1
|
Hernández Villamizar S, Chica Cárdenas LA, Morales Mancera LT, Vives Florez MJ. Anaerobiosis, a neglected factor in phage-bacteria interactions. Appl Environ Microbiol 2023; 89:e0149123. [PMID: 37966212 PMCID: PMC10734468 DOI: 10.1128/aem.01491-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 09/21/2023] [Indexed: 11/16/2023] Open
Abstract
IMPORTANCE Many parameters affect phage-bacteria interaction. Some of these parameters depend on the environment in which the bacteria are present. Anaerobiosis effect on phage infection in facultative anaerobic bacteria has not yet been studied. The absence of oxygen triggers metabolic changes in facultative bacteria and this affects phage infection and viral life cycle. Understanding how an anaerobic environment can alter the behavior of phages during infection is relevant for the phage therapy success.
Collapse
|
2
|
Rashid FZM, Crémazy FGE, Hofmann A, Forrest D, Grainger DC, Heermann DW, Dame RT. The environmentally-regulated interplay between local three-dimensional chromatin organisation and transcription of proVWX in E. coli. Nat Commun 2023; 14:7478. [PMID: 37978176 PMCID: PMC10656529 DOI: 10.1038/s41467-023-43322-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/07/2023] [Indexed: 11/19/2023] Open
Abstract
Nucleoid associated proteins (NAPs) maintain the architecture of bacterial chromosomes and regulate gene expression. Thus, their role as transcription factors may involve three-dimensional chromosome re-organisation. While this model is supported by in vitro studies, direct in vivo evidence is lacking. Here, we use RT-qPCR and 3C-qPCR to study the transcriptional and architectural profiles of the H-NS (histone-like nucleoid structuring protein)-regulated, osmoresponsive proVWX operon of Escherichia coli at different osmolarities and provide in vivo evidence for transcription regulation by NAP-mediated chromosome re-modelling in bacteria. By consolidating our in vivo investigations with earlier in vitro and in silico studies that provide mechanistic details of how H-NS re-models DNA in response to osmolarity, we report that activation of proVWX in response to a hyperosmotic shock involves the destabilization of H-NS-mediated bridges anchored between the proVWX downstream and upstream regulatory elements (DRE and URE), and between the DRE and ygaY that lies immediately downstream of proVWX. The re-establishment of these bridges upon adaptation to hyperosmolarity represses the operon. Our results also reveal additional structural features associated with changes in proVWX transcript levels such as the decompaction of local chromatin upstream of the operon, highlighting that further complexity underlies the regulation of this model operon. H-NS and H-NS-like proteins are wide-spread amongst bacteria, suggesting that chromosome re-modelling may be a typical feature of transcriptional control in bacteria.
Collapse
Affiliation(s)
- Fatema-Zahra M Rashid
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, 2333CC, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, 2333CC, The Netherlands
- Centre for Interdisciplinary Genome Research, Leiden University, Leiden, 2333CC, The Netherlands
| | - Frédéric G E Crémazy
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, 2333CC, The Netherlands
- Laboratoire Infection et Inflammation, INSERM, UVSQ, Université Paris-Saclay, Versailles, 78180, France
| | - Andreas Hofmann
- Statistical Physics and Theoretical Biophysics, Heidelberg University, Heidelberg, D-69120, Germany
| | - David Forrest
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - David C Grainger
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Dieter W Heermann
- Statistical Physics and Theoretical Biophysics, Heidelberg University, Heidelberg, D-69120, Germany
| | - Remus T Dame
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, 2333CC, The Netherlands.
- Centre for Microbial Cell Biology, Leiden University, Leiden, 2333CC, The Netherlands.
- Centre for Interdisciplinary Genome Research, Leiden University, Leiden, 2333CC, The Netherlands.
| |
Collapse
|
3
|
Ding Q, Ge C, Baker RC, Buchanan RL, Tikekar RV. The genetic response of Salmonella Typhimurium during trans-cinnamaldehyde assisted heat treatment and its correlation with bacterial resistance in different low moisture food components. Food Microbiol 2023; 113:104271. [PMID: 37098431 DOI: 10.1016/j.fm.2023.104271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 03/10/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023]
Abstract
Our previous study found that water activity (aw)- and matrix-dependent bacterial resistance wasdeveloped in Salmonella Typhimurium during antimicrobial-assisted heat treatment in low moisture foods (LMFs) matrices. To better understand the molecular mechanism behind the observed bacterial resistance, gene expression analysis was conducted on S. Typhimurium adapted to different conditions with or without the trans-cinnamaldehyde (CA)-assisted heat treatment via quantitative polymerase chain reaction (qPCR). Expression profiles of nine stress-related genes were analyzed. The upregulation of rpoH and dnaK and downregulation of ompC were observed during bacterial adaptation in LMF matrices and the combined heat treatment, which likely contributed to the bacterial resistance during the combined treatment. Their expression profiles were partially consistent with the previously-observed effect of aw or matrix on bacterial resistance. The upregulation of rpoE, otsB, proV, and fadA was also observed during adaptation in LMF matrices and might contribute to desiccation resistance, but likely did not contribute to bacterial resistance during the combined heat treatment. The observed upregulation of fabA and downregulation of ibpA could not be directly linked to bacterial resistance to either desiccation or the combined heat treatment. The results may assist the development of more efficient processing methods against S. Typhimurium in LMFs.
Collapse
Affiliation(s)
- Qiao Ding
- Department of Nutrition and Food Science, University of Maryland, 112 Skinner Building, College Park, MD, USA, 20742
| | - Chongtao Ge
- Mars Global Food Safety Center, Beijing, 101047, China
| | | | - Robert L Buchanan
- Department of Nutrition and Food Science, University of Maryland, 112 Skinner Building, College Park, MD, USA, 20742; Center for Food Safety and Security Systems, University of Maryland, College Park, MD, USA, 20742
| | - Rohan V Tikekar
- Department of Nutrition and Food Science, University of Maryland, 112 Skinner Building, College Park, MD, USA, 20742.
| |
Collapse
|
4
|
What do we know about osmoadaptation of Yersinia pestis? Arch Microbiol 2021; 204:11. [PMID: 34878588 DOI: 10.1007/s00203-021-02610-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 10/19/2022]
Abstract
The plague agent Yersinia pestis mainly spreads among mammalian hosts and their associated fleas. Production of a successful mammal-flea-mammal life cycle implies that Y. pestis senses and responds to distinct cues in both host and vector. Among these cues, osmolarity is a fundamental parameter. The plague bacillus lives in a tightly regulated environment in the mammalian host, while osmolarity fluctuates in the flea gut (300-550 mOsM). Here, we review the mechanisms that enable Y. pestis to perceive fluctuations in osmolarity, as well as genomic plasticity and physiological adaptation of the bacterium to this stress.
Collapse
|
5
|
Avican K, Aldahdooh J, Togninalli M, Mahmud AKMF, Tang J, Borgwardt KM, Rhen M, Fällman M. RNA atlas of human bacterial pathogens uncovers stress dynamics linked to infection. Nat Commun 2021; 12:3282. [PMID: 34078900 PMCID: PMC8172932 DOI: 10.1038/s41467-021-23588-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 05/05/2021] [Indexed: 11/25/2022] Open
Abstract
Bacterial processes necessary for adaption to stressful host environments are potential targets for new antimicrobials. Here, we report large-scale transcriptomic analyses of 32 human bacterial pathogens grown under 11 stress conditions mimicking human host environments. The potential relevance of the in vitro stress conditions and responses is supported by comparisons with available in vivo transcriptomes of clinically important pathogens. Calculation of a probability score enables comparative cross-microbial analyses of the stress responses, revealing common and unique regulatory responses to different stresses, as well as overlapping processes participating in different stress responses. We identify conserved and species-specific 'universal stress responders', that is, genes showing altered expression in multiple stress conditions. Non-coding RNAs are involved in a substantial proportion of the responses. The data are collected in a freely available, interactive online resource (PATHOgenex).
Collapse
Affiliation(s)
- Kemal Avican
- Department of Molecular Biology, Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.
| | - Jehad Aldahdooh
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Matteo Togninalli
- Department for Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Swiss Institute for Bioinformatics, Lausanne, Switzerland
| | - A K M Firoj Mahmud
- Department of Molecular Biology, Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Jing Tang
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Karsten M Borgwardt
- Department for Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Swiss Institute for Bioinformatics, Lausanne, Switzerland
| | - Mikael Rhen
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institute, Stockholm, Sweden
| | - Maria Fällman
- Department of Molecular Biology, Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.
| |
Collapse
|
6
|
CosR Is a Global Regulator of the Osmotic Stress Response with Widespread Distribution among Bacteria. Appl Environ Microbiol 2020; 86:AEM.00120-20. [PMID: 32169942 DOI: 10.1128/aem.00120-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/10/2020] [Indexed: 12/16/2022] Open
Abstract
Bacteria accumulate small, organic compounds called compatible solutes via uptake from the environment or biosynthesis from available precursors to maintain the turgor pressure of the cell in response to osmotic stress. The halophile Vibrio parahaemolyticus has biosynthesis pathways for the compatible solutes ectoine (encoded by ectABC-asp_ect) and glycine betaine (encoded by betIBA-proXWV), four betaine-carnitine-choline transporters (encoded by bccT1 to bccT4), and a second ProU transporter (encoded by proVWX). All of these systems are osmotically inducible with the exception of bccT2 Previously, it was shown that CosR, a MarR-type regulator, was a direct repressor of ectABC-asp_ect in Vibrio species. In this study, we investigated whether CosR has a broader role in the osmotic stress response. Expression analyses demonstrated that betIBA-proXWV, bccT1, bccT3, bccT4, and proVWX are repressed in low salinity. Examination of an in-frame cosR deletion mutant showed that expression of these systems is derepressed in the mutant at low salinity compared with the wild type. DNA binding assays demonstrated that purified CosR binds directly to the regulatory region of both biosynthesis systems and four transporters. In Escherichia coli green fluorescent protein (GFP) reporter assays, we demonstrated that CosR directly represses transcription of betIBA-proXWV, bccT3, and proVWX Similar to Vibrio harveyi, we showed betIBA-proXWV was directly activated by the quorum-sensing LuxR homolog OpaR, suggesting a conserved mechanism of regulation among Vibrio species. Phylogenetic analysis demonstrated that CosR is ancestral to the Vibrionaceae family, and bioinformatics analysis showed widespread distribution among Gammaproteobacteria in general. Incidentally, in Aliivibrio fischeri, Aliivibrio finisterrensis, Aliivibrio sifiae, and Aliivibrio wodanis, an unrelated MarR-type regulator gene named ectR was clustered with ectABC-asp, which suggests the presence of another novel ectoine biosynthesis regulator. Overall, these data show that CosR is a global regulator of osmotic stress response that is widespread among bacteria.IMPORTANCE Vibrio parahaemolyticus can accumulate compatible solutes via biosynthesis and transport, which allow the cell to survive in high salinity conditions. There is little need for compatible solutes under low salinity conditions, and biosynthesis and transporter systems need to be repressed. However, the mechanism(s) of this repression is not known. In this study, we showed that CosR played a major role in the regulation of multiple compatible solute systems. Phylogenetic analysis showed that CosR is present in all members of the Vibrionaceae family as well as numerous Gammaproteobacteria Collectively, these data establish CosR as a global regulator of the osmotic stress response that is widespread in bacteria, controlling many more systems than previously demonstrated.
