1
|
Oh ZG, Askey B, Gunn LH. Red Rubiscos and opportunities for engineering green plants. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:520-542. [PMID: 36055563 PMCID: PMC9833100 DOI: 10.1093/jxb/erac349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Nature's vital, but notoriously inefficient, CO2-fixing enzyme Rubisco often limits the growth of photosynthetic organisms including crop species. Form I Rubiscos comprise eight catalytic large subunits and eight auxiliary small subunits and can be classified into two distinct lineages-'red' and 'green'. While red-type Rubiscos (Form IC and ID) are found in rhodophytes, their secondary symbionts, and certain proteobacteria, green-type Rubiscos (Form IA and IB) exist in terrestrial plants, chlorophytes, cyanobacteria, and other proteobacteria. Eukaryotic red-type Rubiscos exhibit desirable kinetic properties, namely high specificity and high catalytic efficiency, with certain isoforms outperforming green-type Rubiscos. However, it is not yet possible to functionally express a high-performing red-type Rubisco in chloroplasts to boost photosynthetic carbon assimilation in green plants. Understanding the molecular and evolutionary basis for divergence between red- and green-type Rubiscos could help us to harness the superior CO2-fixing power of red-type Rubiscos. Here we review our current understanding about red-type Rubisco distribution, biogenesis, and sequence-structure, and present opportunities and challenges for utilizing red-type Rubisco kinetics towards crop improvements.
Collapse
Affiliation(s)
- Zhen Guo Oh
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Bryce Askey
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | | |
Collapse
|
2
|
Ha-Tran DM, Lai RY, Nguyen TTM, Huang E, Lo SC, Huang CC. Construction of engineered RuBisCO Kluyveromyces marxianus for a dual microbial bioethanol production system. PLoS One 2021; 16:e0247135. [PMID: 33661900 PMCID: PMC7932148 DOI: 10.1371/journal.pone.0247135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/02/2021] [Indexed: 11/28/2022] Open
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) genes play important roles in CO2 fixation and redox balancing in photosynthetic bacteria. In the present study, the kefir yeast Kluyveromyces marxianus 4G5 was used as host for the transformation of form I and form II RubisCO genes derived from the nonsulfur purple bacterium Rhodopseudomonas palustris using the Promoter-based Gene Assembly and Simultaneous Overexpression (PGASO) method. Hungateiclostridium thermocellum ATCC 27405, a well-known bacterium for its efficient solubilization of recalcitrant lignocellulosic biomass, was used to degrade Napier grass and rice straw to generate soluble fermentable sugars. The resultant Napier grass and rice straw broths were used as growth media for the engineered K. marxianus. In the dual microbial system, H. thermocellum degraded the biomass feedstock to produce both C5 and C6 sugars. As the bacterium only used hexose sugars, the remaining pentose sugars could be metabolized by K. marxianus to produce ethanol. The transformant RubisCO K. marxianus strains grew well in hydrolyzed Napier grass and rice straw broths and produced bioethanol more efficiently than the wild type. Therefore, these engineered K. marxianus strains could be used with H. thermocellum in a bacterium-yeast coculture system for ethanol production directly from biomass feedstocks.
Collapse
Affiliation(s)
- Dung Minh Ha-Tran
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taipei, Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Rou-Yin Lai
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Trinh Thi My Nguyen
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Eugene Huang
- College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
| | - Shou-Chen Lo
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- * E-mail: (SCL); (CCH)
| | - Chieh-Chen Huang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, Taiwan
- * E-mail: (SCL); (CCH)
| |
Collapse
|
3
|
Thomas PJ, Boller AJ, Satagopan S, Tabita FR, Cavanaugh CM, Scott KM. Isotope discrimination by form IC RubisCO from
Ralstonia eutropha
and
Rhodobacter sphaeroides
, metabolically versatile members of ‘
Proteobacteria
’ from aquatic and soil habitats. Environ Microbiol 2018; 21:72-80. [DOI: 10.1111/1462-2920.14423] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 09/18/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Phaedra J. Thomas
- Department of Integrative Biology University of South Florida Tampa FL USA
| | - Amanda J. Boller
- Department of Integrative Biology University of South Florida Tampa FL USA
| | - Sriram Satagopan
- Department of Microbiology The Ohio State University Columbus OH USA
| | - F. Robert Tabita
- Department of Microbiology The Ohio State University Columbus OH USA
| | - Colleen M. Cavanaugh
- Department of Organismic and Evolutionary Biology Harvard University Cambridge MA USA
| | - Kathleen M. Scott
- Department of Integrative Biology University of South Florida Tampa FL USA
| |
Collapse
|
4
|
Farmer RM, Tabita FR. Phosphoribulokinase mediates nitrogenase-induced carbon dioxide fixation gene repression in Rhodobacter sphaeroides. MICROBIOLOGY-SGM 2015; 161:2184-91. [PMID: 26306848 PMCID: PMC4806589 DOI: 10.1099/mic.0.000160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In many organisms there is a balance between carbon and nitrogen metabolism. These observations extend to the nitrogen-fixing, nonsulfur purple bacteria, which have the classic family of P(II) regulators that coordinate signals of carbon and nitrogen status to regulate nitrogen metabolism. Curiously, these organisms also possess a reverse mechanism to regulate carbon metabolism based on cellular nitrogen status. In this work, studies in Rhodobacter sphaeroides firmly established that the activity of the enzyme that catalyses nitrogen fixation, nitrogenase, induces a signal that leads to repression of genes encoding enzymes of the Calvin–Benson–Bassham (CBB) CO2 fixation pathway. Additionally, genetic and metabolomic experiments revealed that NADH-activated phosphoribulokinase is an intermediate in the signalling pathway. Thus, nitrogenase activity appears to be linked to cbb gene repression through phosphoribulokinase.
Collapse
Affiliation(s)
- Ryan M Farmer
- Department of Microbiology, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210-1292, USA
| | - F Robert Tabita
- Department of Microbiology, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210-1292, USA
| |
Collapse
|
5
|
Herrmann M, Rusznyák A, Akob DM, Schulze I, Opitz S, Totsche KU, Küsel K. Large fractions of CO2-fixing microorganisms in pristine limestone aquifers appear to be involved in the oxidation of reduced sulfur and nitrogen compounds. Appl Environ Microbiol 2015; 81:2384-94. [PMID: 25616797 PMCID: PMC4357952 DOI: 10.1128/aem.03269-14] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 01/17/2015] [Indexed: 11/20/2022] Open
Abstract
The traditional view of the dependency of subsurface environments on surface-derived allochthonous carbon inputs is challenged by increasing evidence for the role of lithoautotrophy in aquifer carbon flow. We linked information on autotrophy (Calvin-Benson-Bassham cycle) with that from total microbial community analysis in groundwater at two superimposed-upper and lower-limestone groundwater reservoirs (aquifers). Quantitative PCR revealed that up to 17% of the microbial population had the genetic potential to fix CO2 via the Calvin cycle, with abundances of cbbM and cbbL genes, encoding RubisCO (ribulose-1,5-bisphosphate carboxylase/oxygenase) forms I and II, ranging from 1.14 × 10(3) to 6 × 10(6) genes liter(-1) over a 2-year period. The structure of the active microbial communities based on 16S rRNA transcripts differed between the two aquifers, with a larger fraction of heterotrophic, facultative anaerobic, soil-related groups in the oxygen-deficient upper aquifer. Most identified CO2-assimilating phylogenetic groups appeared to be involved in the oxidation of sulfur or nitrogen compounds and harbored both RubisCO forms I and II, allowing efficient CO2 fixation in environments with strong oxygen and CO2 fluctuations. The genera Sulfuricella and Nitrosomonas were represented by read fractions of up to 78 and 33%, respectively, within the cbbM and cbbL transcript pool and accounted for 5.6 and 3.8% of 16S rRNA sequence reads, respectively, in the lower aquifer. Our results indicate that a large fraction of bacteria in pristine limestone aquifers has the genetic potential for autotrophic CO2 fixation, with energy most likely provided by the oxidation of reduced sulfur and nitrogen compounds.
Collapse
Affiliation(s)
- Martina Herrmann
- Aquatic Geomicrobiology, Institute of Ecology, Friedrich Schiller University Jena, Jena, Germany German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Anna Rusznyák
- Aquatic Geomicrobiology, Institute of Ecology, Friedrich Schiller University Jena, Jena, Germany
| | - Denise M Akob
- Aquatic Geomicrobiology, Institute of Ecology, Friedrich Schiller University Jena, Jena, Germany U.S. Geological Survey, Reston, Virginia, USA
| | - Isabel Schulze
- Aquatic Geomicrobiology, Institute of Ecology, Friedrich Schiller University Jena, Jena, Germany
| | - Sebastian Opitz
- Aquatic Geomicrobiology, Institute of Ecology, Friedrich Schiller University Jena, Jena, Germany
| | - Kai Uwe Totsche
- Department of Hydrogeology, Institute of Geosciences, Friedrich Schiller University Jena, Jena, Germany
| | - Kirsten Küsel
- Aquatic Geomicrobiology, Institute of Ecology, Friedrich Schiller University Jena, Jena, Germany German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|
6
|
Amino acid residues of RegA important for interactions with the CbbR-DNA complex of Rhodobacter sphaeroides. J Bacteriol 2014; 196:3179-90. [PMID: 24957624 DOI: 10.1128/jb.01842-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
CbbR and RegA (PrrA) are transcriptional regulators of the Calvin-Benson-Bassham (CBB) CO2 fixation pathway (cbbI and cbbII) operons of Rhodobacter sphaeroides. The CbbR and RegA proteins interact, but CbbR must be bound to the promoter DNA in order for RegA-CbbR protein-protein interactions to occur. RegA greatly enhances the ability of CbbR to bind the cbbI promoter or greatly enhances the stability of the CbbR/promoter complex. The N-terminal receiver domain and the DNA binding domain of RegA were shown to interact with CbbR. Residues in α-helix 7 and α-helix 8 of the DNA binding domain (helix-turn-helix) of RegA directly interacted with CbbR, with α-helix 7 positioned immediately above the DNA and α-helix 8 located in the major groove of the DNA. A CbbR protein containing only the DNA binding motif and the linker helix was capable of binding to RegA. In contrast, a truncated CbbR containing only the linker helix and recognition domains I and II (required for effector binding) was not able to interact with RegA. The accumulated results strongly suggest that the DNA binding domains of both proteins interact to facilitate optimal transcriptional control over the cbb operons. In vivo analysis, using constitutively active mutant CbbR proteins, further indicated that CbbR must interact with phosphorylated RegA in order to accomplish transcriptional activation.
