1
|
Rangel LI, Bolton MD. The unsung roles of microbial secondary metabolite effectors in the plant disease cacophony. CURRENT OPINION IN PLANT BIOLOGY 2022; 68:102233. [PMID: 35679804 DOI: 10.1016/j.pbi.2022.102233] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Plants counter disease with an array of responses to styme pathogen ingress. In contrast to this cacophony, plant pathogens orchestrate a finely tuned repertoire of virulence mechanisms in their attempt to cause disease. One such example is the production of secondary metabolite effectors (SMEs). Despite many attempts to functionally categorize SMEs, their many roles in plant disease have proven they march to the beat of their producer's drum. Some lesser studied features of SMEs in plant disease include self-resistance (SR) and manipulation of the microbiome to enhance pathogen virulence. SR can be accomplished in three general compositions, with the first being the transport of the SME to a benign location; the second being modification of the SME so it cannot harm the producer; and the third being metabolic regulation of the SME or the producer homolog of the SME target. SMEs may also play an interlude prior to disease by shaping the plant microbial community, allowing producers to better establish themselves. Taken together, SMEs are integral players in the phytopathology canon.
Collapse
Affiliation(s)
- Lorena I Rangel
- Edward T. Schafer Agricultural Research Center, U.S. Dept. Agriculture, Fargo, ND, USA
| | - Melvin D Bolton
- Edward T. Schafer Agricultural Research Center, U.S. Dept. Agriculture, Fargo, ND, USA.
| |
Collapse
|
2
|
Masschelein J, Jenner M, Challis GL. Antibiotics from Gram-negative bacteria: a comprehensive overview and selected biosynthetic highlights. Nat Prod Rep 2017. [PMID: 28650032 DOI: 10.1039/c7np00010c] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: up to 2017The overwhelming majority of antibiotics in clinical use originate from Gram-positive Actinobacteria. In recent years, however, Gram-negative bacteria have become increasingly recognised as a rich yet underexplored source of novel antimicrobials, with the potential to combat the looming health threat posed by antibiotic resistance. In this article, we have compiled a comprehensive list of natural products with antimicrobial activity from Gram-negative bacteria, including information on their biosynthetic origin(s) and molecular target(s), where known. We also provide a detailed discussion of several unusual pathways for antibiotic biosynthesis in Gram-negative bacteria, serving to highlight the exceptional biocatalytic repertoire of this group of microorganisms.
Collapse
Affiliation(s)
- J Masschelein
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, UK.
| | - M Jenner
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, UK.
| | - G L Challis
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, UK.
| |
Collapse
|
3
|
Hart KM, Reck M, Bowman GR, Wencewicz TA. Tabtoxinine-β-lactam is a “stealth” β-lactam antibiotic that evades β-lactamase-mediated antibiotic resistance. MEDCHEMCOMM 2016. [DOI: 10.1039/c5md00325c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Tabtoxinine-β-lactam (TβL) is a phytotoxin produced by plant pathogenic strains of Pseudomonas syringae.
Collapse
Affiliation(s)
- Kathryn M. Hart
- Department of Biochemistry and Molecular Biophysics
- Washington University School of Medicine
- St. Louis
- USA
| | - Margaret Reck
- Department of Chemistry
- Washington University in St. Louis
- St. Louis
- USA
| | - Gregory R. Bowman
- Department of Biochemistry and Molecular Biophysics
- Washington University School of Medicine
- St. Louis
- USA
| | | |
Collapse
|
4
|
Hamed RB, Gomez-Castellanos JR, Henry L, Ducho C, McDonough MA, Schofield CJ. The enzymes of β-lactam biosynthesis. Nat Prod Rep 2013; 30:21-107. [DOI: 10.1039/c2np20065a] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
5
|
Wencewicz TA, Walsh CT. Pseudomonas syringae self-protection from tabtoxinine-β-lactam by ligase TblF and acetylase Ttr. Biochemistry 2012; 51:7712-25. [PMID: 22994681 DOI: 10.1021/bi3011384] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Plant pathogenic Pseudomonas syringae produce the hydroxy-β-lactam antimetabolite tabtoxinine-β-lactam (TβL) as a time-dependent inactivating glutamine analogue of plant glutamine synthetases. The producing pseudomonads use multiple modes of self-protection, two of which are characterized in this study. The first is the dipeptide ligase TblF which converts tabtoxinine-β-lactam to the TβL-Thr dipeptide known as tabtoxin. The dipeptide is not recognized by glutamine synthetase. This represents a Trojan Horse strategy: the dipeptide is secreted, taken up by dipeptide permeases in neighboring cells, and TβL is released by peptidase action. The second self-protection mode is elaboration by the acetyltransferase Ttr, which acetylates the α-amino group of the proximal inactivator TβL, but not the tabtoxin dipeptide.
