terminal sequencing of the major proteolytic products. These analyses showed that most of the peptide bonds sensitive to the proteases are clustered in two regions of the alpha subunit, outside the proposed substrate and cofactor binding regions of glutamate synthase [Pelanda, R., Vanoni, M. A., Perego, M., Piubelli, L., Galizzi, A., Curti, B. & Zanetti, G. (1993) J. Biol. Chem. 268, 3099-3106]. Therefore, these protease-sensitive sites can be identified as flexible loops, exposed to solvent, connecting adjacent domains of the protein. The presence of the enzyme substrates or their analogs caused significant changes in the proteolytic patterns. NADP+ protected the C-terminal region of glutamate synthase beta subunit from tryptic cleavage, supporting the proposal that it contains the pyridine-nucleotide-binding site. Furthermore, NADP+, and to a lesser extent the glutamine analog L-methionine sulfone, which binds presumably to the N-terminal region of the alpha subunit, altered the sensitivity to proteolysis of the sites of the alpha subunit proposed to be part of links between domains of glutamate synthase. These results show that long-range conformational changes of glutamate synthase occur on binding of its substrates. The study of several NADPH-dependent diaphorase activities of glutamate synthase was also undertaken in order to test if proteolytic fragments of the enzyme retained their ability to transfer electrons from NADPH to synthetic electron acceptors. Although proteolysis yielded partial loss of all enzyme NADPH-dependent reactions, the kinetic analysis showed that the rates of reduction of iodonitrotetrazolium, ferricyanide and dichlorophenolindophenol were at least twofold faster than the rate of the physiological glutamate synthase reaction. These results indicate that enzyme reduction and intramolecular electron transfer are not rate limiting during catalysis of the physiological glutamate synthase reaction.
Collapse
Affiliation(s)
- M A Vanoni
- Dipartimento di Fisiologia e Biochimica Generali, Università degli Studi di Milano, Italy
| | | | | | | | | | | |
Collapse
|
15
|
Mandal AK, Ghosh S. Isolation of a glutamate synthase (GOGAT)-negative, pleiotropically N utilization-defective mutant of Azospirillum brasilense: cloning and partial characterization of GOGAT structural gene. J Bacteriol 1993; 175:8024-9. [PMID: 7902833 PMCID: PMC206984 DOI: 10.1128/jb.175.24.8024-8029.1993] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
An Azospirillum brasilense mutant (N12) pleiotropically defective in the assimilation of nitrogenous compounds (Asm-) was isolated and found lacking in the glutamate synthase (GOGAT-). The glt (GOGAT) locus of A. brasilense was identified by isolating a broad-host-range pLAFR1 cosmid clone from a gene library of the bacterium that rectified Asm- and GOGAT- defects (full recovery of activities of the nitrogenase, the assimilatory nitrate and nitrite reductases, and the glutamate synthase). A 7.5-kb EcoRI fragment of the cosmid clone that also complemented N12 was partially sequenced to identify the open reading frame for the alpha-subunit of GOGAT. The amino acid sequences deduced from the partial nucleotide sequences of the glt locus of A. brasilense showed considerable homology with that of the alpha-subunit of GOGAT coded by the gltB gene of Escherichia coli. The genetic lesion of N12 was found within the gltB gene of A. brasilense. The gltB promoter of A. brasilense showed the presence of a consensus sigma-70-like recognition site (as in E. coli) in addition to potential NtrA-RNA polymerase, IHF, and NifA binding sites.
Collapse
Affiliation(s)
- A K Mandal
- Department of Biochemistry, Bose Institute, Calcutta, India
| | | |
Collapse
|
16
|
Glutamate synthase genes of the diazotroph Azospirillum brasilense. Cloning, sequencing, and analysis of functional domains. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53664-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
17
|
Barbieri P, Galli E. Effect on wheat root development of inoculation with an Azospirillum brasilense mutant with altered indole-3-acetic acid production. Res Microbiol 1993; 144:69-75. [PMID: 8327784 DOI: 10.1016/0923-2508(93)90216-o] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
To evaluate the involvement of indole-3-acetic acid (IAA) in promotion of root development, the effects of inoculation of wheat seedlings with Azospirillum brasilense SpM7918, a very low-IAA producer, were estimated. Compared with the wild-type strain Sp6, SpM7918 showed a reduced ability to promote root system development in terms both of number and length of lateral roots and of distribution of root hairs.