Collapse
|
7
|
The poor growth of Rhodospirillum rubrum mutants lacking RubisCO is due to the accumulation of ribulose-1,5-bisphosphate. J Bacteriol 2011; 193:3293-303. [PMID: 21531802 DOI: 10.1128/jb.00265-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) catalyzes the first step of CO(2) fixation in the Calvin-Benson-Bassham (CBB) cycle. Besides its function in fixing CO(2) to support photoautotrophic growth, the CBB cycle is also important under photoheterotrophic growth conditions in purple nonsulfur photosynthetic bacteria. It has been assumed that the poor photoheterotrophic growth of RubisCO-deficient strains was due to the accumulation of excess intracellular reductant, which implied that the CBB cycle is important for maintaining the redox balance under these conditions. However, we present analyses of cbbM mutants in Rhodospirillum rubrum that indicate that toxicity is the result of an elevated intracellular pool of ribulose-1,5-bisphosphate (RuBP). There is a redox effect on growth, but it is apparently an indirect effect on the accumulation of RuBP, perhaps by the regulation of the activities of enzymes involved in RuBP regeneration. Our studies also show that the CBB cycle is not essential for R. rubrum to grow under photoheterotrophic conditions and that its role in controlling the redox balance needs to be further elucidated. Finally, we also show that CbbR is a positive transcriptional regulator of the cbb operon (cbbEFPT) in R. rubrum, as seen with related organisms, and define the transcriptional organization of the cbb genes.
Collapse
|
8
|
Joshi GS, Bobst CE, Tabita FR. Unravelling the regulatory twist--regulation of CO2 fixation in Rhodopseudomonas palustris CGA010 mediated by atypical response regulator(s). Mol Microbiol 2011; 80:756-71. [PMID: 21362064 DOI: 10.1111/j.1365-2958.2011.07606.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In Rhodopseudomonas palustris CGA010, the LysR type regulator, CbbR, specifically controls transcription of the cbbLS genes encoding form I RubisCO. Previous genetic and physiological studies had indicated that a unique two-component (CbbRRS) system influences CbbR-mediated cbbLS transcription under conditions where CO(2) is the sole carbon source. In this study, we have established direct protein-protein interactions between the response regulators of the CbbRRS system and CbbR, using a variety of techniques. The bacterial two-hybrid system established a specific interaction between CbbR and CbbRR1 (response regulator 1 of the CbbRRS system), confirmed in vitro by chemical cross-linking. In addition, both response regulators (CbbRR1 and CbbRR2) played distinct roles in influencing the CbbR-cbbLS promoter interactions in gel mobility shift assays. CbbRR1 increased the binding affinity of CbbR at the cbb(I) promoter three- to fivefold while CbbRR2 appeared to stabilize CbbR binding. Specific interactions were further supported by surface plasmon resonance (SPR) analyses. In total, the results suggested that both response regulators, with no discernible DNA-binding domains, must interact with CbbR to influence cbbLS expression. Thus the CbbRRS system provides an additional level of transcriptional control beyond CbbR alone, and appears to be significant for potentially fine-tuning cbbLS expression in Rps. palustris.
Collapse
Affiliation(s)
- Gauri S Joshi
- Department of Microbiology, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210-1292, USA
| | | | | |
Collapse
|
9
|
Tourova TP, Spiridonova EM. Phylogeny and evolution of the ribulose 1,5-bisphosphate carboxylase/oxygenase genes in prokaryotes. Mol Biol 2009. [DOI: 10.1134/s0026893309050033] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Lee JH, Park DO, Park SW, Hwang EH, Oh JI, Kim YM. Expression and regulation of ribulose 1,5-bisphosphate carboxylase/oxygenase genes in Mycobacterium sp. strain JC1 DSM 3803. J Microbiol 2009; 47:297-307. [PMID: 19557347 DOI: 10.1007/s12275-008-0210-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 03/15/2009] [Indexed: 10/20/2022]
Abstract
Ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) is the key enzyme of the Calvin reductive pentose phosphate cycle. Two sets of structural genes (cbbLS-1 and -2) for form I RubisCO have been previously identified in the Mycobacterium sp. strain JC1, which is able to grow on carbon monoxide (CO) or methanol as sole sources of carbon and energy. Northern blot and reverse transcriptase PCR showed that the cbbLS-1 and -2 genes are expressed in cells grown on either carbon monoxide (CO) or methanol, but not in cells grown in nutrient broth. A promoter assay revealed that the cbbLS-2 promoter has a higher activity than the cbbLS-1 promoter in both CO- and methanol-grown cells, and that the activities of both promoters were higher in CO-grown cells than in methanol-grown cells. A gel mobility shift assay and footprinting assays showed that CbbR expressed in Escherichia coli from a cbbR gene, which is located downstream of cbbLS-1 and transcribed in the same orientation as that of the cbbLS genes, specifically bound to the promoter regions of the cbbLS-1 and -2 genes containing inverted repeat sequence. A DNase I footprinting assay revealed that CbbR protected positions -59 to -3 and -119 to -78 of the cbbLS-1 and -2 promoters, respectively. Overexpression of CbbR induced the transcription of RubisCO genes in Mycobacterium sp. strain JC1 grown in nutrient broth. Our results suggest that the CbbR product from a single cbbR gene may positively regulate two cbbLS operons in the Mycobacterium sp. strain JC1 as is the case for Rhodobacter sphaeroides and Cupriavidus necator.
Collapse
Affiliation(s)
- Jae Ho Lee
- Department of Biology, Yonsei University, Seoul 120-749, Republic of Korea
| | | | | | | | | | | |
Collapse
|
11
|
Differential accumulation of form I RubisCO in Rhodopseudomonas palustris CGA010 under Photoheterotrophic growth conditions with reduced carbon sources. J Bacteriol 2009; 191:4243-50. [PMID: 19376869 DOI: 10.1128/jb.01795-08] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhodopseudomonas palustris is unique among characterized nonsulfur purple bacteria because of its capacity for anaerobic photoheterotrophic growth using aromatic acids. Like growth with other reduced electron donors, this growth typically requires the presence of bicarbonate/CO(2) or some other added electron acceptor in the growth medium. Proteomic studies indicated that there was specific accumulation of form I ribulose 1, 5-bisphosphate carboxylase/oxygenase (RubisCO) subunit proteins (CbbL and CbbS), as well as the CbbX protein, in cells grown on benzoate without added bicarbonate; such cells used the small amounts of dissolved CO(2) in the medium to support growth. These proteins were not observed in extracts from cells grown in the presence of high levels (10 mM) of added bicarbonate. To confirm the results of the proteomics studies, it was shown that the total RubisCO activity levels were significantly higher (five- to sevenfold higher) in wild-type (CGA010) cells grown on benzoate with a low level (0.5 mM) of added bicarbonate. Immunoblots indicated that the increase in RubisCO activity levels was due to a specific increase in the amount of form I RubisCO (CbbLS) and not in the amount of form II RubisCO (CbbM), which was constitutively expressed. Deletion of the main transcriptional regulator gene, cbbR, resulted in impaired growth on benzoate-containing low-bicarbonate media, and it was established that form I RubisCO synthesis was absolutely and specifically dependent on CbbR. To understand the regulatory role of the CbbRRS two-component system, strains with nonpolar deletions of the cbbRRS genes were grown on benzoate. Distinct from the results obtained with photoautotrophic growth conditions, the results of studies with various CbbRRS mutant strains indicated that this two-component system did not affect the observed enhanced synthesis of form I RubisCO under benzoate growth conditions. These studies indicate that diverse growth conditions differentially affect the ability of the CbbRRS two-component system to influence cbb transcription.