Collapse
|
7
|
Ethanol Adaptation Strategies in Salmonella enterica Serovar Enteritidis Revealed by Global Proteomic and Mutagenic Analyses. Appl Environ Microbiol 2019; 85:AEM.01107-19. [PMID: 31375481 DOI: 10.1128/aem.01107-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/21/2019] [Indexed: 01/07/2023] Open
Abstract
Salmonella enterica subsp. enterica serovar Enteritidis is able to adapt to sublethal concentrations of ethanol, which subsequently induce tolerance of this pathogen to normally lethal ethanol challenges. This work aims to elucidate the underlying ethanol adaptation mechanisms of S Enteritidis by proteomic and mutagenic analyses. The global proteomic response of S Enteritidis to ethanol adaptation (5% ethanol for 1 h) was determined by isobaric tags for relative and absolute quantification (iTRAQ), and it was found that a total of 138 proteins were differentially expressed in ethanol-adapted cells compared to nonadapted cells. A total of 56 upregulated proteins were principally associated with purine metabolism and as transporters for glycine betaine, phosphate, d-alanine, thiamine, and heme, whereas 82 downregulated proteins were mainly involved in enterobactin biosynthesis and uptake, the ribosome, flagellar assembly, and virulence. Moreover, mutagenic analysis further revealed the functions of two highly upregulated proteins belonging to purine metabolism (HiuH, 5-hydroxyisourate hydrolase) and glycine betaine transport (ProX, glycine betaine-binding periplasmic protein) pathways. Deletion of either hiuH or proX resulted in the development of a stronger ethanol tolerance response, suggesting negative regulatory roles in ethanol adaptation. Collectively, this work suggests that S Enteritidis employs multiple strategies to coordinate ethanol adaptation.IMPORTANCE Stress adaptation in foodborne pathogens has been recognized as a food safety concern since it may compromise currently employed microbial intervention strategies. While adaptation to sublethal levels of ethanol is able to induce ethanol tolerance in foodborne pathogens, the molecular mechanism underlying this phenomenon is poorly characterized. Hence, global proteomic analysis and mutagenic analysis were conducted in the current work to understand the strategies employed by Salmonella enterica subsp. enterica serovar Enteritidis to respond to ethanol adaptation. It was revealed that coordinated regulation of multiple pathways involving metabolism, ABC transporters, regulators, enterobactin biosynthesis and uptake, the ribosome, flagellar assembly, and virulence was responsible for the development of ethanol adaptation response in this pathogen. Such knowledge will undoubtedly contribute to the development and implementation of more-effective food safety interventions.
Collapse
|
8
|
Figueroa-Soto CG, Valenzuela-Soto EM. Glycine betaine rather than acting only as an osmolyte also plays a role as regulator in cellular metabolism. Biochimie 2018; 147:89-97. [DOI: 10.1016/j.biochi.2018.01.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/13/2018] [Indexed: 02/07/2023]
|
9
|
Zeidler S, Hubloher J, König P, Ngu ND, Scholz A, Averhoff B, Müller V. Salt induction and activation of MtlD, the key enzyme in the synthesis of the compatible solute mannitol in Acinetobacter baumannii. Microbiologyopen 2018; 7:e00614. [PMID: 29575790 PMCID: PMC6291793 DOI: 10.1002/mbo3.614] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/06/2018] [Accepted: 02/06/2018] [Indexed: 01/05/2023] Open
Abstract
Mannitol is the major compatible solute, next to glutamate, synthesized by the opportunistic human pathogen Acinetobacter baumannii under low water activities. The key enzyme for mannitol biosynthesis, MtlD, was identified. MtlD is highly similar to the bifunctional mannitol‐1‐phosphate dehydrogenase/phosphatase from Acinetobacter baylyi. After deletion of the mtlD gene from A. baumannii ATCC 19606T cells no longer accumulated mannitol and growth was completely impaired at high salt. Addition of glycine betaine restored growth, demonstrating that mannitol is an important compatible solute in the human pathogen. MtlD was heterologously produced and purified. Enzyme activity was strictly salt dependent. Highest stimulation was reached at 600 mmol/L NaCl. Addition of different sodium as well as potassium salts restored activity, with highest stimulations up to 41 U/mg protein by sodium glutamate. In contrast, an increase in osmolarity by addition of sugars did not restore activity. Regulation of mannitol synthesis was also assayed at the transcriptional level. Reporter gene assays revealed that expression of mtlD is strongly dependent on high osmolarity, not discriminating between different salts or sugars. The presence of glycine betaine or its precursor choline repressed promoter activation. These data indicate a dual regulation of mannitol production in A. baumannii, at the transcriptional and the enzymatic level, depending on high osmolarity.
Collapse
Affiliation(s)
- Sabine Zeidler
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Josephine Hubloher
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Patricia König
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Ngoc Dinh Ngu
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Anica Scholz
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Beate Averhoff
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Volker Müller
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt am Main, Frankfurt, Germany
| |
Collapse
|
10
|
General response of Salmonella enterica serovar Typhimurium to desiccation: A new role for the virulence factors sopD and sseD in survival. PLoS One 2017; 12:e0187692. [PMID: 29117268 PMCID: PMC5678696 DOI: 10.1371/journal.pone.0187692] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 10/10/2017] [Indexed: 02/05/2023] Open
Abstract
Salmonella can survive for long periods under extreme desiccation conditions. This stress tolerance poses a risk for food safety, but relatively little is known about the molecular and cellular regulation of this adaptation mechanism. To determine the genetic components involved in Salmonella’s cellular response to desiccation, we performed a global transcriptomic analysis comparing S. enterica serovar Typhimurium cells equilibrated to low water activity (aw 0.11) and cells equilibrated to high water activity (aw 1.0). The analysis revealed that 719 genes were differentially regulated between the two conditions, of which 290 genes were up-regulated at aw 0.11. Most of these genes were involved in metabolic pathways, transporter regulation, DNA replication/repair, transcription and translation, and, more importantly, virulence genes. Among these, we decided to focus on the role of sopD and sseD. Deletion mutants were created and their ability to survive desiccation and exposure to aw 0.11 was compared to the wild-type strain and to an E. coli O157:H7 strain. The sopD and sseD mutants exhibited significant cell viability reductions of 2.5 and 1.3 Log (CFU/g), respectively, compared to the wild-type after desiccation for 4 days on glass beads. Additional viability differences of the mutants were observed after exposure to aw 0.11 for 7 days. E. coli O157:H7 lost viability similarly to the mutants. Scanning electron microscopy showed that both mutants displayed a different morphology compared to the wild-type and differences in production of the extracellular matrix under the same conditions. These findings suggested that sopD and sseD are required for Salmonella’s survival during desiccation.
Collapse
|
11
|
van der Valk RA, Vreede J, Qin L, Moolenaar GF, Hofmann A, Goosen N, Dame RT. Mechanism of environmentally driven conformational changes that modulate H-NS DNA-bridging activity. eLife 2017; 6:e27369. [PMID: 28949292 PMCID: PMC5647153 DOI: 10.7554/elife.27369] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 09/25/2017] [Indexed: 11/13/2022] Open
Abstract
Bacteria frequently need to adapt to altered environmental conditions. Adaptation requires changes in gene expression, often mediated by global regulators of transcription. The nucleoid-associated protein H-NS is a key global regulator in Gram-negative bacteria and is believed to be a crucial player in bacterial chromatin organization via its DNA-bridging activity. H-NS activity in vivo is modulated by physico-chemical factors (osmolarity, pH, temperature) and interaction partners. Mechanistically, it is unclear how functional modulation of H-NS by such factors is achieved. Here, we show that a diverse spectrum of H-NS modulators alter the DNA-bridging activity of H-NS. Changes in monovalent and divalent ion concentrations drive an abrupt switch between a bridging and non-bridging DNA-binding mode. Similarly, synergistic and antagonistic co-regulators modulate the DNA-bridging efficiency. Structural studies suggest a conserved mechanism: H-NS switches between a 'closed' and an 'open', bridging competent, conformation driven by environmental cues and interaction partners.