Collapse
Affiliation(s)
- Timothy A Wencewicz
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | | |
Collapse
|
6
|
Arrebola E, Cazorla FM, Perez-García A, de Vicente A. Chemical and metabolic aspects of antimetabolite toxins produced by Pseudomonas syringae pathovars. Toxins (Basel) 2011; 3:1089-110. [PMID: 22069758 PMCID: PMC3202874 DOI: 10.3390/toxins3091089] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 08/17/2011] [Accepted: 08/17/2011] [Indexed: 11/17/2022] Open
Abstract
Pseudomonas syringae is a phytopathogenic bacterium present in a wide variety of host plants where it causes diseases with economic impact. The symptoms produced by Pseudomonas syringae include chlorosis and necrosis of plant tissues, which are caused, in part, by antimetabolite toxins. This category of toxins, which includes tabtoxin, phaseolotoxin and mangotoxin, is produced by different pathovars of Pseudomonas syringae. These toxins are small peptidic molecules that target enzymes of amino acids' biosynthetic pathways, inhibiting their activity and interfering in the general nitrogen metabolism. A general overview of the toxins' chemistry, biosynthesis, activity, virulence and potential applications will be reviewed in this work.
Collapse
Affiliation(s)
- Eva Arrebola
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” (IHSM-UMA-CSIC), Estación Experimental La Mayora, Algarrobo-Costa, Málaga 29750, Spain
| | - Francisco M. Cazorla
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” (IHSM-UMA-CSIC), Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Unidad Asociada al CSIC, Campus de Teatinos, Málaga 29071, Spain; (F.M.C.); (A.P.-G.); (A.V.)
| | - Alejandro Perez-García
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” (IHSM-UMA-CSIC), Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Unidad Asociada al CSIC, Campus de Teatinos, Málaga 29071, Spain; (F.M.C.); (A.P.-G.); (A.V.)
| | - Antonio de Vicente
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” (IHSM-UMA-CSIC), Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Unidad Asociada al CSIC, Campus de Teatinos, Málaga 29071, Spain; (F.M.C.); (A.P.-G.); (A.V.)
| |
Collapse
|
7
|
Cundliffe E. Self-protection mechanisms in antibiotic producers. CIBA FOUNDATION SYMPOSIUM 2007; 171:199-208; discussion 208-14. [PMID: 1302178 DOI: 10.1002/9780470514344.ch12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Various ways in which antibiotic-producing organisms are able to resist the actions of their products are discussed. Examples are given of antibiotic inactivation and also the modification of antibiotic target sites (most notably, ribosomes) to which drugs would otherwise bind and thereby exert their usual inhibitory effects. An interesting variation on the latter theme involves the duplication of target enzymes so that both sensitive and resistant versions are produced, the latter inducibly. Speculative discussion of antibiotic efflux leads to examples of cloned resistance determinants that probably encode components of efflux systems. Although of interest in their own right, resistance mechanisms should not be viewed narrowly when the physiology of antibiotic producers is considered. Thus, chemical modification of drug molecules may not only fulfil a protective role within the cell but may also provide substrates for efflux. Recent evidence that such considerations apply to macrolide antibiotics is presented. The control of resistance in producing organisms is also discussed with particular reference to the induction of novobiocin resistance in Streptomyces sphaeroides. This involves the interplay of novobiocin-sensitive and -resistant forms of DNA gyrase and features a promoter that displays a dramatic response to changes in DNA topology.