Collapse
|
12
|
|
13
|
Dangel AW, Gibson JL, Janssen AP, Tabita FR. Residues that influence in vivo and in vitro CbbR function in Rhodobacter sphaeroides and identification of a specific region critical for co-inducer recognition. Mol Microbiol 2005; 57:1397-414. [PMID: 16102008 DOI: 10.1111/j.1365-2958.2005.04783.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
CbbR is a LysR-type transcriptional regulator (LTTR) that is required to activate transcription of the cbb operons, responsible for CO2 fixation, in Rhodobacter sphaeroides. LTTR proteins often require a co-inducer to regulate transcription. Previous studies suggested that ribulose 1,5-bisphosphate (RuBP) is a positive effector for CbbR function in this organism. In the current study, RuBP was found to increase the electrophoretic mobility of the CbbR/cbb(I) promoter complex. To define and analyse the co-inducer recognition region of CbbR, constitutively active mutant CbbR proteins were isolated. Under growth conditions that normally maintain transcriptionally inactive cbb operons, the mutant CbbR proteins activated transcription. Fourteen of the constitutively active mutants resulted from a single amino acid substitution. One mutant was derived from amino acid substitutions at two separate residues that appeared to act synergistically. Different mutant proteins showed both sensitivity and insensitivity to RuBP and residues that conferred constitutive transcriptional activity could be highlighted on a three-dimensional model, with several residues unique to CbbR shown to be at locations critical to LTTR function. Many of the constitutive residues clustered in or near two specific loops in the LTTR tertiary structure, corresponding to a proposed site of co-inducer binding.
Collapse
Affiliation(s)
- Andrew W Dangel
- Department of Microbiology and Plant Molecular Biology/Biotechnology Program, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210-1292, USA
| | | | | | | |
Collapse
|
14
|
Toyoda K, Yoshizawa Y, Arai H, Ishii M, Igarashi Y. The role of two CbbRs in the transcriptional regulation of three ribulose-1,5-bisphosphate carboxylase/oxygenase genes in Hydrogenovibrio marinus strain MH-110. MICROBIOLOGY-SGM 2005; 151:3615-3625. [PMID: 16272383 DOI: 10.1099/mic.0.28056-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Hydrogenovibrio marinus MH-110 possesses three different sets of genes for ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO): two form I (cbbLS-1 and cbbLS-2) and one form II (cbbM). We have previously shown that the expression of these RubisCO genes is dependent on the ambient CO2 concentration. LysR-type transcriptional regulators, designated CbbR1 and CbbRm, are encoded upstream of the cbbLS-1 and cbbM genes, respectively. In this study, we revealed by gel shift assay that CbbR1 and CbbRm bind with higher affinity to the promoter regions of cbbLS-1 and cbbM, respectively, and with lower affinity to the other RubisCO gene promoters. The expression patterns of the three RubisCOs in the cbbR1 and the cbbRm gene mutants showed that CbbR1 and CbbRm were required to activate the expression of cbbLS-1 and cbbM, respectively, and that neither CbbR1 nor CbbRm was required for the expression of cbbLS-2. The expression of cbbLS-1 was significantly enhanced under high-CO2 conditions in the cbbRm mutant, in which the expression of cbbM was decreased. Although cbbLS-2 was not expressed under high-CO2 conditions in the wild-type strain or the single cbbR mutants, the expression of cbbLS-2 was observed in the cbbR1 cbbRm double mutant, in which the expression of both cbbLS-1 and cbbM was decreased. These results indicate that there is an interactive regulation among the three RubisCO genes.
Collapse
Affiliation(s)
- Koichi Toyoda
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yoichi Yoshizawa
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hiroyuki Arai
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masaharu Ishii
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yasuo Igarashi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
15
|
Dubbs JM, Tabita FR. Regulators of nonsulfur purple phototrophic bacteria and the interactive control of CO2 assimilation, nitrogen fixation, hydrogen metabolism and energy generation. FEMS Microbiol Rev 2004; 28:353-76. [PMID: 15449608 DOI: 10.1016/j.femsre.2004.01.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
For the metabolically diverse nonsulfur purple phototrophic bacteria, maintaining redox homeostasis requires balancing the activities of energy supplying and energy-utilizing pathways, often in the face of drastic changes in environmental conditions. These organisms, members of the class Alphaproteobacteria, primarily use CO2 as an electron sink to achieve redox homeostasis. After noting the consequences of inactivating the capacity for CO2 reduction through the Calvin-Benson-Bassham (CBB) pathway, it was shown that the molecular control of many additional important biological processes catalyzed by nonsulfur purple bacteria is linked to expression of the CBB genes. Several regulator proteins are involved, with the two component Reg/Prr regulatory system playing a major role in maintaining redox poise in these organisms. Reg/Prr was shown to be a global regulator involved in the coordinate control of a number of metabolic processes including CO2 assimilation, nitrogen fixation, hydrogen metabolism and energy-generation pathways. Accumulating evidence suggests that the Reg/Prr system senses the oxidation/reduction state of the cell by monitoring a signal associated with electron transport. The response regulator RegA/PrrA activates or represses gene expression through direct interaction with target gene promoters where it often works in concert with other regulators that can be either global or specific. For the key CO2 reduction pathway, which clearly triggers whether other redox balancing mechanisms are employed, the ability to activate or inactivate the specific regulator CbbR is of paramount importance. From these studies, it is apparent that a detailed understanding of how diverse regulatory elements integrate and control metabolism will eventually be achieved.
Collapse
Affiliation(s)
- James M Dubbs
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand
| | | |
Collapse
|
16
|
Yoshizawa Y, Toyoda K, Arai H, Ishii M, Igarashi Y. CO2-responsive expression and gene organization of three ribulose-1,5-bisphosphate carboxylase/oxygenase enzymes and carboxysomes in Hydrogenovibrio marinus strain MH-110. J Bacteriol 2004; 186:5685-91. [PMID: 15317772 PMCID: PMC516815 DOI: 10.1128/jb.186.17.5685-5691.2004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hydrogenovibrio marinus strain MH-110, an obligately lithoautotrophic hydrogen-oxidizing bacterium, fixes CO2 by the Calvin-Benson-Bassham cycle. Strain MH-110 possesses three different sets of genes for ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO): CbbLS-1 and CbbLS-2, which belong to form I (L8S8), and CbbM, which belongs to form II (Lx). In this paper, we report that the genes for CbbLS-1 (cbbLS-1) and CbbM (cbbM) are both followed by the cbbQO genes and preceded by the cbbR genes encoding LysR-type regulators. In contrast, the gene for CbbLS-2 (cbbLS-2) is followed by genes encoding carboxysome shell peptides. We also characterized the three RubisCOs in vivo by examining their expression profiles in environments with different CO2 availabilities. Immunoblot analyses revealed that when strain MH-110 was cultivated in 15% CO2, only the form II RubisCO, CbbM, was expressed. When strain MH-110 was cultivated in 2% CO2, CbbLS-1 was expressed in addition to CbbM. In the 0.15% CO2 culture, the expression of CbbM decreased and that of CbbLS-1 disappeared, and CbbLS-2 was expressed. In the atmospheric CO2 concentration of approximately 0.03%, all three RubisCOs were expressed. Transcriptional analyses of mRNA by reverse transcription-PCR showed that the regulation was at the transcriptional level. Electron microscopic observation of MH-110 cells revealed the formation of carboxysomes in the 0.15% CO2 concentration. The results obtained here indicate that strain MH-110 adapts well to various CO2 concentrations by using different types of RubisCO enzymes.
Collapse
Affiliation(s)
- Yoichi Yoshizawa
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | |
Collapse
|
17
|
Roh JH, Smith WE, Kaplan S. Effects of Oxygen and Light Intensity on Transcriptome Expression in Rhodobacter sphaeroides 2.4.1. J Biol Chem 2004; 279:9146-55. [PMID: 14662761 DOI: 10.1074/jbc.m311608200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The roles of oxygen and light on the regulation of photosynthesis gene expression in Rhodobacter sphaeroides 2.4.1 have been well studied over the past 50 years. More recently, the effects of oxygen and light on gene regulation have been shown to involve the interacting redox chains present in R. sphaeroides under diverse growth conditions, and many of the redox carriers comprising these chains have been well studied. However, the expression patterns of those genes encoding these redox carriers, under aerobic and anaerobic photosynthetic growth, have been less well studied. Here, we provide a transcriptional analysis of many of the genes comprising the photosynthesis lifestyle, including genes corresponding to many of the known regulatory elements controlling the response of this organism to oxygen and light. The observed patterns of gene expression are evaluated and discussed in light of our knowledge of the physiology of R. sphaeroides under aerobic and photosynthetic growth conditions. Finally, this analysis has enabled to us go beyond the traditional patterns of gene expression associated with the photosynthesis lifestyle and to consider, for the first time, the full complement of genes responding to oxygen, and variations in light intensity when growing photosynthetically. The data provided here should be considered as a first step in enabling one to model electron flow in R. sphaeroides 2.4.1.
Collapse
Affiliation(s)
- Jung Hyeob Roh
- Department of Microbiology and Molecular Genetics, University of Texas, Health Science Center, Houston, Texas 77030, USA
| | | | | |
Collapse
|
18
|
Robert Tabita F. Research on Carbon Dioxide Fixation in Photosynthetic Microorganisms (1971-present). PHOTOSYNTHESIS RESEARCH 2004; 80:315-32. [PMID: 16328829 DOI: 10.1023/b:pres.0000030455.46192.47] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
This paper presents my personal account of research on CO(2) fixation from when I began these studies as a postdoctoral student in the early 1970s. It traces interests in microbial ribulose bisphosphate carboxylase/oxygenase (Rubisco) and considers early breakthroughs on the isolation, characterization, and significance of this enzyme from nonsulfur purple photosynthetic bacteria and other phototrophic organisms. This article also develops a historical perspective as to how recent efforts may lead to an understanding of molecular mechanisms by which the synthesis of this enzyme and other proteins of the pathway are regulated at the molecular level. In addition, how these studies impinge on the interactive control of CO(2) fixation, along with nitrogen fixation and hydrogen metabolism, is also considered. Finally, CO(2)-fixation studies in green sulfur photosynthetic bacteria and the discovery of the rather surprising Rubisco-like protein are described.