Collapse
Affiliation(s)
| | - Jocelyne Vreede
- Computational ChemistryVan ‘t Hoff Institute for Molecular Sciences, University of AmsterdamAmsterdamNetherlands
| | - Liang Qin
- Leiden Institute of ChemistryLeiden UniversityLeidenNetherlands
| | | | - Andreas Hofmann
- Institute for Theoretical PhysicsUniversity of HeidelbergHeidelbergGermany
| | - Nora Goosen
- Leiden Institute of ChemistryLeiden UniversityLeidenNetherlands
| | - Remus T Dame
- Leiden Institute of ChemistryLeiden UniversityLeidenNetherlands
- Centre for Microbial Cell BiologyLeiden UniversityLeidenNetherlands
| |
Collapse
|
12
|
Thermal Resistance and Gene Expression of both Desiccation-Adapted and Rehydrated Salmonella enterica Serovar Typhimurium Cells in Aged Broiler Litter. Appl Environ Microbiol 2017; 83:AEM.00367-17. [PMID: 28389541 DOI: 10.1128/aem.00367-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/04/2017] [Indexed: 11/20/2022] Open
Abstract
The objective of this study was to investigate the thermal resistance and gene expression of both desiccation-adapted and rehydrated Salmonella enterica serovar Typhimurium cells in aged broiler litter. S Typhimurium was desiccation adapted in aged broiler litter with a 20% moisture content (water activity [aw], 0.81) for 1, 2, 3, 12, or 24 h at room temperature and then rehydrated for 3 h. As analyzed by quantitative real-time reverse transcriptase PCR (qRT-PCR), the rpoS, proV, dnaK, and grpE genes were upregulated (P < 0.05) under desiccation stress and could be induced after 1 h but in less than 2 h. Following rehydration, fold changes in the levels of these four genes became significantly lower (P < 0.05). The desiccation-adapted ΔrpoS mutant was less heat resistant at 75°C than was the desiccation-adapted wild type (P < 0.05), whereas there were no differences in heat resistance between desiccation-adapted mutants in two nonregulated genes (otsA and PagfD) and the desiccation-adapted wild type (P > 0.05). Survival characteristics of the desiccation-adapted ΔPagfD (rdar [red, dry, and rough] morphotype) and ΔagfD (saw [smooth and white] morphotype) mutants were similar (P > 0.05). Trehalose synthesis in the desiccation-adapted wild type was not induced compared to a nonadapted control (P > 0.05). Our results demonstrated the importance of the rpoS, proV, dnaK, and grpE genes in the desiccation survival of S Typhimurium. By using an ΔrpoS mutant, we found that the rpoS gene was involved in the cross-protection of desiccation-adapted S Typhimurium against high temperatures, while trehalose synthesis or rdar morphology did not play a significant role in this phenomenon. In summary, S Typhimurium could respond rapidly to low-aw conditions in aged broiler litter while developing cross-protection against high temperatures, but this process could be reversed upon rehydration.IMPORTANCE Physical heat treatment is effective in eliminating human pathogens from poultry litter used as biological soil amendments. However, prior to physical heat treatment, some populations of microorganisms may be adapted to the stressful conditions in poultry litter during composting or stockpiling, which may cross-protect them against subsequent high temperatures. Our previous study demonstrated that desiccation-adapted S. enterica cells in aged broiler litter exhibited enhanced thermal resistance. However, there is limited research on the underlying mechanisms of the extended survival of pathogens under desiccation conditions in animal wastes and cross-tolerance to subsequent heat treatment. Moreover, no information is available about the thermal resistance of desiccation-adapted microorganisms in response to rehydration. Therefore, in the present study, we investigated the gene expression and thermal resistance of both desiccation-adapted and rehydrated S Typhimurium in aged broiler litter. This work will guide future research efforts to control human pathogens in animal wastes used as biological soil amendments.
Collapse
|
13
|
Vyrides I, Stuckey DC. Compatible solute addition to biological systems treating waste/wastewater to counteract osmotic and other environmental stresses: a review. Crit Rev Biotechnol 2017; 37:865-879. [DOI: 10.1080/07388551.2016.1266460] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ioannis Vyrides
- Department of Environmental Science and Technology, Cyprus University of Technology, Lemesos, Cyprus
| | - David C. Stuckey
- Department of Chemical Engineering, Imperial College London, London, UK
| |
Collapse
|
14
|
Ma Y, Wang Q, Gao X, Zhang Y. Biosynthesis and uptake of glycine betaine as cold-stress response to low temperature in fish pathogen Vibrio anguillarum. J Microbiol 2016; 55:44-55. [PMID: 28035596 DOI: 10.1007/s12275-017-6370-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/06/2016] [Accepted: 10/07/2016] [Indexed: 12/28/2022]
Abstract
Fish pathogen Vibrio anguillarum, a mesophile bacterium, is usually found in estuarine and marine coastal ecosystems worldwide that pose a constant stress to local organism by its fluctuation in salinity as well as notable temperature change. Though V. anguillarum is able to proliferate while maintain its pathogenicity under low temperature (5-18°C), so far, coldadaption molecular mechanism of the bacteria is unknown. In this study, V. anguillarum was found possessing a putative glycine betaine synthesis system, which is encoded by betABI and synthesizes glycine betaine from its precursor choline. Furthermore, significant up-regulation of the bet gene at the transcriptional level was noted in log phase in response to cold-stress. Moreover, the accumulation of betaine glycine was only found appearing at low growth temperatures, suggesting that response regulation of both synthesis system and transporter system are cold-dependent. Furthermore, in-frame deletion mutation in the two putative ABC transporters and three putative BCCT family transporters associated with glycine betaine uptake could not block cellular accumulation of betaine glycine in V. anguillarum under coldstress, suggesting the redundant feature in V. anguillarum betaine transporter system. These findings confirmed that glycine betaine serves as an effective cold stress protectant and highlighted an underappreciated facet of the acclimatization of V. anguillarum to cold environments.
Collapse
Affiliation(s)
- Yue Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, P. R. China
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, P. R. China
- Shanghai Collaborative Innovation Center for Biomanufacturing, Shanghai, 200237, P. R. China
| | - Xiating Gao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, P. R. China.
- Shanghai Collaborative Innovation Center for Biomanufacturing, Shanghai, 200237, P. R. China.
| |
Collapse
|
15
|
Mahmoud RY, Li W, Eldomany RA, Emara M, Yu J. The Shigella ProU system is required for osmotic tolerance and virulence. Virulence 2016; 8:362-374. [PMID: 27558288 DOI: 10.1080/21505594.2016.1227906] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
To cope with hyperosmotic stress encountered in the environments and in the host, the pathogenic as well as non-pathogenic microbes use diverse transport systems to obtain osmoprotectants. To study the role of Shigella sonnei ProU system in response to hyperosmotic stress and virulence, we constructed deletion and complementation strains of proV and used an RNAi approach to silence the whole ProU operon. We compared the response between wild type and the mutants to the hyperosmotic pressure in vitro, and assessed virulence properties of the mutants using gentamicin protection assay as well as Galleria mellonella moth larvae model. In response to osmotic stress by either NaCl or KCl, S. sonnei highly up-regulates transcription of proVWX genes. Supplementation of betaine greatly elevates the growth of the wild type S. sonnei but not the proV mutants in M9 medium containing 0.2 M NaCl or 0.2 M KCl. The proV mutants are also defective in intracellular growth compared with the wild type. The moth larvae model of G. mellonella shows that either deletion of proV gene or knockdown of proVWX transcripts by RNAi significantly attenuates virulence. ProU system in S. sonnei is required to cope with osmotic stress for survival and multiplication in vitro, and for infection.
Collapse
Affiliation(s)
- Rasha Y Mahmoud
- a Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS) , University of Strathclyde , Glasgow , Scotland , UK.,b Department of Microbiology and Immunology, Faculty of Pharmacy , Helwan University , Cairo , Egypt
| | - Wenqin Li
- a Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS) , University of Strathclyde , Glasgow , Scotland , UK
| | - Ramadan A Eldomany
- c Department of Microbiology and Immunology, Faculty of Pharmacy , Kafr Elsheikh University , Kafr Elsheikh , Egypt
| | - Mohamed Emara
- b Department of Microbiology and Immunology, Faculty of Pharmacy , Helwan University , Cairo , Egypt
| | - Jun Yu
- a Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS) , University of Strathclyde , Glasgow , Scotland , UK
| |
Collapse
|
16
|
Zou H, Chen N, Shi M, Xian M, Song Y, Liu J. The metabolism and biotechnological application of betaine in microorganism. Appl Microbiol Biotechnol 2016; 100:3865-76. [PMID: 27005411 DOI: 10.1007/s00253-016-7462-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 11/29/2022]
Abstract
Glycine betaine (betaine) is widely distributed in nature and can be found in many microorganisms, including bacteria, archaea, and fungi. Due to its particular functions, many microorganisms utilize betaine as a functional chemical and have evolved different metabolic pathways for the biosynthesis and catabolism of betaine. As in animals and plants, the principle role of betaine is to protect microbial cells against drought, osmotic stress, and temperature stress. In addition, the role of betaine in methyl group metabolism has been observed in a variety of microorganisms. Recent studies have shown that betaine supplementation can improve the performance of microbial strains used for the fermentation of lactate, ethanol, lysine, pyruvate, and vitamin B12, during which betaine can act as stress protectant or methyl donor for the biosynthesis of structurally complex compounds. In this review, we summarize the transport, synthesis, catabolism, and functions of betaine in microorganisms and discuss potential engineering strategies that employ betaine as a methyl donor for the biosynthesis of complex secondary metabolites such as a variety of vitamins, coenzymes, and antibiotics. In conclusion, the biocompatibility, C/N ratio, abundance, and comprehensive metabolic information of betaine collectively indicate that this molecule has great potential for broad applications in microbial biotechnology.
Collapse
Affiliation(s)
- Huibin Zou
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China. .,CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.
| | - Ningning Chen
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Mengxun Shi
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Mo Xian
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Yimin Song
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Junhong Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
17
|
Abstract
Proline was among the last biosynthetic precursors to have its biosynthetic pathway unraveled. This review recapitulates the findings on the biosynthesis and transport of proline. Glutamyl kinase (GK) catalyzes the ATP-dependent phosphorylation of L-glutamic acid. Purification of γ-GK from Escherichia coli was facilitated by the expression of the proB and proA genes from a high-copy-number plasmid and the development of a specific coupled assay based on the NADPH-dependent reduction of GP by γ-glutamyl phosphate reductase (GPR). GPR catalyzes the NADPH-dependent reduction of GP to GSA. Site directed mutagenesis was used to identify residues that constitute the active site of E. coli GK. This analysis indicated that there is an overlap between the binding sites for glutamate and the allosteric inhibitor proline, suggesting that proline competes with the binding of glutamate. The review also summarizes the genes involved in the metabolism of proline in E. coli and Salmonella. Among the completed genomic sequences of Enterobacteriaceae, genes specifying all three proline biosynthetic enzymes can be discerned in E. coli, Shigella, Salmonella enterica, Serratia marcescens, Erwinia carotovora, Yersinia, Photorhabdus luminescens, and Sodalis glossinidius strain morsitans. The intracellular proline concentration increases with increasing external osmolality in proline-overproducing mutants. This apparent osmotic regulation of proline accumulation in the overproducing strains may be the result of increased retention or recapture of proline, achieved by osmotic stimulation of the ProP or ProU proline transport systems. A number of proline analogs can be incorporated into proteins in vivo or in vitro.
