1
|
Tătulea-Codrean M, Lauga E. Physical mechanism reveals bacterial slowdown above a critical number of flagella. J R Soc Interface 2024; 21:20240283. [PMID: 39503268 PMCID: PMC11539103 DOI: 10.1098/rsif.2024.0283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/30/2024] [Accepted: 09/18/2024] [Indexed: 11/09/2024] Open
Abstract
Numerous studies have explored the link between bacterial swimming and the number of flagella, a distinguishing feature of motile multi-flagellated bacteria. We revisit this open question using augmented slender-body theory simulations, in which we resolve the full hydrodynamic interactions within a bundle of helical filaments rotating and translating in synchrony. Unlike previous studies, our model considers the full torque-speed relationship of the bacterial flagellar motor, revealing its significant impact on multi-flagellated swimming. Because the viscous load per motor decreases with the flagellar number, the bacterial flagellar motor transitions from the high-load to the low-load regime at a critical number of filaments, leading to bacterial slowdown as further flagella are added to the bundle. We explain the physical mechanism behind the observed slowdown as an interplay between the load-dependent generation of torque by the motor, and the load-reducing cooperativity between flagella, which consists of both hydrodynamic and non-hydrodynamic components. The theoretically predicted critical number of flagella is remarkably close to the values reported for the model organism Escherichia coli. Our model further predicts that the critical number of flagella increases with viscosity, suggesting that bacteria can enhance their swimming capacity by growing more flagella in more viscous environments, consistent with empirical observations.
Collapse
Affiliation(s)
- Maria Tătulea-Codrean
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, CambridgeCB3 0WA, UK
| | - Eric Lauga
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, CambridgeCB3 0WA, UK
| |
Collapse
|
2
|
Partridge JD, Harshey RM. Flagellar protein FliL: A many-splendored thing. Mol Microbiol 2024; 122:447-454. [PMID: 39096095 DOI: 10.1111/mmi.15301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 08/04/2024]
Abstract
FliL is a bacterial flagellar protein demonstrated to associate with, and regulate ion flow through, the stator complex in a diverse array of bacterial species. FliL is also implicated in additional functions such as stabilizing the flagellar rod, modulating rotor bias, sensing the surface, and regulating gene expression. How can one protein do so many things? Its location is paramount to understanding its numerous functions. This review will look at the evidence, attempt to resolve some conflicting findings, and offer new thoughts on FliL.
Collapse
Affiliation(s)
- Jonathan D Partridge
- Department of Molecular Biosciences and the LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, Texas, USA
| | - Rasika M Harshey
- Department of Molecular Biosciences and the LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
3
|
Speare L, Zhao L, Pavelsky MN, Jackson A, Smith S, Tyagi B, Sharpe GC, Woo M, Satkowiak L, Bolton T, Gifford SM, Septer AN. Flagella are required to coordinately activate competition and host colonization factors in response to a mechanical signal. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.31.573711. [PMID: 38260499 PMCID: PMC10802311 DOI: 10.1101/2023.12.31.573711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Bacteria employ antagonistic strategies to eliminate competitors of an ecological niche. Contact-dependent mechanisms, such as the type VI secretion system (T6SS), are prevalent in host-associated bacteria, yet we know relatively little about how T6SS+ strains make contact with competitors in highly viscous environments, such as host mucus. To better understand how cells respond to and contact one another in such environments, we performed a genome-wide transposon mutant screen of the T6SS-wielding beneficial bacterial symbiont, Vibrio fischeri, and identified two sets of genes that are conditionally required for killing. LPS/capsule and flagellar-associated genes do not affect T6SS directly and are therefore not required for interbacterial killing when cell contact is forced yet are necessary for killing in high-viscosity liquid (hydrogel) where cell-cell contact must be biologically mediated. Quantitative transcriptomics revealed that V. fischeri significantly increases expression of both T6SS genes and cell surface modification factors upon transition from low- to high-viscosity media. Consistent with coincubation and fluorescence microscopy data, flagella are not required for T6SS expression in hydrogel. However, flagella play a key role in responding to the physical environment by promoting expression of the surface modification genes identified in our screen, as well as additional functional pathways important for host colonization including uptake of host-relevant iron and carbon sources, and nitric oxide detoxification enzymes. Our findings suggest that flagella may act as a mechanosensor for V. fischeri to coordinately activate competitive strategies and host colonization factors, underscoring the significance of the physical environment in directing complex bacterial behaviors.