Collapse
Affiliation(s)
- E Cundliffe
- Department of Biochemistry, University of Leicester, UK
| |
Collapse
|
8
|
Demain AL, Fang A. The natural functions of secondary metabolites. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2001; 69:1-39. [PMID: 11036689 DOI: 10.1007/3-540-44964-7_1] [Citation(s) in RCA: 180] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Secondary metabolites, including antibiotics, are produced in nature and serve survival functions for the organisms producing them. The antibiotics are a heterogeneous group, the functions of some being related to and others being unrelated to their antimicrobial activities. Secondary metabolites serve: (i) as competitive weapons used against other bacteria, fungi, amoebae, plants, insects, and large animals; (ii) as metal transporting agents; (iii) as agents of symbiosis between microbes and plants, nematodes, insects, and higher animals; (iv) as sexual hormones; and (v) as differentiation effectors. Although antibiotics are not obligatory for sporulation, some secondary metabolites (including antibiotics) stimulate spore formation and inhibit or stimulate germination. Formation of secondary metabolites and spores are regulated by similar factors. This similarity could insure secondary metabolite production during sporulation. Thus the secondary metabolite can: (i) slow down germination of spores until a less competitive environment and more favorable conditions for growth exist; (ii) protect the dormant or initiated spore from consumption by amoebae; or (iii) cleanse the immediate environment of competing microorganisms during germination.
Collapse
Affiliation(s)
- A L Demain
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA.
| | | |
Collapse
|
9
|
Bender CL, Alarcón-Chaidez F, Gross DC. Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. Microbiol Mol Biol Rev 1999; 63:266-92. [PMID: 10357851 PMCID: PMC98966 DOI: 10.1128/mmbr.63.2.266-292.1999] [Citation(s) in RCA: 530] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coronatine, syringomycin, syringopeptin, tabtoxin, and phaseolotoxin are the most intensively studied phytotoxins of Pseudomonas syringae, and each contributes significantly to bacterial virulence in plants. Coronatine functions partly as a mimic of methyl jasmonate, a hormone synthesized by plants undergoing biological stress. Syringomycin and syringopeptin form pores in plasma membranes, a process that leads to electrolyte leakage. Tabtoxin and phaseolotoxin are strongly antimicrobial and function by inhibiting glutamine synthetase and ornithine carbamoyltransferase, respectively. Genetic analysis has revealed the mechanisms responsible for toxin biosynthesis. Coronatine biosynthesis requires the cooperation of polyketide and peptide synthetases for the assembly of the coronafacic and coronamic acid moieties, respectively. Tabtoxin is derived from the lysine biosynthetic pathway, whereas syringomycin, syringopeptin, and phaseolotoxin biosynthesis requires peptide synthetases. Activation of phytotoxin synthesis is controlled by diverse environmental factors including plant signal molecules and temperature. Genes involved in the regulation of phytotoxin synthesis have been located within the coronatine and syringomycin gene clusters; however, additional regulatory genes are required for the synthesis of these and other phytotoxins. Global regulatory genes such as gacS modulate phytotoxin production in certain pathovars, indicating the complexity of the regulatory circuits controlling phytotoxin synthesis. The coronatine and syringomycin gene clusters have been intensively characterized and show potential for constructing modified polyketides and peptides. Genetic reprogramming of peptide and polyketide synthetases has been successful, and portions of the coronatine and syringomycin gene clusters could be valuable resources in developing new antimicrobial agents.
Collapse
Affiliation(s)
- C L Bender
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, Oklahoma 74078-3032, USA.