Collapse
|
18
|
Abstract
Escherichia coli and Salmonella encounter osmotic pressure variations in natural environments that include host tissues, food, soil, and water. Osmotic stress causes water to flow into or out of cells, changing their structure, physics, and chemistry in ways that perturb cell functions. E. coli and Salmonella limit osmotically induced water fluxes by accumulating and releasing electrolytes and small organic solutes, some denoted compatible solutes because they accumulate to high levels without disturbing cell functions. Osmotic upshifts inhibit membrane-based energy transduction and macromolecule synthesis while activating existing osmoregulatory systems and specifically inducing osmoregulatory genes. The osmoregulatory response depends on the availability of osmoprotectants (exogenous organic compounds that can be taken up to become compatible solutes). Without osmoprotectants, K+ accumulates with counterion glutamate, and compatible solute trehalose is synthesized. Available osmoprotectants are taken up via transporters ProP, ProU, BetT, and BetU. The resulting compatible solute accumulation attenuates the K+ glutamate response and more effectively restores cell hydration and growth. Osmotic downshifts abruptly increase turgor pressure and strain the cytoplasmic membrane. Mechanosensitive channels like MscS and MscL open to allow nonspecific solute efflux and forestall cell lysis. Research frontiers include (i) the osmoadaptive remodeling of cell structure, (ii) the mechanisms by which osmotic stress alters gene expression, (iii) the mechanisms by which transporters and channels detect and respond to osmotic pressure changes, (iv) the coordination of osmoregulatory programs and selection of available osmoprotectants, and (v) the roles played by osmoregulatory mechanisms as E. coli and Salmonella survive or thrive in their natural environments.
Collapse
|
19
|
Finn S, Rogers L, Händler K, McClure P, Amézquita A, Hinton JCD, Fanning S. Exposure of Salmonella enterica Serovar Typhimurium to Three Humectants Used in the Food Industry Induces Different Osmoadaptation Systems. Appl Environ Microbiol 2015; 81:6800-11. [PMID: 26209672 PMCID: PMC4561688 DOI: 10.1128/aem.01379-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/15/2015] [Indexed: 11/22/2022] Open
Abstract
Common salt (NaCl) is frequently used by the food industry to add flavor and to act as a humectant in order to reduce the water content of a food product. The improved health awareness of consumers is leading to a demand for food products with reduced salt content; thus, manufacturers require alternative water activity-reducing agents which elicit the same general effects as NaCl. Two examples include KCl and glycerol. These agents lower the water activity of a food matrix and also contribute to limit the growth of the microbiota, including foodborne pathogens. Little is currently known about how foodborne pathogens respond to these water activity-lowering agents. Here we examined the response of Salmonella enterica serovar Typhimurium 4/74 to NaCl, KCl, and glycerol at three time points, using a constant water activity level, compared with the response of a control inoculum. All conditions induced the upregulation of gluconate metabolic genes after 6 h of exposure. Bacteria exposed to NaCl and KCl demonstrated the upregulation of the osmoprotective transporter mechanisms encoded by the proP, proU, and osmU (STM1491 to STM1494) genes. Glycerol exposure elicited the downregulation of these osmoadaptive mechanisms but stimulated an increase in lipopolysaccharide and membrane protein-associated genes after 1 h. The most extensive changes in gene expression occurred following exposure to KCl. Because many of these genes were of unknown function, further characterization may identify KCl-specific adaptive processes that are not stimulated by NaCl. This study shows that the response of S. Typhimurium to different humectants does not simply reflect reduced water activity and likely involves systems that are linked to specific humectants.
Collapse
Affiliation(s)
- Sarah Finn
- UCD Centre for Food Safety, School of Public Health, Physiotherapy & Population Science, University College Dublin, Belfield, Dublin, Ireland
| | - Lisa Rogers
- Conway Institute, UCD School of Biomolecular & Biomedical Science, University College Dublin, Belfield, Dublin, Ireland
| | - Kristian Händler
- Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Peter McClure
- Unilever, Safety and Environmental Assurance Centre, Sharnbrook, Bedfordshire, United Kingdom
| | - Alejandro Amézquita
- Unilever, Safety and Environmental Assurance Centre, Sharnbrook, Bedfordshire, United Kingdom
| | - Jay C D Hinton
- Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Séamus Fanning
- UCD Centre for Food Safety, School of Public Health, Physiotherapy & Population Science, University College Dublin, Belfield, Dublin, Ireland Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland
| |
Collapse
|
20
|
Abstract
Bacterial cells respond to changes in the environment by adjusting their physiological reactions. In cascades of cellular responses to stresses of various origins, rapid modulation of RNA function is known to be an effective biochemical adaptation. Among many factors affecting RNA function, RNase III, a member of the phylogenetically highly conserved endoribonuclease III family, plays a key role in posttranscriptional regulatory pathways in Escherichia coli. In this review, we provide an overview of the factors affecting RNase III activity in E. coli.
Collapse
|
21
|
Yan Q, Fanning S. Strategies for the identification and tracking of cronobacter species: an opportunistic pathogen of concern to neonatal health. Front Pediatr 2015; 3:38. [PMID: 26000266 PMCID: PMC4419663 DOI: 10.3389/fped.2015.00038] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 04/15/2015] [Indexed: 01/31/2023] Open
Abstract
Cronobacter species are emerging opportunistic food-borne pathogens, which consists of seven species, including C. sakazakii, C. malonaticus, C. muytjensii, C. turicensis, C. dublinensis, C. universalis, and C. condimenti. The organism can cause severe clinical infections, including necrotizing enterocolitis, septicemia, and meningitis, predominately among neonates <4 weeks of age. Cronobacter species can be isolated from various foods and their surrounding environments; however, powdered infant formula (PIF) is the most frequently implicated food source linked with Cronobacter infection. This review aims to provide a summary of laboratory-based strategies that can be used to identify and trace Cronobacter species. The identification of Cronobacter species using conventional culture method and immuno-based detection protocols were first presented. The molecular detection and identification at genus-, and species-level along with molecular-based serogroup approaches are also described, followed by the molecular sub-typing methods, in particular pulsed-field gel electrophoresis and multi-locus sequence typing. Next generation sequence approaches, including whole genome sequencing, DNA microarray, and high-throughput whole-transcriptome sequencing, are also highlighted. Appropriate application of these strategies would contribute to reduce the risk of Cronobacter contamination in PIF and production environments, thereby improving food safety and protecting public health.
Collapse
Affiliation(s)
- Qiongqiong Yan
- UCD-Centre for Food Safety, WHO Collaborating Centre for Research, Reference and Training on Cronobacter, School of Public Health, Physiotherapy and Population Science, University College Dublin , Dublin , Ireland
| | - Séamus Fanning
- UCD-Centre for Food Safety, WHO Collaborating Centre for Research, Reference and Training on Cronobacter, School of Public Health, Physiotherapy and Population Science, University College Dublin , Dublin , Ireland
| |
Collapse
|
22
|
Abstract
Bacteria use a chemical communication process called quorum sensing to monitor cell density and to alter behavior in response to fluctuations in population numbers. Previous studies with Vibrio harveyi have shown that LuxR, the master quorum-sensing regulator, activates and represses >600 genes. These include six genes that encode homologs of the Escherichia coli Bet and ProU systems for synthesis and transport, respectively, of glycine betaine, an osmoprotectant used during osmotic stress. Here we show that LuxR activates expression of the glycine betaine operon betIBA-proXWV, which enhances growth recovery under osmotic stress conditions. BetI, an autorepressor of the V. harveyi betIBA-proXWV operon, activates the expression of genes encoding regulatory small RNAs that control quorum-sensing transitions. Connecting quorum-sensing and glycine betaine pathways presumably enables V. harveyi to tune its execution of collective behaviors to its tolerance to stress.
Collapse
|
23
|
Murdock L, Burke T, Coumoundouros C, Culham DE, Deutch CE, Ellinger J, Kerr CH, Plater SM, To E, Wright G, Wood JM. Analysis of strains lacking known osmolyte accumulation mechanisms reveals contributions of osmolytes and transporters to protection against abiotic stress. Appl Environ Microbiol 2014; 80:5366-78. [PMID: 24951793 PMCID: PMC4136119 DOI: 10.1128/aem.01138-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 06/17/2014] [Indexed: 11/20/2022] Open
Abstract
Osmolyte accumulation and release can protect cells from abiotic stresses. In Escherichia coli, known mechanisms mediate osmotic stress-induced accumulation of K(+) glutamate, trehalose, or zwitterions like glycine betaine. Previous observations suggested that additional osmolyte accumulation mechanisms (OAMs) exist and their impacts may be abiotic stress specific. Derivatives of the uropathogenic strain CFT073 and the laboratory strain MG1655 lacking known OAMs were created. CFT073 grew without osmoprotectants in minimal medium with up to 0.9 M NaCl. CFT073 and its OAM-deficient derivative grew equally well in high- and low-osmolality urine pools. Urine-grown bacteria did not accumulate large amounts of known or novel osmolytes. Thus, CFT073 showed unusual osmotolerance and did not require osmolyte accumulation to grow in urine. Yeast extract and brain heart infusion stimulated growth of the OAM-deficient MG1655 derivative at high salinity. Neither known nor putative osmoprotectants did so. Glutamate and glutamine accumulated after growth with either organic mixture, and no novel osmolytes were detected. MG1655 derivatives retaining individual OAMs were created. Their abilities to mediate osmoprotection were compared at 15°C, 37°C without or with urea, and 42°C. Stress protection was not OAM specific, and variations in osmoprotectant effectiveness were similar under all conditions. Glycine betaine and dimethylsulfoniopropionate (DMSP) were the most effective. Trimethylamine-N-oxide (TMAO) was a weak osmoprotectant and a particularly effective urea protectant. The effectiveness of glycine betaine, TMAO, and proline as osmoprotectants correlated with their preferential exclusion from protein surfaces, not with their propensity to prevent protein denaturation. Thus, their effectiveness as stress protectants correlated with their ability to rehydrate the cytoplasm.