Collapse
Affiliation(s)
- P Barbieri
- Dipartimento di Genetica e di Biologia dei Microrganismi, Università degli Studi di Milano, Italy
| | | |
Collapse
|
18
|
Vanoni MA, Nuzzi L, Rescigno M, Zanetti G, Curti B. The kinetic mechanism of the reactions catalyzed by the glutamate synthase from Azospirillum brasilense. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 202:181-9. [PMID: 1935975 DOI: 10.1111/j.1432-1033.1991.tb16361.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The reactions catalyzed by glutamate synthase from Azospirillum brasilense have been investigated by a combination of absorption spectroscopy, steady-state kinetic measurements and experiments with stereospecifically labelled substrate. The data show that both L-glutamine-dependent and ammonia-dependent reactions of the glutamate synthase from A. brasilense follow an identical two-site uni-uni bi-bi kinetic mechanism, in which the enzyme is alternately reduced by NADPH and oxidized by the iminoglutarate formed on addition of ammonia to the C2 of 2-oxoglutarate. The spectroscopic experiments support the involvement of the enzyme chromophores (flavins and iron-sulfur centers) in both reactions. Finally, using stereospecifically labelled NADPH, we showed that the enzyme from Azospirillum is specific for the transfer of the 4S hydrogen of NADPH. During the catalysis of both L-glutamine-dependent and ammonia-dependent reactions, this hydrogen atom equilibrates with the solvent. The data obtained with glutamate synthase from A. brasilense, a diazotroph, differ significantly from those regarding the ammonia-dependent reaction of other glutamate synthases. The ammonia-dependent activity of glutamate synthase from Azospirillum is not physiologically significant, representing only a segment of the overall physiological L-glutamine-dependent activity and requiring the enzyme flavins and iron-sulfur centers. Finally, the data are not consistent with the hypothesis [Geary, L. E. & Meister, A. (1977) J. Biol. Chem. 252, 3501-3508] that the small subunit of glutamate synthase is endowed with a glutamate-dehydrogenase-like activity.
Collapse
Affiliation(s)
- M A Vanoni
- Dipartimento di Fisiologia e Biochimica Generali, Università degli Studi di Milano, Italy
| | | | | | | | | |
Collapse
|
19
|
Jollie D, Lipscomb J. Formate dehydrogenase from Methylosinus trichosporium OB3b. Purification and spectroscopic characterization of the cofactors. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54716-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
20
|
Carlberg I, Nordlund S. Purification and partial characterization of glutamate synthase from Rhodospirillum rubrum grown under nitrogen-fixing conditions. Biochem J 1991; 279 ( Pt 1):151-4. [PMID: 1930133 PMCID: PMC1151560 DOI: 10.1042/bj2790151] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Glutamate synthase, a key enzyme in ammonia assimilation, has been purified from the photosynthetic bacterium Rhodospirillum rubrum. The purification procedure involves ion-exchange chromatography, affinity chromatography and gel filtration. The recovery in the procedure is high (62%) and the specific activity is 21 mumol of NADPH oxidized/min per mg. The enzyme is specific for its substrates, and no activity was demonstrated with NADH or NH4+ ions substituting for NADPH and glutamine respectively. The enzyme is composed of two dissimilar subunits with molecular masses of 53 and 152 kDa, and it is shown that Cl- ions have an effect on the aggregation of the enzyme. Km values for the substrates are: NADPH, 16 microM; 2-oxoglutarate, 10 microM; and glutamine, 65 microM. The enzyme is inhibited by amidotransferase inhibitors at micromolar concentrations. The role of the enzyme in the metabolic regulation of nitrogenase is discussed.
Collapse
Affiliation(s)
- I Carlberg
- Department of Biochemistry, Arrhenius Laboratories for Natural Sciences, Stockholm University, Sweden
| | | |
Collapse
|
21
|
Abstract
Glutamate synthase was purified about 250-fold from Nocardia mediterranei U32 and characterized. The native enzyme has a molecular weight of 195,000 +/- 5,000 and is composed of two nonidentical subunits with molecular weights of 145,000 +/- 5,000 and 55,000 +/- 3,000. This enzyme is a complex of iron-sulfur flavoproteins with absorption maxima at 278, 375, 410, and 440 nm. It contains 1.1 mol of flavin adenine dinucleotide, 1.0 mol of flavin mononucleotide, 7.5 mol of nonheme iron, and 7.2 mol of acid-labile sulfur per 200,000 g of protein. Km values for L-glutamine, alpha-ketoglutarate, and NADPH were 77, 53, and 110 microM, respectively. The activity of this glutamate synthase is inhibited by its products (i.e., glutamate and NADP), several amino acids, and tricarboxylic acid cycle intermediates.