| | | | | |
Collapse
|
10
|
Barta TM, Kinscherf TG, Willis DK. Regulation of tabtoxin production by the lemA gene in Pseudomonas syringae. J Bacteriol 1992; 174:3021-9. [PMID: 1314808 PMCID: PMC205957 DOI: 10.1128/jb.174.9.3021-3029.1992] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pseudomonas syringae pv. coronafaciens, a pathogen of oats, was mutagenized with Tn5 to generate mutants defective in tabtoxin production. From a screen of 3,400 kanamycin-resistant transconjugants, seven independent mutants that do not produce tabtoxin (Tox-) were isolated. Although the Tn5 insertions within these seven mutants were linked, they were not located in the previously described tabtoxin biosynthetic region of P. syringae. Instead, all of the insertions were within the P. syringae pv. coronafaciens lemA gene. The lemA gene is required by strains of P. syringae pv. syringae for pathogenicity on bean plants (Phaseolus vulgaris). In contrast to the phenotype of a P. syringae pv. syringae lemA mutant, the Tox- mutants of P. syringae pv. coronafaciens were still able to produce necrotic lesions on oat plants (Avena sativa), although without the chlorosis associated with tabtoxin production. Northern (RNA) hybridization experiments indicated that a functional lemA gene was required for the detection of a transcript produced from the tblA locus located in the tabtoxin biosynthetic region. Marker exchange mutagenesis of the tblA locus resulted in loss of tabtoxin production. Therefore, both the tblA and lemA genes are required for tabtoxin biosynthesis, and the regulation of tabtoxin production by lemA probably occurs at the transcriptional level.
Collapse
Affiliation(s)
- T M Barta
- Department of Plant Pathology, University of Wisconsin, Madison 53706
| | | | | |
Collapse
|
11
|
Mitchell RE. Implications of toxins in the ecology and evolution of plant pathogenic microorganisms: bacteria. EXPERIENTIA 1991; 47:791-803. [PMID: 1915763 DOI: 10.1007/bf01922459] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This review attempts to rationalise what is known about bacterial phytotoxins and associate it with the ecology and possible evolution of the producing organisms. Study of non-toxin producing variants gives insight into the ecological role of the toxin. Elucidation of chemical structures of phytotoxins has shown that many exist as families of analogous compounds. Studies on the variation of chemical structures and how they are distributed across species and genera can lead to development of hypotheses on evolutionary relationships. Knowledge on biosynthetic pathways to toxins allows recognition of specific enzymatic steps involved in developing the characteristic features of the structures. Phytotoxins often have a potent biochemical activity, and in some cases the producing organism has associated mechanisms to prevent action of the toxin upon itself; in such cases toxigenesis is clearly not a chance event. The various aspects of bacterial toxigenesis indicate that bacterial phytotoxins are special secondary metabolic products that play beneficial roles to the producing organisms in their various ecological niches.
Collapse
Affiliation(s)
- R E Mitchell
- DSIR Plant Protection, Mt Albert Research Centre, Auckland, New Zealand
| |
Collapse
|
12
|
|
13
|
Kinscherf TG, Coleman RH, Barta TM, Willis DK. Cloning and expression of the tabtoxin biosynthetic region from Pseudomonas syringae. J Bacteriol 1991; 173:4124-32. [PMID: 1648077 PMCID: PMC208062 DOI: 10.1128/jb.173.13.4124-4132.1991] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Pseudomonas syringae BR2, a causal agent of bean wildfire, was subjected to Tn5 mutagenesis in an effort to isolate mutants unable to produce the beta-lactam antibiotic tabtoxin. Three of the tabtoxin-minus (Tox-) mutants generated appeared to have physically linked Tn5 insertions and retained their resistance to the active toxin form, tabtoxnine-beta-lactam (T beta L). The wild-type DNA corresponding to the mutated region was cloned and found to restore the Tn5 mutants to toxin production. The use of cloned DNA from the region as hybridization probes revealed that the region is highly conserved among tabtoxin-producing pathovars of P. syringae and that the region deletes at a relatively high frequency (10(-3)/CFU) in BR2. The Tox- deletion mutants also lost resistance to tabtoxinine-beta-lactam. A cosmid designated pRTBL823 restored toxin production and resistance to BR2 deletion mutants. This cosmid also converted the tabtoxin-naive P. syringae epiphyte Cit7 to toxin production and resistance, indicating that pRTBL823 contains a complete set of biosynthetic and resistance genes. Tox- derivatives of BR2 did not produce disease symptoms on bean. Clones that restored toxin production to both insertion and deletion mutants also restored the ability to cause disease. However, tabtoxin-producing Cit7 derivatives remained nonpathogenic on bean and tobacco, suggesting that tabtoxin production alone is not sufficient to cause disease.