Collapse
Affiliation(s)
- Lindsay Murdock
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Tangi Burke
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Chelsea Coumoundouros
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Doreen E Culham
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Charles E Deutch
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada School of Mathematical and Natural Sciences, Arizona State University at the West Campus, Phoenix, Arizona, USA
| | - James Ellinger
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Craig H Kerr
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Samantha M Plater
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Eric To
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Geordie Wright
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Janet M Wood
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
24
|
Sim M, Lim B, Sim SH, Kim D, Jung E, Lee Y, Lee K. Two tandem RNase III cleavage sites determine betT mRNA stability in response to osmotic stress in Escherichia coli. PLoS One 2014; 9:e100520. [PMID: 24956275 PMCID: PMC4067347 DOI: 10.1371/journal.pone.0100520] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 05/28/2014] [Indexed: 11/19/2022] Open
Abstract
While identifying genes regulated by ribonuclease III (RNase III) in Escherichia coli, we observed that steady-state levels of betT mRNA, which encodes a transporter mediating the influx of choline, are dependent on cellular concentrations of RNase III. In the present study, we also observed that steady-state levels of betT mRNA are dependent on RNase III activity upon exposure to osmotic stress, indicating the presence of cis-acting elements controlled by RNase III in betT mRNA. Primer extension analyses of betT mRNA revealed two tandem RNase III cleavage sites in its stem-loop region, which were biochemically confirmed via in vitro cleavage assays. Analyses of cleavage sites suggested the stochastic selection of cleavage sites by RNase III, and mutational analyses indicated that RNase III cleavage at either site individually is insufficient for efficient betT mRNA degradation. In addition, both the half-life and abundance of betT mRNA were significantly increased in association with decreased RNase III activity under hyper-osmotic stress conditions. Our findings demonstrate that betT mRNA stability is controlled by RNase III at the post-transcriptional level under conditions of osmotic stress.
Collapse
Affiliation(s)
- Minji Sim
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Boram Lim
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Se-Hoon Sim
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Daeyoung Kim
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Euihan Jung
- Department of Chemistry, KAIST, Daejeon, Republic of Korea
| | - Younghoon Lee
- Department of Chemistry, KAIST, Daejeon, Republic of Korea
| | - Kangseok Lee
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
25
|
Finn S, Condell O, McClure P, Amézquita A, Fanning S. Mechanisms of survival, responses and sources of Salmonella in low-moisture environments. Front Microbiol 2013; 4:331. [PMID: 24294212 PMCID: PMC3827549 DOI: 10.3389/fmicb.2013.00331] [Citation(s) in RCA: 210] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 10/18/2013] [Indexed: 01/22/2023] Open
Abstract
Some Enterobacteriaceae possess the ability to survive in low-moisture environments for extended periods of time. Many of the reported food-borne outbreaks associated with low-moisture foods involve Salmonella contamination. The control of Salmonella in low-moisture foods and their production environments represents a significant challenge for all food manufacturers. This review summarizes the current state of knowledge with respect to Salmonella survival in intermediate- and low-moisture food matrices and their production environments. The mechanisms utilized by this bacterium to ensure their survival in these dry conditions remain to be fully elucidated, however, in depth transcriptomic data is now beginning to emerge regarding this observation. Earlier research work described the effect(s) that low-moisture can exert on the long-term persistence and heat tolerance of Salmonella, however, data are also now available highlighting the potential cross-tolerance to other stressors including commonly used microbicidal agents. Sources and potential control measures to reduce the risk of contamination will be explored. By extending our understanding of these geno- and phenotypes, we may be able to exploit them to improve food safety and protect public health.
Collapse
Affiliation(s)
- Sarah Finn
- UCD Centre for Food Safety, School of Public Health, Physiotherapy and Population Science, University College DublinBelfield, Dublin 4, Ireland
| | - Orla Condell
- UCD Centre for Food Safety, School of Public Health, Physiotherapy and Population Science, University College DublinBelfield, Dublin 4, Ireland
| | - Peter McClure
- Safety and Environmental Assurance Centre, Unilever, Colworth Science ParkSharnbrook, Bedfordshire, UK
| | - Alejandro Amézquita
- Safety and Environmental Assurance Centre, Unilever, Colworth Science ParkSharnbrook, Bedfordshire, UK
| | - Séamus Fanning
- UCD Centre for Food Safety, School of Public Health, Physiotherapy and Population Science, University College DublinBelfield, Dublin 4, Ireland
| |
Collapse
|
26
|
Yan Q, Power KA, Cooney S, Fox E, Gopinath GR, Grim CJ, Tall BD, McCusker MP, Fanning S. Complete genome sequence and phenotype microarray analysis of Cronobacter sakazakii SP291: a persistent isolate cultured from a powdered infant formula production facility. Front Microbiol 2013; 4:256. [PMID: 24032028 PMCID: PMC3759002 DOI: 10.3389/fmicb.2013.00256] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 08/13/2013] [Indexed: 11/13/2022] Open
Abstract
Outbreaks of human infection linked to the powdered infant formula (PIF) food chain and associated with the bacterium Cronobacter, are of concern to public health. These bacteria are regarded as opportunistic pathogens linked to life-threatening infections predominantly in neonates, with an under developed immune system. Monitoring the microbiological ecology of PIF production sites is an important step in attempting to limit the risk of contamination in the finished food product. Cronobacter species, like other microorganisms can adapt to the production environment. These organisms are known for their desiccation tolerance, a phenotype that can aid their survival in the production site and PIF itself. In evaluating the genome data currently available for Cronobacter species, no sequence information has been published describing a Cronobacter sakazakii isolate found to persist in a PIF production facility. Here we report on the complete genome sequence of one such isolate, Cronobacter sakazakii SP291 along with its phenotypic characteristics. The genome of C. sakazakii SP291 consists of a 4.3-Mb chromosome (56.9% GC) and three plasmids, denoted as pSP291-1, [118.1-kb (57.2% GC)], pSP291-2, [52.1-kb (49.2% GC)], and pSP291-3, [4.4-kb (54.0% GC)]. When C. sakazakii SP291 was compared to the reference C. sakazakii ATCC BAA-894, which is also of PIF origin, the annotated genome data identified two interesting functional categories, comprising of genes related to the bacterial stress response and resistance to antimicrobial and toxic compounds. Using a phenotypic microarray (PM), we provided a full metabolic profile comparing C. sakazakii SP291 and the previously sequenced C. sakazakii ATCC BAA-894. These data extend our understanding of the genome of this important neonatal pathogen and provides further insights into the genotypes associated with features that can contribute to its persistence in the PIF environment.
Collapse
Affiliation(s)
- Qiongqiong Yan
- UCD Centre for Food Safety, WHO Collaborating Centre for Research, Reference and Training on Cronobacter, School of Public Health, Physiotherapy and Population Science, University College Dublin Dublin, Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
ProP is required for the survival of desiccated Salmonella enterica serovar typhimurium cells on a stainless steel surface. Appl Environ Microbiol 2013; 79:4376-84. [PMID: 23666329 DOI: 10.1128/aem.00515-13] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Consumers trust commercial food production to be safe, and it is important to strive to improve food safety at every level. Several outbreaks of food-borne disease have been caused by Salmonella strains associated with dried food. Currently we do not know the mechanisms used by Salmonella enterica serovar Typhimurium to survive in desiccated environments. The aim of this study was to discover the responses of S. Typhimurium ST4/74 at the transcriptional level to desiccation on a stainless steel surface and to subsequent rehydration. Bacterial cells were dried onto the same steel surfaces used during the production of dry foods, and RNA was recovered for transcriptomic analysis. Subsequently, dried cells were rehydrated and were again used for transcriptomic analysis. A total of 266 genes were differentially expressed under desiccation stress compared with a static broth culture. The osmoprotectant transporters proP, proU, and osmU (STM1491 to STM1494) were highly upregulated by drying. Deletion of any one of these transport systems resulted in a reduction in the long-term viability of S. Typhimurium on a stainless steel food contact surface. The proP gene was critical for survival; proP deletion mutants could not survive desiccation for long periods and were undetectable after 4 weeks. Following rehydration, 138 genes were differentially expressed, with upregulation observed for genes such as proP, proU, and the phosphate transport genes (pstACS). In time, this knowledge should prove valuable for understanding the underlying mechanisms involved in pathogen survival and should lead to improved methods for control to ensure the safety of intermediate- and low-moisture foods.
Collapse
|
28
|
Gul N, Poolman B. Functional reconstitution and osmoregulatory properties of the ProU ABC transporter from Escherichia coli. Mol Membr Biol 2012; 30:138-48. [PMID: 23249124 DOI: 10.3109/09687688.2012.754060] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The ATP-binding cassette (ABC) transporter ProU from Escherichia coli translocates a wide range of compatible solutes and contributes to the regulation of cell volume, which is particularly important when the osmolality of the environment fluctuates. We have purified the components of ProU, i.e., the substrate-binding protein ProX, the nucleotide-binding protein ProV and the transmembrane protein ProW, and reconstituted the full transporter complex in liposomes. We engineered a lipid anchor to ProX for surface tethering of this protein to ProVW-containing proteoliposomes. We show that glycine betaine binds to ProX with high-affinity and is transported via ProXVW in an ATP-dependent manner. The activity ProU is salt and anionic lipid-dependent and mimics the ionic strength-gating of transport of the homologous OpuA system.