Collapse
Affiliation(s)
- F Robert Tabita
- Department of Microbiology and the Plant Molecular Biology/Biotechnology Program, The Ohio State University, 484 West 12th Avenue, Columbus, OH, 43210-1292, USA,
| |
Collapse
|
19
|
Du C, Zhou J, Wang J, Yan B, Lu H, Hou H. Construction of a genetically engineered microorganism for CO2 fixation using a Rhodopseudomonas/Escherichia coli shuttle vector. FEMS Microbiol Lett 2003; 225:69-73. [PMID: 12900023 DOI: 10.1016/s0378-1097(03)00482-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The CO2 fixation ability of Rhodopseudomonas palustris DH was enhanced by introducing the recombinant plasmid pMG-CBBM containing the form II ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) gene (cbbM) isolated from Rps. palustris NO. 7. Sequencing of a 3.0-kb PstI fragment containing the cbbM gene revealed an open reading frame encoding 461 amino acids, homologous to known cbbM genes, with a ribosome binding site upstream of cbbM and a terminator downstream of cbbM, without promoter. pMG-CBBM, a Rhodopseudomonas/Escherichia coli shuttle expression plasmid, was derived from the Rhodopseudomonas/E. coli shuttle cloning vector pMG105, by inserting the promoter of the pckA gene and the cbbM gene into its multiple cloning site. Plasmid pMG-CBBM was transformed into Rps. palustris DH by electroporation, and was stably maintained when transformants were grown either photoheterotrophically or photolithoautotrophically in the absence of antibiotics. This is the first report of an expression plasmid containing a Rps. palustris-specific promoter that allows stable expression of a foreign gene in the absence of antibiotic selection.
Collapse
Affiliation(s)
- Cuihong Du
- School of Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116023, PR China.
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the rate-limiting step of CO2 fixation in photosynthesis, but O2 competes with CO2 for substrate ribulose 1,5-bisphosphate, leading to the loss of fixed carbon. Interest in genetically engineering improvements in carboxylation catalytic efficiency and CO2/O2 specificity has focused on the chloroplast-encoded large subunit because it contains the active site. However, there is another type of subunit in the holoenzyme of plants, which, like the large subunit, is present in eight copies. The role of these nuclear-encoded small subunits in Rubisco structure and function is poorly understood. Small subunits may have originated during evolution to concentrate large-subunit active sites, but the extensive divergence of structures among prokaryotes, algae, and land plants seems to indicate that small subunits have more-specialized functions. Furthermore, plants and green algae contain families of differentially expressed small subunits, raising the possibility that these subunits may regulate the structure or function of Rubisco. Studies of interspecific hybrid enzymes have indicated that small subunits are required for maximal catalysis and, in several cases, contribute to CO2/O2 specificity. Although small-subunit genetic engineering remains difficult in land plants, directed mutagenesis of cyanobacterial and green-algal genes has identified specific structural regions that influence catalytic efficiency and CO2/O2 specificity. It is thus apparent that small subunits will need to be taken into account as strategies are developed for creating better Rubisco enzymes.
Collapse
|
21
|
Dubbs JM, Tabita FR. Interactions of the cbbII promoter-operator region with CbbR and RegA (PrrA) regulators indicate distinct mechanisms to control expression of the two cbb operons of Rhodobacter sphaeroides. J Biol Chem 2003; 278:16443-50. [PMID: 12601011 DOI: 10.1074/jbc.m211267200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In a previous study (Dubbs, J. M., Bird, T. H., Bauer, C. E., and Tabita, F. R. (2000) J. Biol. Chem. 275, 19224-19230), it was demonstrated that the regulators CbbR and RegA (PrrA) interacted with both promoter proximal and promoter distal regions of the form I (cbb(I)) promoter operon specifying genes of the Calvin-Benson-Bassham cycle of Rhodobacter sphaeroides. To determine how these regulators interact with the form II (cbb(II)) promoter, three cbbF(II)::lacZ translational fusion plasmids were constructed containing various lengths of sequence 5' to the cbb(II) operon of R. sphaeroides CAC. Expression of beta-galactosidase was monitored under a variety of growth conditions in both the parental strain and knock-out strains that contain mutations that affect synthesis of CbbR and RegA. The binding sites for both CbbR and RegA were determined by DNase I footprinting. A region of the cbb(II) promoter from +38 to -227 bp contained a CbbR binding site and conferred low level regulated cbb(II) expression. The region from -227 to -1025 bp contained six RegA binding sites and conferred enhanced cbb(II) expression under all growth conditions. Unlike the cbb(I) operon, the region between -227 and -545 bp that contains one RegA binding site, was responsible for the majority of the observed enhancement. Both RegA and CbbR were required for maximal cbb(II) expression. Two potentially novel and specific cbb(II) promoter-binding proteins that did not interact with the cbb(I) promoter region were detected in crude extracts of R. sphaeroides. These results, combined with the observation that chemoautotrophic expression of the cbb(I) operon is RegA independent, indicated that the mechanisms controlling cbb(I) and cbb(II) operon expression during chemoautotrophic growth are quite different.
Collapse
Affiliation(s)
- James M Dubbs
- Department of Microbiology, Plant Molecular Biology/Biotechnology Program, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210-1292, USA
| | | |
Collapse
|
22
|
Smith SA, Tabita FR. Up-regulated expression of the cbb(I) and cbb(II) operons during photoheterotrophic growth of a ribulose 1,5-bisphosphate carboxylase-oxygenase deletion mutant of Rhodobacter sphaeroides. J Bacteriol 2002; 184:6721-4. [PMID: 12426361 PMCID: PMC135416 DOI: 10.1128/jb.184.23.6721-6724.2002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In a Rhodobacter sphaeroides ribulose 1,5-bisphosphate carboxylase-oxygenase deletion strain that requires an exogenous electron donor for photoheterotrophic growth, transcription of the genes of the Calvin-Benson-Bassham (CBB) cycle was increased. This finding pointed to a potential physiological effector that enhances the capability of the positive transcriptional activator CbbR to mediate cbb transcription. This effector is most likely ribulose 1,5-bisphosphate or a metabolite derived from this CBB pathway intermediate.
Collapse
Affiliation(s)
- Stephanie A Smith
- Department of Microbiology and Plant Molecular Biology and Biotechnology Program, The Ohio State University, Columbus, Ohio 43210-1292, USA
| | | |
Collapse
|
23
|
Gibson JL, Dubbs JM, Tabita FR. Differential expression of the CO2 fixation operons of Rhodobacter sphaeroides by the Prr/Reg two-component system during chemoautotrophic growth. J Bacteriol 2002; 184:6654-64. [PMID: 12426354 PMCID: PMC135422 DOI: 10.1128/jb.184.23.6654-6664.2002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Rhodobacter sphaeroides, the two cbb operons encoding duplicated Calvin-Benson Bassham (CBB) CO2 fixation reductive pentose phosphate cycle structural genes are differentially controlled. In attempts to define the molecular basis for the differential regulation, the effects of mutations in genes encoding a subunit of Cbb3 cytochrome oxidase, ccoP, and a global response regulator, prrA (regA), were characterized with respect to CO2 fixation (cbb) gene expression by using translational lac fusions to the R. sphaeroides cbb(I) and cbb(II) promoters. Inactivation of the ccoP gene resulted in derepression of both promoters during chemoheterotophic growth, where cbb expression is normally repressed; expression was also enhanced over normal levels during phototrophic growth. The prrA mutation effected reduced expression of cbb(I) and cbb(II) promoters during chemoheterotrophic growth, whereas intermediate levels of expression were observed in a double ccoP prrA mutant. PrrA and ccoP1 prrA strains cannot grow phototrophically, so it is impossible to examine cbb expression in these backgrounds under this growth mode. In this study, however, we found that PrrA mutants of R. sphaeroides were capable of chemoautotrophic growth, allowing, for the first time, an opportunity to directly examine the requirement of PrrA for cbb gene expression in vivo under growth conditions where the CBB cycle and CO2 fixation are required. Expression from the cbb(II) promoter was severely reduced in the PrrA mutants during chemoautotrophic growth, whereas cbb(I) expression was either unaffected or enhanced. Mutations in ccoQ had no effect on expression from either promoter. These observations suggest that the Prr signal transduction pathway is not always directly linked to Cbb3 cytochrome oxidase activity, at least with respect to cbb gene expression. In addition, lac fusions containing various lengths of the cbb(I) promoter demonstrated distinct sequences involved in positive regulation during photoautotrophic versus chemoautotrophic growth, suggesting that different regulatory proteins may be involved. In Rhodobacter capsulatus, ribulose 1,5-bisphosphate carboxylase-oxygenase (RubisCO) expression was not affected by cco mutations during photoheterotrophic growth, suggesting that differences exist in signal transduction pathways regulating cbb genes in the related organisms.