Collapse
Affiliation(s)
- B G Mei
- Shanghai Institute of Plant Physiology, Academia Sinica, People's Republic of China
| | | |
Collapse
|
22
|
Hartmann A, Fu HA, Burris RH. Influence of amino acids on nitrogen fixation ability and growth of Azospirillum spp. Appl Environ Microbiol 1988; 54:87-93. [PMID: 2894202 PMCID: PMC202401 DOI: 10.1128/aem.54.1.87-93.1988] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The utilization of amino acids for growth and their effects on nitrogen fixation differ greatly among the several strains of each species of Azospirillum spp. that were examined. A. brasiliense grew poorly or not at all on glutamate, aspartate, serine, or histidine as the sole nitrogen and carbon sources. Nitrogen fixation by most A. brasiliense strains was inhibited only slightly even by 10 mM concentrations of these amino acids. In contrast, A. lipoferum and A. amazonense grew very well on glutamate, aspartate, serine, or histidine as the sole nitrogen and carbon sources; nitrogen fixation, which was measured in the presence of malate or sucrose, was severely inhibited by these amino acids. It was concluded that growth on histidine as the sole source of nitrogen, carbon, and energy may be used for the taxonomic characterization of Azospirillum spp. and for the selective isolation of A. lipoferum. The different utilization of various amino acids by Azospirillum spp. may be important for their establishment in the rhizosphere and for their associative nitrogen fixation with plants. The physiological basis for the different utilization of glutamate by Azospirillum spp. was investigated further. A. brasiliense and A. lipoferum exhibited a high affinity for glutamate uptake (Km values for uptake were 8 and 40 microM, respectively); the Vmax was 6 times higher in A. lipoferum than in A. brasiliense. At high substrate concentrations (10 mM), the nonsaturable component of glutamate uptake was most active in A. lipoferum and A. amazonense.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A Hartmann
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison 53706
| | | | | |
Collapse
|
23
|
Westby CA, Enderlin CS, Steinberg NA, Joseph CM, Meeks JC. Assimilation of 13NH4+ by Azospirillum brasilense grown under nitrogen limitation and excess. J Bacteriol 1987; 169:4211-4. [PMID: 2887545 PMCID: PMC213731 DOI: 10.1128/jb.169.9.4211-4214.1987] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The specific activities of glutamine synthetase (GS) and glutamate synthase (GOGAT) were 4.2- and 2.2-fold higher, respectively, in cells of Azospirillum brasilense grown with N2 than with 43 mM NH4+ as the source of nitrogen. Conversely, the specific activity of glutamate dehydrogenase (GDH) was 2.7-fold higher in 43 mM NH4+-grown cells than in N2-grown cells. These results indicate that NH4+ could be assimilated and that glutamate could be formed by either the GS-GOGAT or GDH pathway or both, depending on the cellular concentration of NH4+. The routes of in vivo synthesis of glutamate were identified by using 13N as a metabolic tracer. The products of assimilation of 13NH4+ were, in order of decreasing radioactivity, glutamine, glutamate, and alanine. The formation of [13N]glutamine and [13N]glutamate by NH4+-grown cells was inhibited in the additional presence of methionine sulfoximine (an inhibitor of GS) and diazooxonorleucine (an inhibitor of GOGAT). Incorporation of 13N into glutamine, glutamate, and alanine decreased in parallel in the presence of carrier NH4+. These results imply that the GS-GOGAT pathway is the primary route of NH4+ assimilation by A. brasilense grown with excess or limiting nitrogen and that GDH has, at best, a minor role in the synthesis of glutamate.
Collapse
|
24
|
Hua SST, Lichens GM, Guirao A, Tsai VY. Biochemical properties of glutamate synthase of salt-tolerantBradyrhizobiumsp. strain WR1001. FEMS Microbiol Lett 1986. [DOI: 10.1111/j.1574-6968.1986.tb01795.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
25
|
Barbieri P, Zanelli T, Galli E, Zanetti G. Wheat inoculation withAzospirillum brasilenseSp6 and some mutants altered in nitrogen fixation and indole-3-acetic acid production. FEMS Microbiol Lett 1986. [DOI: 10.1111/j.1574-6968.1986.tb01672.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|