Collapse
Affiliation(s)
- Nadia Gul
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, Netherlands
| | | |
Collapse
|
29
|
Frossard SM, Khan AA, Warrick EC, Gately JM, Hanson AD, Oldham ML, Sanders DA, Csonka LN. Identification of a third osmoprotectant transport system, the osmU system, in Salmonella enterica. J Bacteriol 2012; 194:3861-71. [PMID: 22609924 PMCID: PMC3416524 DOI: 10.1128/jb.00495-12] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 05/09/2012] [Indexed: 11/20/2022] Open
Abstract
The growth of Salmonella enterica serovar Typhimurium mutants lacking the ProP and ProU osmoprotectant transport systems is stimulated by glycine betaine in high-osmolarity media, suggesting that this organism has an additional osmoprotectant transport system. Bioinformatic analysis revealed that the genome of this organism contains a hitherto-unidentified operon, designated osmU, consisting of four genes whose products show high similarity to ABC-type transport systems for osmoprotectants in other bacteria. The osmU operon was inactivated by a site-directed deletion, which abolished the ability of glycine betaine to alleviate the inhibitory effect of high osmolarity and eliminated the accumulation of [(14)C]glycine betaine and [(14)C]choline-O-sulfate in high-osmolarity media in a strain lacking the ProP and ProU systems. Although the OsmU system can take up glycine betaine and choline-O-sulfate, these two osmoprotectants are recognized at low affinity by this transporter, suggesting that there might be more efficient substrates that are yet to be discovered. The transcription of osmU is induced 23-fold by osmotic stress (0.3 M NaCl). The osmU operon is present in the genomes of a number of Enterobacteriaceae, and orthologs of the OsmU system can be recognized in a wide variety of Bacteria and Archaea. The structure of the periplasmic binding protein component of this transporter, OsmX, was modeled on the crystallographic structure of the glycine betaine-binding protein ProX of Archaeoglobus fulgidus; the resultant model indicated that the amino acids that constitute substrate-binding site, including an "aromatic cage" made up of four tyrosines, are conserved between these two proteins.
Collapse
Affiliation(s)
- Stephen M. Frossard
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Aftab A. Khan
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Eric C. Warrick
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Jonathan M. Gately
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Andrew D. Hanson
- Horticultural Sciences Department, University of Florida, Gainesville, Florida, USA
| | - Michael L. Oldham
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - David Avram Sanders
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Laszlo N. Csonka
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
30
|
Gasper BJ, McCreight JC, Banschbach K, Bustion A, Davis C, Divecha R, Donoho M, Elmore AG, Garrison CM, Glenn S, Goeman DC, Haby M, Hooks T, Korman AM, Kowal J, Kuschke S, Mellencamp JE, Meyer M, Myers AN, Nichols MF, Pfeifer A, Porucznik A, Qu X, Ramos-Miller M, Reed RR, Sagintayev A, Singel JM, Smith A, Valle ME, Venderley A, Weber CA, Zaffino AJ, Csonka LN, Gardner SM. Isolation and preliminary characterization of amino acid substitution mutations that increase the activity of the osmoregulated ProP protein of Salmonella enterica serovar Typhimurium. DNA Cell Biol 2012; 31:956-67. [PMID: 22360681 DOI: 10.1089/dna.2011.1510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In Enterobacteriaceae, the ProP protein, which takes up proline and glycine betaine, is subject to a post-translational control mechanism that increases its activity at high osmolarity. In order to investigate the osmoregulatory mechanism of the Salmonella enterica ProP, we devised a positive selection for mutations that conferred increased activity on this protein at low osmolarity. The selection involved the isolation of mutations in a proline auxotroph that resulted in increased accumulation of proline via the ProP system in the presence of glycine betaine, which is a competitive inhibitor of proline uptake by this permease. This selection was performed by first-year undergraduates in two semesters of a research-based laboratory course. The students generated sixteen mutations resulting in six different single amino acids substitutions. They determined the effects of the mutations on the growth rates of the cells in media of high and low osmolarity in the presence of low concentrations of proline or glycine betaine. Furthermore, they identified the mutations by DNA sequencing and displayed the mutated amino acids on a putative three-dimensional structure of the protein. This analysis suggested that all six amino acid substitutions are residues in trans-membrane helices that have been proposed to contribute to the formation of the transport pore, and, thus, may affect the substrate binding site of the protein.
Collapse
Affiliation(s)
- Brittany J Gasper
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Doukyu N, Ishikawa K, Watanabe R, Ogino H. Improvement in organic solvent tolerance by double disruptions of proV and marR genes in Escherichia coli. J Appl Microbiol 2012; 112:464-74. [PMID: 22257006 DOI: 10.1111/j.1365-2672.2012.05236.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIMS To investigate the involvement of osmoprotectant transporters in organic solvent tolerance in Escherichia coli and to construct an E. coli strain with high organic solvent tolerance. METHODS AND RESULTS The organic solvent tolerance of ΔbetT, ΔproV, ΔproP or ΔputP single-gene knockout mutants of E. coli K-12 strain was examined. Among these mutants, the organic solvent tolerance of the ΔproV mutant remarkably increased compared with that of the parent strain. It has been known that a marR mutation confers tolerance on E. coli to organic solvents. A ΔproV and ΔmarR double-gene mutant was more tolerant to organic solvents than the ΔproV or ΔmarR single-gene mutant. The n-hexane amount accumulated in E. coli cells was examined after incubation in an n-hexane-aqueous medium two-phase system. The intracellular n-hexane level in the ΔproV and ΔmarR double-gene mutant was kept lower than those of the parent strain, ΔproV mutant and ΔmarR mutant. CONCLUSIONS The organic solvent tolerance level in E. coli highly increased by dual disruption of proV and marR. SIGNIFICANCE AND IMPACT OF THE STUDY This study suggests a new strategy for increasing the organic solvent tolerance level in E. coli to improve the usability of the whole-cell biocatalysts in two-phase systems employing organic solvents.
Collapse
Affiliation(s)
- N Doukyu
- Bio-Nano Electronic Research Center, Toyo University, Kawagoe, Saitama, Japan.
| | | | | | | |
Collapse
|
32
|
Metris A, George S, Baranyi J. Modelling osmotic stress by Flux Balance Analysis at the genomic scale. Int J Food Microbiol 2011; 152:123-8. [PMID: 21807434 DOI: 10.1016/j.ijfoodmicro.2011.06.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 04/05/2011] [Accepted: 06/20/2011] [Indexed: 01/16/2023]
Abstract
Predictive microbiology for food safety is still primarily based on empirical models describing the effect of the environmental conditions of the food on the kinetics of the growth of foodborne pathogens. One way to make these models more mechanistic is to use systems biology methods such as Flux Balance Analysis (FBA). FBA consists of evaluating the possible fluxes through the metabolic reactions taking place in a cell. Using this method, the specific growth rate of Escherichia coli can be predicted by assuming, as an objective function, that the cells maximise their biomass production during balanced growth. Whilst this works under favourable environmental conditions, our simulations show that this objective function is not sufficient to explain the decrease of the growth rate due to osmotic stress. One feature of the FBA models is that the parameters and objective function in general refer to chemostat experiments where the carbon source is the main limiting factor. This may be relevant to some foods where the carbon to nitrogen balance is limiting but, in general, it is the physico-chemical conditions which are the most stringent. We therefore need to examine the effect of such constraints on the fluxes and/or modify the objective function, or to elaborate the metabolic model by taking into account other functional levels of the cell in order to develop mechanistic predictive models for osmotic stress conditions.
Collapse
Affiliation(s)
- Aline Metris
- Institute of Food Research, Norwich Research Park, Colney, Norwich, NR4 7UA, UK
| | | | | |
Collapse
|
33
|
Zhou K, George SM, Métris A, Li PL, Baranyi J. Lag phase of Salmonella enterica under osmotic stress conditions. Appl Environ Microbiol 2011; 77:1758-62. [PMID: 21193660 PMCID: PMC3067304 DOI: 10.1128/aem.02629-10] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 12/22/2010] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Typhimurium was grown at salt concentrations ranging from 0.5 to 7.5% in minimal medium with and without added osmoprotectant and in a rich medium. In minimal medium, the cells showed an initial decline period, and consequently the definition of the lag time of the resultant log count curve was revised. The model of Baranyi and Roberts (Int. J. Food Microbiol. 23:277-294, 1994) was modified to take into account the initial decline period, based on the assumption that the log count curve of the total population was the sum of a dying and a surviving-then-growing subpopulation. The lag time was defined as the lag of the surviving subpopulation. It was modeled by means of a parameter quantifying the biochemical work the surviving cells carry out during this phase, the "work to be done." The logarithms of the maximum specific growth rates as a function of the water activity in the three media differed only by additive constants, which gave a theoretical basis for bias factors characterizing the relationships between different media. Models for the lag and the "work to be done" as a function of the water activity showed similar properties, but in rich medium above 5% salt concentrations, the data showed a maximum for this work. An accurate description of the lag time is important to avoid food wastage, which is an issue of increasing significance in the food industry, while maintaining food safety standards.