Collapse
Affiliation(s)
- Janet L Gibson
- Department of Microbiology and Plant Molecular Biology/Biotechnology Program, The Ohio State University, Columbus, Ohio 43210-1292, USA
| | | | | |
Collapse
|
24
|
Tichi MA, Tabita FR. Metabolic signals that lead to control of CBB gene expression in Rhodobacter capsulatus. J Bacteriol 2002; 184:1905-15. [PMID: 11889097 PMCID: PMC134932 DOI: 10.1128/jb.184.7.1905-1915.2002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Various mutant strains were used to examine the regulation and metabolic control of the Calvin-Benson-Bassham (CBB) reductive pentose phosphate pathway in Rhodobacter capsulatus. Previously, a ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO)-deficient strain (strain SBI/II) was found to show enhanced levels of cbb(I) and cbb(II) promoter activities during photoheterotrophic growth in the presence of dimethyl sulfoxide. With this strain as the starting point, additional mutations were made in genes encoding phosphoribulokinase and transketolase and in the gene encoding the LysR-type transcriptional activator, CbbR(II). These strains revealed that a product generated by phosphoribulokinase was involved in control of CbbR-mediated cbb gene expression in SBI/II. Additionally, heterologous expression experiments indicated that Rhodobacter sphaeroides CbbR responded to the same metabolic signal in R. capsulatus SBI/II and mutant strain backgrounds.
Collapse
Affiliation(s)
- Mary A Tichi
- Department of Microbiology and Plant Molecular Biology/Biotechnology Program, The Ohio State University, Columbus, Ohio 43210-1292, USA
| | | |
Collapse
|
25
|
Tichi MA, Meijer WG, Tabita FR. Complex I and its involvement in redox homeostasis and carbon and nitrogen metabolism in Rhodobacter capsulatus. J Bacteriol 2001; 183:7285-94. [PMID: 11717288 PMCID: PMC95578 DOI: 10.1128/jb.183.24.7285-7294.2001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A transposon mutant of Rhodobacter capsulatus, strain Mal7, that was incapable of photoautotrophic and chemoautotrophic growth and could not grow photoheterotrophically in the absence of an exogenous electron acceptor was isolated. The phenotype of strain Mal7 suggested that the mutation was in some gene(s) not previously shown to be involved in CO(2) fixation control. The site of transposition in strain Mal7 was identified and shown to be in the gene nuoF, which encodes one of the 14 subunits for NADH ubiquinone-oxidoreductase, or complex I. To confirm the role of complex I and nuoF for CO(2)-dependent growth, a site-directed nuoF mutant was constructed (strain SBC1) in wild-type strain SB1003. The complex I-deficient strains Mal7 and SBC1 exhibited identical phenotypes, and the pattern of CO(2) fixation control through the Calvin-Benson-Bassham pathway was the same for both strains. It addition, it was shown that electron transport through complex I led to differential control of the two major cbb operons of this organism. Complex I was further shown to be linked to the control of nitrogen metabolism during anaerobic photosynthetic growth of R. capsulatus.
Collapse
Affiliation(s)
- M A Tichi
- Department of Microbiology and the Plant Molecular Biology/Biotechnology Program, The Ohio State University, Columbus, Ohio 43210-1292, USA
| | | | | |
Collapse
|
26
|
Elsaied H, Naganuma T. Phylogenetic diversity of ribulose-1,5-bisphosphate carboxylase/oxygenase large-subunit genes from deep-sea microorganisms. Appl Environ Microbiol 2001; 67:1751-65. [PMID: 11282630 PMCID: PMC92794 DOI: 10.1128/aem.67.4.1751-1765.2001] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2000] [Accepted: 02/02/2001] [Indexed: 11/20/2022] Open
Abstract
The phylogenetic diversity of the ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO, E.C. 4.1.1.39) large-subunit genes of deep-sea microorganisms was analyzed. Bulk genomic DNA was isolated from seven samples, including samples from the Mid-Atlantic Ridge and various deep-sea habitats around Japan. The kinds of samples were hydrothermal vent water and chimney fragment; reducing sediments from a bathyal seep, a hadal seep, and a presumed seep; and symbiont-bearing tissues of the vent mussel, Bathymodiolus sp., and the seep vestimentiferan tubeworm, Lamellibrachia sp. The RuBisCO genes that encode both form I and form II large subunits (cbbL and cbbM) were amplified by PCR from the seven deep-sea sample DNA populations, cloned, and sequenced. From each sample, 50 cbbL clones and 50 cbbM clones, if amplified, were recovered and sequenced to group them into operational taxonomic units (OTUs). A total of 29 OTUs were recorded from the 300 total cbbL clones, and a total of 24 OTUs were recorded from the 250 total cbbM clones. All the current OTUs have the characteristic RuBisCO amino acid motif sequences that exist in other RuBisCOs. The recorded OTUs were related to different RuBisCO groups of proteobacteria, cyanobacteria, and eukarya. The diversity of the RuBisCO genes may be correlated with certain characteristics of the microbial habitats. The RuBisCO sequences from the symbiont-bearing tissues showed a phylogenetic relationship with those from the ambient bacteria. Also, the RuBisCO sequences of known species of thiobacilli and those from widely distributed marine habitats were closely related to each other. This suggests that the Thiobacillus-related RuBisCO may be distributed globally and contribute to the primary production in the deep sea.
Collapse
Affiliation(s)
- H Elsaied
- School of Biosphere Sciences, Hiroshima University, 1-4-4 Kagamiyama, Higashi-hiroshima 739-8528, Japan
| | | |
Collapse
|
27
|
Dubbs JM, Bird TH, Bauer CE, Tabita FR. Interaction of CbbR and RegA* transcription regulators with the Rhodobacter sphaeroides cbbIPromoter-operator region. J Biol Chem 2000; 275:19224-30. [PMID: 10748066 DOI: 10.1074/jbc.m002125200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The form I (cbb(I)) Calvin-Benson-Bassham (CBB) reductive pentose phosphate cycle operon of Rhodobacter sphaeroides is regulated by both the transcriptional activator CbbR and the RegA/PrrA (RegB/PrrB) two-component signal transduction system. DNase I footprint analyses indicated that R. sphaeroides CbbR binds to the cbb(I) promoter between -10 and -70 base pairs (bp) relative to the cbb(I) transcription start. A cosmid carrying the R. capsulatus reg locus was capable of complementing an R. sphaeroides regA-deficient mutant to phototrophic growth with restored regulated synthesis of both photopigments and ribulose-bisphosphate carboxylase/oxygenase (Rubisco). DNase I footprint analyses, using R. capsulatus RegA*, a constitutively active mutant version of RegA, detected four RegA* binding sites within the cbb(I) promoter. Two sites were found within a previously identified cbb(I) promoter proximal regulatory region from -61 to -110 bp. One of these proximal RegA* binding sites overlapped that of CbbR. Two sites were within a previously identified promoter distal positive regulatory region between -301 and -415 bp. Expression from promoter insertion mutants showed that the function of the promoter distal regulatory region was helical phase-dependent. These results indicated that RegA exerts its regulatory affect on cbb(I) expression through direct interaction with the cbb(I) promoter.
Collapse
Affiliation(s)
- J M Dubbs
- Department of Microbiology and Plant Biotechnology Center, The Ohio State University, Columbus, Ohio 43210-1292, USA
| | | | | | | |
Collapse
|
28
|
Shively JM, van Keulen G, Meijer WG. Something from almost nothing: carbon dioxide fixation in chemoautotrophs. Annu Rev Microbiol 1999; 52:191-230. [PMID: 9891798 DOI: 10.1146/annurev.micro.52.1.191] [Citation(s) in RCA: 174] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The last decade has seen significant advances in our understanding of the physiology, ecology, and molecular biology of chemoautotrophic bacteria. Many ecosystems are dependent on CO2 fixation by either free-living or symbiotic chemoautotrophs. CO2 fixation in the chemoautotroph occurs via the Calvin-Benson-Bassham cycle. The cycle is characterized by three unique enzymatic activities: ribulose bisphosphate carboxylase/oxygenase, phosphoribulokinase, and sedoheptulose bisphosphatase. Ribulose bisphosphate carboxylase/oxygenase is commonly found in the cytoplasm, but a number of bacteria package much of the enzyme into polyhedral organelles, the carboxysomes. The carboxysome genes are located adjacent to cbb genes, which are often, but not always, clustered in large operons. The availability of carbon and reduced substrates control the expression of cbb genes in concert with the LysR-type transcriptional regulator, CbbR. Additional regulatory proteins may also be involved. All of these, as well as related topics, are discussed in detail in this review.