Collapse
Affiliation(s)
- T G Kinscherf
- Department of Plant Pathology, University of Wisconsin, Madison
| | | | | | | |
Collapse
|
14
|
Knight TJ, Bush DR, Langston-Unkefer PJ. Oats Tolerant of Pseudomonas syringae pv. tabaci Contain Tabtoxinine-beta-Lactam-Insensitive Leaf Glutamine Synthetases. PLANT PHYSIOLOGY 1988; 88:333-9. [PMID: 16666304 PMCID: PMC1055577 DOI: 10.1104/pp.88.2.333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Pseudomonas syringae pv. tabaci, a commonly recognized leaf pathogen of tobacco, can infest the rhizosphere of many plants, including oats. Normal oat plants do not survive this infestation as a consequence of the complete and irreversible inactivation of all of their glutamine synthetases by tabtoxinine-beta-lactam (TbetaL), a toxin released by pv. tabaci. We have identified a population of oat (Avena sativa L. var Lodi) plants that are tolerant of pv. tabaci. The tolerant plants had no detectable TbetaL-detoxification mechanisms. Pathogen growth on these plant roots was not inhibited. These plants contain leaf glutamine synthetases (GS(1) and GS(2)) that were less sensitive to inactivation by TbetaL in vitro; these GSs have normal K(m) values for glutamate and ATP when compared with those of GS in control plants. Root glutamine synthetase of the tolerant plants was inactivated in vivo during infestation by the pathogen or by TbetaL in vitro. When growing without pv. tabaci, the tolerant plants contained normal levels of glutamine synthetase in their roots and leaves and normal levels of protein, ammonia, glutamate, and glutamine in their leaves. However, when the tolerant plants' rhizosphere was infested with pv. tabaci, the plant leaves contained elevated levels of glutamine synthetase activity, protein, ammonia, glutamate, and glutamine. No changes in glutamate dehydrogenase activity were detected in leaves and roots of pathogen-infested tolerant plants.
Collapse
Affiliation(s)
- T J Knight
- Isotope and Nuclear Chemistry Division, INC-4 Los Alamos National Laboratory, Los Alamos, New Mexico 87545
| | | | | |
Collapse
|
15
|
|
16
|
Knight TJ, Durbin RD, Langston-Unkefer PJ. Self-protection of Pseudomonas syringae pv. "tabaci" from its toxin, tabtoxinine-beta-lactam. J Bacteriol 1987; 169:1954-9. [PMID: 3571155 PMCID: PMC212058 DOI: 10.1128/jb.169.5.1954-1959.1987] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
An extracellular toxin, tabtoxinine-beta-lactam (T beta L), is produced by Pseudomonas syringae pv. "tabaci." This toxin irreversibly inhibits its target, glutamine synthetase; yet P. syringae pv. "tabaci" retains significant amounts of glutamine synthetase activity during toxin production in culture. As part of our investigation of the self-protection of P. syringae pv. "tabaci," we compared the effects of T beta L on Tox+ (T beta L-producing, insensitive to T beta L) and Tox- (T beta L nonproducing, sensitive to T beta L) strains. The extent of protection afforded to the Tox- strain when induced to adenylylate glutamine synthetase was tested. We concluded that an additional protection mechanism was required. A detoxification activity was found in the Tox+ strain which opens the beta-lactam ring of T beta L to produce the inactive, open-chain form, tabtoxinine. Whole cells of the Tox+ strain incubated for 24 h with [14C]T beta L (0.276 mumol/3 X 10(10) cells) contained [14C]tabtoxinine (0.056 mumol), and the medium contained T beta L (0.226 mumol). Extracts of spheroplasts of the Tox+ stain also converted T beta L to tabtoxinine, whereas extracts of the Tox- strain did not alter T beta L. The conversion was time dependent and stoichiometric and was destroyed by boiling for 30 min or by the addition of 5 mM EDTA. Penicillin, a possible substrate and competitive inhibitor of this lactamase activity, inhibited the conversion of T beta L to tabtoxinine. Periplasmic fluid did not catalyze the conversion of T beta L.
Collapse
|
17
|
The biosynthesis of tabtoxinine-beta-lactam. Use of specifically 13C-labeled glucose and 13C NMR spectroscopy to identify its biosynthetic precursors. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)61144-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|