Collapse
Affiliation(s)
- K. Zhou
- College of Food Science & Nutritional Engineering, China Agricultural University, Qinghua East Road, Beijing 100083, China, Institute of Food Research, Norwich Research Park, Norwich NR4 7UA, United Kingdom
| | - S. M. George
- College of Food Science & Nutritional Engineering, China Agricultural University, Qinghua East Road, Beijing 100083, China, Institute of Food Research, Norwich Research Park, Norwich NR4 7UA, United Kingdom
| | - A. Métris
- College of Food Science & Nutritional Engineering, China Agricultural University, Qinghua East Road, Beijing 100083, China, Institute of Food Research, Norwich Research Park, Norwich NR4 7UA, United Kingdom
| | - P. L. Li
- College of Food Science & Nutritional Engineering, China Agricultural University, Qinghua East Road, Beijing 100083, China, Institute of Food Research, Norwich Research Park, Norwich NR4 7UA, United Kingdom
| | - J. Baranyi
- College of Food Science & Nutritional Engineering, China Agricultural University, Qinghua East Road, Beijing 100083, China, Institute of Food Research, Norwich Research Park, Norwich NR4 7UA, United Kingdom
| |
Collapse
|
34
|
Borwankar T, Röthlein C, Zhang G, Techen A, Dosche C, Ignatova Z. Natural Osmolytes Remodel the Aggregation Pathway of Mutant Huntingtin Exon 1. Biochemistry 2011; 50:2048-60. [DOI: 10.1021/bi1018368] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tejas Borwankar
- Department of Biochemistry, Institute of Biochemistry and Biology, and ‡Department of Physical Chemistry, Insitute of Chemistry, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14467 Potsdam, Germany
| | - Christoph Röthlein
- Department of Biochemistry, Institute of Biochemistry and Biology, and ‡Department of Physical Chemistry, Insitute of Chemistry, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14467 Potsdam, Germany
| | - Gong Zhang
- Department of Biochemistry, Institute of Biochemistry and Biology, and ‡Department of Physical Chemistry, Insitute of Chemistry, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14467 Potsdam, Germany
| | - Anne Techen
- Department of Biochemistry, Institute of Biochemistry and Biology, and ‡Department of Physical Chemistry, Insitute of Chemistry, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14467 Potsdam, Germany
| | - Carsten Dosche
- Department of Biochemistry, Institute of Biochemistry and Biology, and ‡Department of Physical Chemistry, Insitute of Chemistry, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14467 Potsdam, Germany
| | - Zoya Ignatova
- Department of Biochemistry, Institute of Biochemistry and Biology, and ‡Department of Physical Chemistry, Insitute of Chemistry, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14467 Potsdam, Germany
| |
Collapse
|
35
|
Affiliation(s)
- J L Milner
- Department of Chemistry and Biochemistry, University of Guelph Guelph, Ontario, Canada
| | | | | |
Collapse
|
36
|
Role of proP and proU in betaine uptake by Yersinia enterocolitica under cold and osmotic stress conditions. Appl Environ Microbiol 2008; 75:1471-7. [PMID: 19114512 DOI: 10.1128/aem.01644-08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Yersinia enterocolitica is a food-borne pathogen with the ability to grow at cold temperatures and tolerate high osmolarity. The bacterium tolerates osmotic stress by intracellular accumulation of osmolytes, such as betaine. The proP gene and proU operon of Y. enterocolitica were sequenced, and single (ProP(-) ProU(+) and ProP(+) ProU(-)) and double (ProP(-) ProU(-)) mutants were generated. Upon exposure to osmotic or chill stress, the single and double mutants demonstrated a reduction in betaine uptake compared to that in the wild type, suggesting that proP and proU play a role in betaine uptake during osmotic and chill stress responses of Y. enterocolitica.
Collapse
|
37
|
Chen C, Beattie GA. Pseudomonas syringae BetT is a low-affinity choline transporter that is responsible for superior osmoprotection by choline over glycine betaine. J Bacteriol 2008; 190:2717-25. [PMID: 18156257 PMCID: PMC2293270 DOI: 10.1128/jb.01585-07] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2007] [Accepted: 12/12/2007] [Indexed: 11/20/2022] Open
Abstract
The plant pathogen Pseudomonas syringae derives better osmoprotection from choline than from glycine betaine, unlike most bacteria that have been characterized. In this report, we identified a betaine/carnitine/choline family transporter (BCCT) in P. syringae pv. tomato strain DC3000 that mediates the transport of choline and acetylcholine. This transporter has a particularly low affinity (K(m) of 876 microM) and high capacity (V(max) of 80 nmol/min/mg of protein) for choline transport relative to other known BCCTs. Although BetT activity increased in response to hyperosmolarity, BetT mediated significant uptake under low-osmolarity conditions, suggesting a role in transport for both osmoprotection and catabolism. Growth studies with mutants deficient in BetT and other choline transporters demonstrated that BetT was responsible for the superior osmoprotection conferred to P. syringae by choline over glycine betaine when these compounds were provided at high concentrations (>100 microM). These results suggest that P. syringae has evolved to survive in relatively choline-rich habitats, a prediction that is supported by the common association of P. syringae with plants and the widespread production of choline, but genus- and species-specific production of glycine betaine, by plants. Among the three putative BCCT family transporters in Pseudomonas aeruginosa and six in Pseudomonas putida, different transporters were predicted to function based on similarity to Escherichia coli BetT than to P. syringae BetT. Functional P. putida and P. aeruginosa transporters were identified, and their possession of a long C-terminal tail suggested an osmoregulatory function for this tail; this function was confirmed for P. syringae BetT using deletion derivatives.
Collapse
Affiliation(s)
- Chiliang Chen
- Iowa State University, Department of Plant Pathology, 207 Science I, Ames, IA 50011-3211, USA
| | | |
Collapse
|
38
|
Booth IR, Cairney J, Sutherland L, Higgins CF. Enteric bacteria and osmotic stress: an integrated homeostatic system. ACTA ACUST UNITED AC 2008. [DOI: 10.1111/j.1365-2672.1988.tb04644.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
39
|
Schmidt S, Pflüger K, Kögl S, Spanheimer R, Müller V. The salt-induced ABC transporter Ota of the methanogenic archaeonMethanosarcina mazeiGö1 is a glycine betaine transporter. FEMS Microbiol Lett 2007; 277:44-9. [DOI: 10.1111/j.1574-6968.2007.00938.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
40
|
Chen C, Beattie GA. Characterization of the osmoprotectant transporter OpuC from Pseudomonas syringae and demonstration that cystathionine-beta-synthase domains are required for its osmoregulatory function. J Bacteriol 2007; 189:6901-12. [PMID: 17660277 PMCID: PMC2045199 DOI: 10.1128/jb.00763-07] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The plant pathogen Pseudomonas syringae may cope with osmotic stress on plants, in part, by importing osmoprotective compounds. In this study, we found that P. syringae pv. tomato strain DC3000 was distinct from most bacterial species in deriving greater osmoprotection from exogenous choline than from glycine betaine. This superior osmoprotection was correlated with a higher capacity for uptake of choline than for uptake of glycine betaine. Of four putative osmoregulatory ABC transporters in DC3000, one, designated OpuC, functioned as the primary or sole transporter for glycine betaine and as one of multiple transporters for choline under high osmolarity. Surprisingly, the homolog of the well-characterized ProU transporter from Escherichia coli and Salmonella enterica serovar Typhimurium did not function in osmoprotection. The P. syringae pv. tomato OpuC transporter was more closely related to the Bacillus subtilis and Listeria monocytogenes OpuC transporters than to known osmoprotectant transporters in gram-negative bacteria based on sequence similarity and genetic arrangement. The P. syringae pv. tomato OpuC transporter had a high affinity for glycine betaine, a low affinity for choline, and a broad substrate specificity that included acetylcholine, carnitine, and proline betaine. Tandem cystathionine-beta-synthase (CBS) domains in the ATP-binding component of OpuC were required for transporter function. The presence of these CBS domains was correlated with osmoregulatory function among the putative transporters examined in DC3000 and was found to be predictive of functional osmoregulatory transporters in other pseudomonads. These results provide the first functional evaluation of an osmoprotectant transporter in a Pseudomonas species and demonstrate the usefulness of the CBS domains as predictors of osmoregulatory activity.
Collapse
Affiliation(s)
- Chiliang Chen
- Iowa State University, Department of Plant Pathology, 207 Science I, Ames, IA 50011-3211, USA
| | | |
Collapse
|
41
|
Nagarajavel V, Madhusudan S, Dole S, Rahmouni AR, Schnetz K. Repression by binding of H-NS within the transcription unit. J Biol Chem 2007; 282:23622-30. [PMID: 17569663 DOI: 10.1074/jbc.m702753200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
H-NS inhibits transcription by forming repressing nucleoprotein complexes next to promoters. We investigated repression by binding of H-NS within the transcription unit using the bgl and proU operons. Repression of both operons requires a downstream regulatory element (DRE) in addition to an upstream element (URE). In bgl, H-NS binds to a region located between 600 to 700 bp downstream of the transcription start site, whereas in proU the DRE extends up to position +270. We show that binding of H-NS to the bgl-DRE inhibits transcription initiation at a step before open complex formation, as shown before for proU. This was shown by determining the occupancy of the bgl transcription unit by RNA polymerases, expression analysis of bgl and proU reporter constructs, and chloroacetaldehyde footprinting of RNA polymerase promoter complexes. The chloroacetaldehyde footprinting also revealed that RNA polymerase is "poised" at the osmoregulated sigma70-dependent proU promoter at low osmolarity, whereas at high osmolarity poising of RNA polymerase and repression by H-NS are reduced. Furthermore, repression by H-NS via the URE and DRE is synergistic, and the efficiency of repression by H-NS via the DRE inversely correlates with the promoter activity. Repression is high for a promoter of low activity, whereas it is low for a strong promoter. Inefficient repression of strong promoters by H-NS via a DRE may account for high induction levels of proU at high osmolarity and for bgl upon disruption of the URE.
Collapse
Affiliation(s)
- V Nagarajavel
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany
| | | | | | | | | |
Collapse
|
42
|
Weinand M, Krämer R, Morbach S. Characterization of compatible solute transporter multiplicity in Corynebacterium glutamicum. Appl Microbiol Biotechnol 2007; 76:701-8. [PMID: 17390131 DOI: 10.1007/s00253-007-0938-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 03/09/2007] [Accepted: 03/10/2007] [Indexed: 10/23/2022]
Abstract
The soil bacterium Corynebacterium glutamicum is efficiently protected against hyperosmotic stress by a high redundancy of uptake systems and biosynthesis pathways for compatible solutes. We have previously identified and analyzed four osmoregulated uptake systems for betaine, ectoine, and proline. Because of overlapping substrate specificities, it is not possible to quantify their individual contribution to the stress response in wild-type cells. Using a set of strains in which only one uptake system for compatible solutes is present, we investigated the expression regulation at their transcriptional and translational level. The carrier ectP was found to be regulated at the level of transcription, but the already high maximal uptake capacity of approx. 30 nmol/(min mg cell dry mass, cdm) was not further elevated if the medium osmolality was severely increased, indicating that the amount of EctP is not changed. Thus, EctP may represent the rescue system for C. glutamicum. The betP, lcoP, and proP genes were induced upon hyperosmotic conditions, resulting in a 3-10-fold increase of their transport activity. These systems are thus used to fine-tune the uptake capacity for compatible solutes to the actual demands of the cell. ProP represents the most strongly regulated compatible solute uptake system in C. glutamicum.