Collapse
Affiliation(s)
- J M Shively
- Department of Biological Sciences, Clemson University, South Carolina 29634, USA.
| | | | | |
Collapse
|
29
|
Dubbs JM, Tabita FR. Two functionally distinct regions upstream of the cbbI operon of Rhodobacter sphaeroides regulate gene expression. J Bacteriol 1998; 180:4903-11. [PMID: 9733694 PMCID: PMC107516 DOI: 10.1128/jb.180.18.4903-4911.1998] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/1997] [Accepted: 07/21/1998] [Indexed: 11/20/2022] Open
Abstract
A number of cbbFI::lacZ translational fusion plasmids containing various lengths of sequence 5' to the form I (cbbI) Calvin-Benson-Bassham cycle operon (cbbFIcbbPIcbbAIcbbLIcbbSI) of Rhodobacter sphaeroides were constructed. Expression of beta-galactosidase was monitored under a variety of growth conditions. It was found that 103 bp of sequence upstream of the cbbFI transcription start was sufficient to confer low levels of regulated cbbI promoter expression; this activity was dependent on the presence of an intact cbbR gene. Additionally, R. sphaeroides CbbR was shown to bind to the region between 9 and 100 bp 5' to the cbbFI transcription start. Inclusion of an additional upstream sequence, from 280 to 636 bp 5' to cbbFI, resulted in a significant increase in regulated cbbI promoter expression under all growth conditions tested. A 50-bp region responsible for the majority of this increase occurs between 280 and 330 bp 5' to cbbFI. The additional 306 bp of upstream sequence from 330 to 636 bp also appears to play a positive regulatory role. A 4-bp deletion 281 to 284 bp 5' to cbbFI significantly reduced cbbI expression while the proper regulatory pattern was retained. These studies provide evidence for the presence of two functionally distinct regions of the cbbI promoter, with the distal domain providing significant regulated promoter activity that adheres to the normal pattern of expression.
Collapse
Affiliation(s)
- J M Dubbs
- Department of Microbiology and the Plant Molecular Biology/Biotechnology Program, The Ohio State University, Columbus, Ohio 43210-1292, USA
| | | |
Collapse
|
30
|
Hayashi NR, Oguni A, Yaguchi T, Chung SY, Nishihara H, Kodama T, Igarashi Y. Different properties of gene products of three sets ribulose 1,5-bisphosphate carboxylase/oxygenase from a marine obligately autotrophic hydrogen-oxidizing bacterium, Hydrogenovibrio marinus strain MH-110. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s0922-338x(97)86759-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Kusian B, Bowien B. Organization and regulation of cbb CO2 assimilation genes in autotrophic bacteria. FEMS Microbiol Rev 1997; 21:135-55. [PMID: 9348665 DOI: 10.1111/j.1574-6976.1997.tb00348.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Calvin-Benson-Bassham cycle constitutes the principal route of CO2 assimilation in aerobic chemoautotrophic and in anaerobic phototrophic purple bacteria. Most of the enzymes of the cycle are found to be encoded by cbb genes. Despite some conservation of the internal gene arrangement cbb gene clusters of the various organisms differ in size and operon organization. The cbb operons of facultative autotrophs are more strictly regulated than those of obligate autotrophs. The major control is exerted by the cbbR gene, which codes for a transcriptional activator of the LysR family. This gene is typically located immediately upstream of and in divergent orientation to the regulated cbb operon, forming a control region for both transcriptional units. Recent studies suggest that additional protein factors are involved in the regulation. Although the metabolic signal(s) received by the regulatory components of the operons is (are) still unknown, the redox state of the cell is believed to play a key role. It is proposed that the control of the cbb operon expression is integrated into a regulatory network.
Collapse
Affiliation(s)
- B Kusian
- Institut für Mikrobiologie, Georg-August-Universität Göttingen, Germany
| | | |
Collapse
|
32
|
Abstract
Three genes, cbbX, cbbY, and cbbZ were found downstream from the form I ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) genes of Rhodobacter sphaeroides. As in chemoautotrophic bacteria, cbbZ was shown to encode phosphoglycolate phosphatase (PGP), whereas the identities of cbbX and cbbY are not known. To determine the physiological function of the cbbXYZ gene products, we constructed R. sphaeroides strains in which the genes were inactivated and characterized the resultant mutant strains according to growth phenotype and levels of RubisCO and PGP. Only a mutation in cbbX resulted in a discernible phenotype, namely, impaired photoautotrophic growth. No PGP activity was observed in any of the mutants, suggesting that the three genes are transcriptionally linked. Studies with a spontaneous chemoautotrophic competent derivative of the CBBX mutant suggested that the cbbXYZ gene products are not essential for chemoautotrophic growth. PGP activity determined in the wild-type strain grown under a variety of growth conditions, and in various strains containing mutations in Calvin-Benson-Bassham cycle structural and regulatory genes, indicated that transcription of the cbb(I) operon influenced expression of the downstream cbbXYZ operon.
Collapse
Affiliation(s)
- J L Gibson
- Department of Microbiology and the Plant Molecular Biology/Biotechnology Program, The Ohio State University, Columbus 43210, USA
| | | |
Collapse
|
33
|
Kleman GL, Horken KM, Tabita FR, Strohl WR. Overproduction of recombinant ribulose 1,5-bisphosphate carboxylase/oxygenase from Synechococcus sp. strain PCC6301 in glucose-controlled high-cell-density fermentations by Escherichia coli K-12. Appl Environ Microbiol 1996; 62:3502-7. [PMID: 8795245 PMCID: PMC168151 DOI: 10.1128/aem.62.9.3502-3507.1996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A predictive and feedback glucose feed controller, previously developed for nutrient-sufficient growth of Escherichia coli to high cell densities, was used to produce large quantities of a heterologous, cyanobacterial recombinant hexadecameric (L8S8) protein, ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) in E. coli. Culture and plasmid stability conditions were optimized to yield the production of approximately 1 g of soluble, active recombinant RubisCO per liter. Recombinant RubisCO also was produced in lactose-induced high-cell-density fermentation of E. coli K-12.
Collapse
Affiliation(s)
- G L Kleman
- Department of Microbiology, Ohio State University, Columbus 43210, USA
| | | | | | | |
Collapse
|
34
|
Hernandez JM, Baker SH, Lorbach SC, Shively JM, Tabita FR. Deduced amino acid sequence, functional expression, and unique enzymatic properties of the form I and form II ribulose bisphosphate carboxylase/oxygenase from the chemoautotrophic bacterium Thiobacillus denitrificans. J Bacteriol 1996; 178:347-56. [PMID: 8550452 PMCID: PMC177664 DOI: 10.1128/jb.178.2.347-356.1996] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The cbbL cbbS and cbbM genes of Thiobacillus denitrificans, encoding form I and form II ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO), respectively, were found to complement a RubisCO-negative mutant of Rhodobacter sphaeroides to autotrophic growth. Endogenous T. denitrificans promoters were shown to function in R. sphaeroides, resulting in high levels of cbbL cbbS and cbbM expression in the R. sphaeroides host. This expression system provided high levels of both T. denitrificans enzymes, each of which was highly purified. The deduced amino acid sequence of the form I enzyme indicated that the large subunit was closely homologous to previously sequenced form I RubisCO enzymes from sulfur-oxidizing bacteria. The form I T. denitrificans enzyme possessed a very low substrate specificity factor and did not exhibit fallover, and yet this enzyme showed a poor ability to recover from incubation with ribulose 1,5-bisphosphate. The deduced amino acid sequence of the form II T. denitrificans enzyme resembled those of other form II RubisCO enzymes. The substrate specificity factor was characteristically low, and the lack of fallover and the inhibition by ribulose 1,5-bisphosphate were similar to those of form II RubisCO obtained from nonsulfur purple bacteria. Both form I and form II RubisCO from T. denitrificans possessed high KCO2 values, suggesting that this organism might suffer in environments containing low levels of dissolved CO2. These studies present the initial description of the kinetic properties of form I and form II RubisCO from a chemoautotrophic bacterium that synthesizes both types of enzyme.
Collapse
Affiliation(s)
- J M Hernandez
- Ohio State Biochemistry Program, Ohio State University, Columbus 43210-1292, USA
| | | | | | | | | |
Collapse
|
35
|
Paoli GC, Morgan NS, Tabita FR, Shively JM. Expression of the cbbLcbbS and cbbM genes and distinct organization of the cbb Calvin cycle structural genes of Rhodobacter capsulatus. Arch Microbiol 1995; 164:396-405. [PMID: 8588741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Rhodobacter capsulatus fixes CO2 via the Calvin reductive pentose phosphate pathway and, like some other nonsulfur purple bacteria, is known to synthesize two distinct structural forms of ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO). Cosmid clones that hybridized to form I (cbbLcbbS) and form II (cbbM) RubisCO gene probes were isolated from a genomic library of R. capsulatus strain SB1003. Southern blotting and hybridization analysis with gene-specific probes derived from Rhodobacter sphaeroides revealed that R. capsulatus cbbM is clustered with genes encoding other enzymes of the Calvin cycle, including fructose 1,6/sedoheptulose 1,7-bisphosphatase (cbbF), phosphoribulokinase (cbbP), transketolase (cbbT), glyceraldehyde-3-phosphate dehydrogenase (cbbG), and fructose 1,6-bisphosphate aldolase (cbbA), as well as a gene (cbbR) encoding a divergently transcribed LysR-type regulatory protein. Surprisingly, a cosmid clone containing the R. capsulatus form I RubisCO genes (cbbL and cbbS) failed to hybridize to the other cbb structural gene probes, unlike the situation with the closely related organism R. sphaeroides. The form I and form II RubisCO genes were cloned into pUC-derived vectors and were expressed in Escherichia coli to yield active recombinant enzyme in each case. Complementation of a RubisCO-deletion strain of R. sphaeroides to photosynthetic growth by R. capsulatus cbbLcbbS or cbbM was achieved using the broad host-range vector, pRK415, and R. sphaeroides expression vector pRPS-1.