Collapse
Affiliation(s)
- Martin Weinand
- Institut für Biochemie der Universität zu Köln, Zülpicher Str. 47, 50674, Cologne, Germany
| | | | | |
Collapse
|
43
|
Bhargava S. Genetically modified cyanobacterium Nostoc muscorum overproducing proline in response to salinity and osmotic stresses. J Biosci 2007; 31:265-72. [PMID: 16809859 DOI: 10.1007/bf02703919] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the parent Nostoc muscorum an active proline oxidase enzyme is required to assimilate exogenous proline as a fixed nitrogen source. Cyanobacterial mutants, resistant to growth inhibitory action of proline analogue L-azetidine-2-carboxylate (Ac-R), were deficient in proline oxidase activity, and were over-accumulators of proline. Proline over-accumulation, resulting either from mutational acquisition of the Ac-R phenotype, or from salinity-induced uptake of exogenous proline, confirmed enhanced salinity/osmotic tolerance in the mutant strain. The nitrogenase activity and photosynthetic O 2 evolution of the parent were sensitive to both salinity as well as osmotic stresses than of Ac-R mutant strain. In addition, the mutation to Ac-resistant phenotype showed no alteration in salinity inducible potassium transport system in the cyanobacterium.
Collapse
Affiliation(s)
- Santosh Bhargava
- Department of Botany, Swami Vivekanand Government College, Raisen 464 551, India.
| |
Collapse
|
44
|
Onraedt A, De Mey M, Walcarius B, Soetaert W, Vandamme EJ. Transport kinetics of ectoine, an osmolyte produced by Brevibacterium epidermis. Biotechnol Lett 2006; 28:1741-7. [PMID: 16900330 DOI: 10.1007/s10529-006-9149-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Accepted: 06/26/2006] [Indexed: 11/30/2022]
Abstract
Brevibacterium epidermis DSM 20659 is a halotolerant Gram-positive bacterium which can synthesize the osmolyte, ectoine, but prefers to take it up from its environment. The present study revealed that B. epidermis is equipped with at least one transport system for ectoine, with a maximal transport velocity of 15.7 +/- 4.3 nmol/g CDW.min. The transport requires energy (ATP) and is completely inhibited by the proton uncoupler, CCCP. The ectoine uptake system is constitutively expressed at a basal level of activity and its activity is immediately 10-fold increased by hyper-osmotic stress. Initial uptake rates are not influenced by the intensity of the hyper-osmotic shock but the duration of the increased activity of the uptake system could be directly related to the osmotic strength of the assay solution. Competition assays indicate that betaine, but not proline, is also transported by the ectoine uptake system.
Collapse
Affiliation(s)
- A Onraedt
- Laboratory of Industrial Microbiology and Biocatalysis, Department of Biochemical and Microbial Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | | | | | | | | |
Collapse
|
45
|
Choquet G, Jehan N, Pissavin C, Blanco C, Jebbar M. OusB, a broad-specificity ABC-type transporter from Erwinia chrysanthemi, mediates uptake of glycine betaine and choline with a high affinity. Appl Environ Microbiol 2005; 71:3389-98. [PMID: 16000740 PMCID: PMC1169054 DOI: 10.1128/aem.71.7.3389-3398.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability of Erwinia chrysanthemi to cope with environments of elevated osmolality is due in part to the transport and accumulation of osmoprotectants. In this study we have identified a high-affinity glycine betaine and choline transport system in E. chrysanthemi. By using a pool of Tn5-B21 ousA mutants, we isolated a mutant that could grow in the presence of a toxic analogue of glycine betaine (benzyl-glycine betaine) at high osmolalities. This mutant was impaired in its ability to transport all effective osmoprotectants in E. chrysanthemi. The DNA sequence of the regions flanking the transposon insertion site revealed three chromosomal genes (ousVWX) that encode components of an ABC-type transporter (OusB): OusV (ATPase), OusW (permease), and OusX (periplasmic binding protein). The OusB components showed a significant degree of sequence identity to components of ProU from Salmonella enterica serovar Typhimurium and Escherichia coli. OusB was found to restore the uptake of glycine betaine and choline through functional complementation of an E. coli mutant defective in both ProU and ProP osmoprotectant uptake systems. Competition experiments demonstrated that choline, dimethylsulfoniacetate, dimethylsulfoniopropionate, and ectoine were effective competitors for OusB-mediated betaine transport but that carnitine, pipecolate, and proline were not effective. In addition, the analysis of single and double mutants showed that OusA and OusB were the only osmoprotectant transporters operating in E. chrysanthemi.
Collapse
Affiliation(s)
- Gwénaëlle Choquet
- Université de Rennes I, UMR-CNRS 6026, Département Osmorégulation chez les Bactéries, Campus de Beaulieu, Ave. du Général Leclerc, 35042 Rennes, France
| | - Nathalie Jehan
- Université de Rennes I, UMR-CNRS 6026, Département Osmorégulation chez les Bactéries, Campus de Beaulieu, Ave. du Général Leclerc, 35042 Rennes, France
| | - Christine Pissavin
- Université de Rennes I, UMR-CNRS 6026, Département Osmorégulation chez les Bactéries, Campus de Beaulieu, Ave. du Général Leclerc, 35042 Rennes, France
| | - Carlos Blanco
- Université de Rennes I, UMR-CNRS 6026, Département Osmorégulation chez les Bactéries, Campus de Beaulieu, Ave. du Général Leclerc, 35042 Rennes, France
| | - Mohamed Jebbar
- Université de Rennes I, UMR-CNRS 6026, Département Osmorégulation chez les Bactéries, Campus de Beaulieu, Ave. du Général Leclerc, 35042 Rennes, France
- Corresponding author. Mailing address: Université de Rennes I, UMR-CNRS 6026, Département Osmorégulation chez les Bactéries, Campus de Beaulieu, Av. du Général Leclerc, 35042 Rennes, France. Phone: (33) 2-23-23-68-52. Fax: (33) 2-23-23-67-75. E-mail:
| |
Collapse
|
46
|
Berrier C, Coulombe A, Szabo I, Zoratti M, Ghazi A. Gadolinium ion inhibits loss of metabolites induced by osmotic shock and large stretch-activated channels in bacteria. ACTA ACUST UNITED AC 2005; 206:559-65. [PMID: 1350764 DOI: 10.1111/j.1432-1033.1992.tb16960.x] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacteria subjected to a hypotonic osmotic shock lose internal ions and also metabolites, without lysis of the cells. We show that the presence in the shock medium, at submillimolar concentrations, of the ion gadolinium, recently shown to block stretch-activated channels in Xenopus oocytes [Yang, X.-C. & Sachs, F. (1989) Science 243, 1068-1071], was sufficient to inhibit shock-induced release of metabolites such as lactose and ATP in Escherichia coli and ATP in Streptococcus faecalis. Moreover, gadolinium was observed, in patch-clamp experiments, to inhibit the giant stretch-activated channels of E. coli, S. faecalis. and Bacillus subtilis. Taken together, these data suggest that stretch-activated channels are localized in the cytoplasmic membrane of Gram-negative and Gram-positive bacteria, where they control the efflux of osmotic solutes, thus probably playing a major role in the response to hypotonic osmotic shock.
Collapse
Affiliation(s)
- C Berrier
- Laboratoire des Biomembranes, Unité de Recherche Associée au Centre National de la Recherche Scientifique 1116, Université Paris-Sud, Orsay, France
| | | | | | | | | |
Collapse
|
47
|
Metabolism of betaine as a carbon source by an osmotolerant bacterium isolated from the weed rhizosphere. World J Microbiol Biotechnol 2005. [DOI: 10.1007/s11274-004-1935-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
48
|
Touzé T, Goude R, Georgeault S, Blanco C, Bonnassie S. Erwinia chrysanthemi O antigen is required for betaine osmoprotection in high-salt media. J Bacteriol 2004; 186:5547-50. [PMID: 15292161 PMCID: PMC490874 DOI: 10.1128/jb.186.16.5547-5550.2004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cellular components necessary for osmoprotection are poorly known. In this study we show that O antigen is specifically required for the effectiveness of betaines as osmoprotectants for Erwinia chrysanthemi in saline media. The phenotype is correlated with the inability of rfb mutant strains to maintain a high accumulation level of betaines in hypersaline media.
Collapse
Affiliation(s)
- Thierry Touzé
- Osmorégulation chez les bactéries, CNRS UMR 6026, Campus de Beaulieu, Université de Rennes I, 35042 Rennes, France
| | | | | | | | | |
Collapse
|
49
|
Hautefort I, Proença MJ, Hinton JCD. Single-copy green fluorescent protein gene fusions allow accurate measurement of Salmonella gene expression in vitro and during infection of mammalian cells. Appl Environ Microbiol 2004; 69:7480-91. [PMID: 14660401 PMCID: PMC310007 DOI: 10.1128/aem.69.12.7480-7491.2003] [Citation(s) in RCA: 194] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We developed a reliable and flexible green fluorescent protein (GFP)-based system for measuring gene expression in individual bacterial cells. Until now, most systems have relied upon plasmid-borne gfp gene fusions, risking problems associated with plasmid instability. We show that a recently developed GFP variant, GFP+, is suitable for assessing bacterial gene expression. Various gfp+ transcriptional fusions were constructed and integrated as single copies into the chromosome of Salmonella enterica serovar Typhimurium. A comparison of the expression levels of proU-lacZ and proU-gfp+ fusions showed that GFP+ reported proU activity in individual Salmonella cells as accurately as beta-galactosidase reported activity for entire populations. The single-copy gfp+ fusions were ideal for monitoring up- and downregulation of Salmonella virulence genes. We discovered that in vitro induction of the SPI1gene prgH occurs only in a portion of the population and that the proportion varies with the growth phase. We determined the level of expression of the SPI2 gene ssaG in bacteria released from murine macrophages. Our results demonstrate for the first time that single-copy GFP+ fusions reliably report gene expression in simple and complex environments. This approach promises to allow accurate measurement of gene expression in individual bacteria during animal infection.
Collapse
Affiliation(s)
- Isabelle Hautefort
- Molecular Microbiology Group, Institute of Food Research, Norwich NR4 7UA, United Kingdom
| | | | | |
Collapse
|
50
|
Osmoregulation and osmosensing by uptake carriers for compatible solutes in bacteria. ACTA ACUST UNITED AC 2004. [DOI: 10.1007/b95846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|