Collapse
Affiliation(s)
- G C Paoli
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
36
|
Paoli GC, Morgan NS, Tabita FR, Shively JM. Expression of thecbbLcbbS andcbbM genes and distinct organization of thecbb Calvin cycle structural genes ofRhodobacter capsulatus. Arch Microbiol 1995. [DOI: 10.1007/bf02529737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
37
|
Hayashi NR, Ishida T, Peerapornpisal Y, Igarashi Y, Kodama T. Effect of carbon dioxide concentration on the growth and RubisCO activity of a thermophilic cyanobacterium, Chroococcidiopsis sp. strain TS-821. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/0922-338x(96)80927-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
38
|
Xu HH, Tabita FR. Positive and negative regulation of sequences upstream of the form II cbb CO2 fixation operon of Rhodobacter sphaeroides. J Bacteriol 1994; 176:7299-308. [PMID: 7961502 PMCID: PMC197119 DOI: 10.1128/jb.176.23.7299-7308.1994] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The unlinked form I and form II Calvin cycle CO2 fixation (cbb) operons of the photosynthetic bacterium Rhodobacter sphaeroides are located on different genetic elements, yet both operons are positively regulated by the transcription activator protein CbbR, the product of the cbbR gene located immediately upstream of the form I operon. By employing deletion mutagenesis, and a newly constructed promoter probe vector, the form II operon promoter (cbbFIIp) and three other promoters (Up, Vp, and Wp) were localized within 2.1 kb upstream of the form II operon. Mutations in both cbbR and the first gene of the form I operon (cbbFI) elicited both positive and negative responses when transcriptional fusions controlled by these four promoters were examined. With the exception of Wp, all these upstream promoters were repressed by oxygen. In addition, these promoters were associated with open reading frames of unknown function whose deduced amino acid sequences showed no significant relationship to proteins in current databases. The results of these experiments suggest that the promoter sequences and genes upstream of the form II cbb operon may be intimately involved with control of the cbb regulon of this photosynthetic organism.
Collapse
Affiliation(s)
- H H Xu
- Department of Microbiology, Ohio State University, Columbus 43210-1292
| | | |
Collapse
|
39
|
McEwan AG. Photosynthetic electron transport and anaerobic metabolism in purple non-sulfur phototrophic bacteria. Antonie Van Leeuwenhoek 1994; 66:151-64. [PMID: 7747929 DOI: 10.1007/bf00871637] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Purple non-sulfur phototrophic bacteria, exemplified by Rhodobacter capsulatus and Rhodobacter sphaeroides, exhibit a remarkable versatility in their anaerobic metabolism. In these bacteria the photosynthetic apparatus, enzymes involved in CO2 fixation and pathways of anaerobic respiration are all induced upon a reduction in oxygen tension. Recently, there have been significant advances in the understanding of molecular properties of the photosynthetic apparatus and the control of the expression of genes involved in photosynthesis and CO2 fixation. In addition, anaerobic respiratory pathways have been characterised and their interaction with photosynthetic electron transport has been described. This review will survey these advances and will discuss the ways in which photosynthetic electron transport and oxidation-reduction processes are integrated during photoautotrophic and photoheterotrophic growth.
Collapse
Affiliation(s)
- A G McEwan
- Department of Microbiology, University of Queensland, Brisbane, Australia
| |
Collapse
|
40
|
Wang X, Modak HV, Tabita FR. Photolithoautotrophic growth and control of CO2 fixation in Rhodobacter sphaeroides and Rhodospirillum rubrum in the absence of ribulose bisphosphate carboxylase-oxygenase. J Bacteriol 1993; 175:7109-14. [PMID: 8226655 PMCID: PMC206842 DOI: 10.1128/jb.175.21.7109-7114.1993] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Rhodospirillum rubrum and Rhodobacter sphaeroides were shown to be capable of photolithoautotrophic growth in the absence of the reductive pentose phosphate (Calvin) cycle. Ribulose 1,5-bisphosphate carboxylase-oxygenase (RubisCO) deletion strains were incapable of photolithoautotrophic growth using hydrogen as an electron donor but were able to grow in the absence of organic carbon using less reduced inorganic electron donors, i.e., thiosulfate or sulfide. Wild-type R. rubrum grown in the presence of thiosulfate contained RubisCO levels that were 50-fold lower compared with those in cells growth with hydrogen as an electron donor without substantially influencing rates of photolithoautotrophic growth. These results suggest there are two independent CO2 fixation pathways that support photolithoautotrophic growth in purple nonsulfur photosynthetic bacteria, indicating that these organisms have developed sophisticated control mechanisms to regulate the flow of carbon from CO2 through these separate pathways.
Collapse
Affiliation(s)
- X Wang
- Department of Microbiology, Ohio State University, Columbus 43210-1192
| | | | | |
Collapse
|
41
|
van den Bergh ER, Dijkhuizen L, Meijer WG. CbbR, a LysR-type transcriptional activator, is required for expression of the autotrophic CO2 fixation enzymes of Xanthobacter flavus. J Bacteriol 1993; 175:6097-104. [PMID: 8407781 PMCID: PMC206702 DOI: 10.1128/jb.175.19.6097-6104.1993] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Xanthobacter flavus is able to grow autotrophically with the enzymes of the Calvin cycle for the fixation of CO2, which are specified by the cbbLSXFP gene cluster. Previously, the 5' end of an open reading frame (cbbR), displaying a high sequence similarity to the LysR family of regulatory proteins and transcribed divergently from cbbLSXFP, was identified (W. G. Meijer, A. C. Arnberg, H. G. Enequist, P. Terpstra, M. E. Lidstrom, and L. Dijkhuizen, Mol. Gen. Genet. 225:320-330, 1991). This paper reports the complete nucleotide sequence of cbbR and a functional characterization of the gene. The cbbR gene of X. flavus specifies a 333-amino-acid polypeptide, with a molecular weight of 35,971. Downstream from cbbR, the 3' end of an open reading frame displaying a high similarity to ORF60K from Pseudomonas putida and ORF261 from Bacillus subtilis was identified. ORF60K and ORF261 are located at the replication origin of the bacterial chromosome. Inactivation of cbbR, via the insertion of an antibiotic resistance gene, rendered X. flavus unable to grow autotrophically. This was caused not by an inability to oxidize autotrophic substrates (e.g., formate) but by a complete lack of expression of the cbb genes. The expression of the CbbR protein in Escherichia coli was achieved by placing cbbR behind a strong promoter and optimization of the translational signals of cbbR. CbbR binds specifically to two binding sites in the cbbR-cbbL intergenic region.
Collapse
Affiliation(s)
- E R van den Bergh
- Department of Microbiology, University of Groningen, Haren, The Netherlands
| | | | | |
Collapse
|
42
|
Gibson JL, Tabita FR. Nucleotide sequence and functional analysis of cbbR, a positive regulator of the Calvin cycle operons of Rhodobacter sphaeroides. J Bacteriol 1993; 175:5778-84. [PMID: 8376325 PMCID: PMC206655 DOI: 10.1128/jb.175.18.5778-5784.1993] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Structural genes encoding Calvin cycle enzymes in Rhodobacter sphaeroides are duplicated and organized within two physically distinct transcriptional units, the form I and form II cbb operons. Nucleotide sequence determination of the region upstream of the form I operon revealed a divergently transcribed open reading frame, cbbR, that showed significant similarity to the LysR family of transcriptional regulatory proteins. Mutants containing an insertionally inactivated cbbR gene were impaired in photoheterotrophic growth and completely unable to grow photolithoautotrophically with CO2 as the sole carbon source. In the cbbR strain, expression of genes within the form I operon was completely abolished and that of the form II operon was reduced to about 30% of the wild-type level. The cloned cbbR gene complemented the mutant for wild-type growth characteristics, and normal levels of ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) were observed. However, rocket immunoelectrophoresis revealed that the wild-type level of RubisCO was due to overexpression of the form II enzyme, whereas expression of the form I RubisCO was 10% of that of the wild-type strain. The cbbR insertional inactivation did not appear to affect aerobic expression of either CO2 fixation operon, but preliminary evidence suggests that the constitutive expression of the form II operon observed in the cbbR strain may be subject to repression during aerobic growth.
Collapse
Affiliation(s)
- J L Gibson
- Department of Microbiology, Ohio State University, Columbus 3210-1292
| | | |
Collapse
|
43
|
Falcone DL, Tabita FR. Complementation analysis and regulation of CO2 fixation gene expression in a ribulose 1,5-bisphosphate carboxylase-oxygenase deletion strain of Rhodospirillum rubrum. J Bacteriol 1993; 175:5066-77. [PMID: 8349547 PMCID: PMC204973 DOI: 10.1128/jb.175.16.5066-5077.1993] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A ribulose 1,5-bisphosphate carboxylase-oxygenase (RubisCO) deletion strain of Rhodospirillum rubrum that was incapable of photolithoautotrophic growth was constructed. Photoheterotrophic growth, however, was possible for the R. rubrum RubisCO deletion strain when oxidized carbon compounds such as malate were supplied. The R. rubrum RubisCO-deficient strain was not complemented to photolithoautotrophic growth by various R. rubrum DNA fragments that contain the gene encoding RubisCO, cbbM. When the R. rubrum cbbM deletion strain harbored plasmids containing R. rubrum DNA inserts with at least 2.0 kb preceding the translational start site of the cbbM gene, RubisCO activity and RubisCO antigen were detected. Lack of RubisCO expression was therefore not the cause for the failure to complement the cbbM mutant strain. Interestingly, DNA fragments encoding either of two complete Calvin-Benson-Bassham CO2- fixation (cbb) gene operons from Rhodobacter sphaeroides were able to complement the R. rubrum RubisCO deletion strain to photolithoautotrophic growth. The same R. rubrum DNA fragments that failed to complement the R. rubrum cbbM deletion strain successfully complemented the RubisCO deletion strain of R. sphaeroides, pointing to distinct differences in the regulation of metabolism and the genetics of photolithoautotrophic growth in these two organisms. A number of cbb genes were identified by nucleotide sequence analysis of the region upstream of cbbM. Included among these was an open reading frame encoding a cbbR gene showing a high degree of sequence similarity to known lysR-type CO2 fixation transcriptional activator genes. The placement and orientation of the cbbR transcriptional regulator gene in R. rubrum are unique.
Collapse
Affiliation(s)
- D L Falcone
- Department of Microbiology, Ohio State University, Columbus 43210-1192
| | | |
Collapse
|
44
|
Wang X, Falcone DL, Tabita FR. Reductive pentose phosphate-independent CO2 fixation in Rhodobacter sphaeroides and evidence that ribulose bisphosphate carboxylase/oxygenase activity serves to maintain the redox balance of the cell. J Bacteriol 1993; 175:3372-9. [PMID: 8501041 PMCID: PMC204734 DOI: 10.1128/jb.175.11.3372-3379.1993] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Whole-cell CO2 fixation and ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) activity were determined in Rhodobacter sphaeroides wild-type and mutant strains. There is no obvious difference in the levels of whole-cell CO2 fixation for the wild type, a form I RubisCO deletion mutant, and a form II RubisCO deletion mutant. No ribulose 1,5-bisphosphate-dependent CO2 fixation was detected in a form I-form II RubisCO double-deletion mutant (strain 16) or strain 16PHC, a derivative from strain 16 which was selected for the ability to grow photoheterotrophically with CO2 as an electron acceptor. However, significant levels of whole-cell CO2 fixation were detected in both strains 16 and 16PHC. Strain 16PHC exhibited CO2 fixation rates significantly higher than those of strain 16; the rates found for strain 16PHC were 30% of the level found in photoheterotrophically grown wild-type strain HR containing both form I and form II RubisCO and 10% of the level of the wild-type strain grown photolithoautotrophically. Strain 16PHC could not grow photolithoautotrophically in a CO2-H2 atmosphere; however, CO2 fixation catalyzed by photoheterotrophically grown strain 16PHC was repressed by addition of the alternate electron acceptor dimethyl sulfoxide. Dimethyl sulfoxide addition also influenced RubisCO activity under photolithoautotrophic conditions; 40 to 70% of the RubisCO activity was reduced without significantly influencing growth. Strain 16PHC and strain 16 contain nearly equivalent but low levels of pyruvate carboxylase, indicating that CO2 fixation enzymes other than pyruvate carboxylase contribute to the ability of strain 16PHC to grow with CO2 as an electron acceptor.
Collapse
Affiliation(s)
- X Wang
- Department of Microbiology, Ohio State University, Columbus 43210-1192
| | | | | |
Collapse
|
45
|
Chung SY, Yaguchi T, Nishihara H, Igarashi Y, Kodama T. Purification of form L2 RubisCO from a marine obligately autotrophic hydrogen-oxidizing bacterium, Hydrogenovibrio marinus strain MH-110. FEMS Microbiol Lett 1993; 109:49-53. [PMID: 8319883 DOI: 10.1111/j.1574-6968.1993.tb06142.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) was purified from an obligately autotrophic hydrogen-oxidizing bacterium, Hydrogenovibrio marinus MH-110. The protein has a M(r) value of approximately 110,000, and is composed of two identical subunits of 55,000. To our knowledge, the existence of L2-form RubisCO in a chemolithoautotrophic bacterium is first reported in this paper. The N-terminal amino acid sequence determination of the purified enzyme showed high homology with those of the L2-form RubisCO of Rhodospirillum rubrum and the Lx-form RubisCO from Rhodobacter sphaeroides.
Collapse
Affiliation(s)
- S Y Chung
- Department of Agricultural Chemistry, University of Tokyo, Japan
| | | | | | | | | |
Collapse
|
46
|
Falcone DL, Tabita FR. Expression and regulation of Bradyrhizobium japonicum and Xanthobacter flavus CO2 fixation genes in a photosynthetic bacterial host. J Bacteriol 1993; 175:866-9. [PMID: 8423157 PMCID: PMC196233 DOI: 10.1128/jb.175.3.866-869.1993] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Calvin cycle carbon dioxide fixation genes encoded on DNA fragments from two nonphotosynthetic, chemolithoautotrophic bacteria, Bradyrhizobium japonicum and Xanthobacter flavus, were found to complement and support photosynthetic growth of a ribulose 1,5-bisphosphate carboxylase-oxygenase (RubisCO) deletion mutant of the purple nonsulfur bacterium Rhodobacter sphaeroides. The regulation of RubisCO expression was analyzed in the complemented R. sphaeroides RubisCO deletion mutant. Distinct differences in the regulation of RubisCO synthesis were revealed when the complemented R. sphaeroides strains were cultured under photolithoautotrophic and photoheterotrophic growth conditions, e.g., a reversal in the normal pattern of RubisCO gene expression. These studies suggest that sequences and molecular signals which regulate the expression of diverse RubisCO genes may be probed by using the R. sphaeroides complementation system.
Collapse
Affiliation(s)
- D L Falcone
- Department of Microbiology, Ohio State University, Columbus 43210
| | | |
Collapse
|
47
|
Anoxygenic Phototrophic Bacteria: Physiology and Advances in Hydrogen Production Technology. ADVANCES IN APPLIED MICROBIOLOGY 1993. [DOI: 10.1016/s0065-2164(08)70217-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Wang X, Tabita FR. Interaction between ribulose 1,5-bisphosphate carboxylase/oxygenase activity and the ammonia assimilatory system of Rhodobacter sphaeroides. J Bacteriol 1992; 174:3601-6. [PMID: 1350584 PMCID: PMC206047 DOI: 10.1128/jb.174.11.3601-3606.1992] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The levels of form I and form II ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) from Rhodobacter sphaeroides were found to depend on the concentration of ammonia supplied to photolithoautotrophically grown cultures. Under conditions in which the cells rapidly depleted the available ammonia, the level of in situ RubisCO activity decreased to less than 5% maximum activity; even at its maximum level under these conditions, the RubisCO activity was only 5% of the activity obtained from cultures supplied with saturating levels of ammonia. When cells were incubated with somewhat higher but not saturating amounts of ammonia, in situ RubisCO activity decreased immediately after the cells depleted the cultures of ammonia. The decrease in activity was not due to any detectable degradation of RubisCO protein, indicative of some mechanism to regulate the activity of the enzyme in response to the intracellular levels of assimilated ammonia. Furthermore, under conditions optimum for RubisCO inactivation, in situ RubisCO activity in permeabilized whole cells greatly exceeded the levels of enzymatic activity determined in vitro in cell extracts. Blockage of ammonia assimilation by inhibition of glutamine synthetase with methionine sulfoximine prevented the recovery of form I RubisCO from pyruvate-mediated inactivation, suggesting the presence of regulatory mechanisms common to both CO2 fixation and ammonia assimilation.
Collapse
Affiliation(s)
- X Wang
- Department of Microbiology, Ohio State University, Columbus 43210
| | | |
Collapse
|
49
|
Wang X, Tabita FR. Interaction of inactivated and active ribulose 1,5-bisphosphate carboxylase/oxygenase of Rhodobacter sphaeroides with nucleotides and the chaperonin 60 (GroEL) protein. J Bacteriol 1992; 174:3607-11. [PMID: 1350585 PMCID: PMC206048 DOI: 10.1128/jb.174.11.3607-3611.1992] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Purified inactivated form I ribulose 1,5-bisphosphate carboxylase/oxygenase (form I RubisCO) of Rhodobacter sphaeroides was activated by ATP and, to some extent, by other adenylates and nucleotides. Reactivation in the presence of ATP occurred by a time-dependent and concentration-dependent process which appeared to be irreversible. The carbamylated form of inactivated form I RubisCO was less susceptible to ATP-mediated reactivation than the uncarbamylated inactivated enzyme. In some cases, ATP analogs could mimic the reactivation process; one analog, adenylyl(beta, gamma-methylene)-diphosphonate, was found to partially block ATP-mediated reactivation but could not block reactivation induced by Mg(II). Concomitant with the recovery of enzymatic activity, the migration of the inactivated form I RubisCO on nondenaturing and sodium dodecyl sulfate gels changed from a pattern that was characteristic of inactivated enzyme to a pattern that was identical to that of the active protein. It was further found that discrete proportions of active enzyme and the chaperonin 60 protein of R. sphaeroides aggregated in the presence of ATP. The form I RubisCO is thus proposed to contain a specific ATP-binding site that may contribute to both the regulation of activity and the assembly of active enzyme.
Collapse
Affiliation(s)
- X Wang
- Department of Microbiology, Biotechnology Center, Ohio State University, Columbus 43210
| | | |
Collapse
|
50
|
English RS, Williams CA, Lorbach SC, Shively JM. Two forms of ribulose-1,5-bisphosphate carboxylase/oxygenase fromThiobacillus denitrificans. FEMS Microbiol Lett 1992. [DOI: 10.1111/j.1574-6968.1992.tb05299.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|