Collapse
Affiliation(s)
- Lauren Speare
- Department of Earth, Marine & Environmental Sciences, University of North Carolina, Chapel Hill, NC
- Department of Microbiology, Oregon State University, Corvallis, OR
| | - Liang Zhao
- Department of Earth, Marine & Environmental Sciences, University of North Carolina, Chapel Hill, NC
| | - Morgan N. Pavelsky
- Department of Earth, Marine & Environmental Sciences, University of North Carolina, Chapel Hill, NC
| | - Aundre Jackson
- Department of Earth, Marine & Environmental Sciences, University of North Carolina, Chapel Hill, NC
| | - Stephanie Smith
- Department of Earth, Marine & Environmental Sciences, University of North Carolina, Chapel Hill, NC
| | - Bhavyaa Tyagi
- Department of Earth, Marine & Environmental Sciences, University of North Carolina, Chapel Hill, NC
| | - Garrett C. Sharpe
- Department of Earth, Marine & Environmental Sciences, University of North Carolina, Chapel Hill, NC
| | - Madison Woo
- Department of Earth, Marine & Environmental Sciences, University of North Carolina, Chapel Hill, NC
| | - Lizzie Satkowiak
- Department of Earth, Marine & Environmental Sciences, University of North Carolina, Chapel Hill, NC
| | - Trinity Bolton
- Department of Chemistry, Morgan State University, Baltimore, MD
| | - Scott M. Gifford
- Department of Earth, Marine & Environmental Sciences, University of North Carolina, Chapel Hill, NC
| | - Alecia N. Septer
- Department of Earth, Marine & Environmental Sciences, University of North Carolina, Chapel Hill, NC
| |
Collapse
|
4
|
Hiebert TC, Gemmell BJ, von Dassow G, Conley KR, Sutherland KR. The hydrodynamics and kinematics of the appendicularian tail underpin peristaltic pumping. J R Soc Interface 2023; 20:20230404. [PMID: 37989229 PMCID: PMC10688231 DOI: 10.1098/rsif.2023.0404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/25/2023] [Indexed: 11/23/2023] Open
Abstract
Planktonic organisms feed while suspended in water using various hydrodynamic pumping strategies. Appendicularians are a unique group of plankton that use their tail to pump water over mucous mesh filters to concentrate food particles. As ubiquitous and often abundant members of planktonic ecosystems, they play a major role in oceanic food webs. Yet, we lack a complete understanding of the fluid flow that underpins their filtration. Using high-speed, high-resolution video and micro particle image velocimetry, we describe the kinematics and hydrodynamics of the tail in Oikopleura dioica in filtering and free-swimming postures. We show that sinusoidal waves of the tail generate peristaltic pumping within the tail chamber with fluid moving parallel to the tail when filtering. We find that the tail contacts attachment points along the tail chamber during each beat cycle, serving to seal the tail chamber and drive pumping. When we tested how the pump performs across environmentally relevant temperatures, we found that the amplitude of the tail was invariant but tail beat frequency increased threefold across three temperature treatments (5°C, 15°C and 25°C). Investigation into this unique pumping mechanism gives insight into the ecological success of appendicularians and provides inspiration for novel pump designs.
Collapse
Affiliation(s)
- Terra C. Hiebert
- Oregon Institute of Marine Biology, University of Oregon, OR 97420, USA
| | - Brad J. Gemmell
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - George von Dassow
- Oregon Institute of Marine Biology, University of Oregon, OR 97420, USA
| | - Keats R. Conley
- Oregon Institute of Marine Biology, University of Oregon, OR 97420, USA
| | | |
Collapse
|
5
|
Grognot M, Nam JW, Elson LE, Taute KM. Physiological adaptation in flagellar architecture improves Vibrio alginolyticus chemotaxis in complex environments. Proc Natl Acad Sci U S A 2023; 120:e2301873120. [PMID: 37579142 PMCID: PMC10450658 DOI: 10.1073/pnas.2301873120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/10/2023] [Indexed: 08/16/2023] Open
Abstract
Bacteria navigate natural habitats with a wide range of mechanical properties, from the ocean to the digestive tract and soil, by rotating helical flagella like propellers. Species differ in the number, position, and shape of their flagella, but the adaptive value of these flagellar architectures is unclear. Many species traverse multiple types of environments, such as pathogens inside and outside a host. We investigate the hypothesis that flagellar architectures mediate environment-specific benefits in the marine pathogen Vibrio alginolyticus which exhibits physiological adaptation to the mechanical environment. In addition to its single polar flagellum, the bacterium produces lateral flagella in environments that differ mechanically from water. These are known to facilitate surface motility and attachment. We use high-throughput 3D bacterial tracking to quantify chemotactic performance of both flagellar architectures in three archetypes of mechanical environments relevant to the bacterium's native habitats: water, polymer solutions, and hydrogels. We reveal that lateral flagella impede chemotaxis in water by lowering the swimming speed but improve chemotaxis in both types of complex environments. Statistical trajectory analysis reveals two distinct underlying behavioral mechanisms: In viscous solutions of the polymer PVP K90, lateral flagella increase the swimming speed. In agar hydrogels, lateral flagella improve overall chemotactic performance, despite lowering the swimming speed, by preventing trapping in pores. Our findings show that lateral flagella are multipurpose tools with a wide range of applications beyond surfaces. They implicate flagellar architecture as a mediator of environment-specific benefits and point to a rich space of bacterial navigation behaviors in complex environments.
Collapse
Affiliation(s)
- Marianne Grognot
- Rowland Institute, Harvard University, Cambridge, MA02142
- Institute of Medical Microbiology, Rheinisch-Westfälische Technische Hochschule University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule University, Aachen52074, Germany
| | - Jong Woo Nam
- Rowland Institute, Harvard University, Cambridge, MA02142
| | | | - Katja M. Taute
- Rowland Institute, Harvard University, Cambridge, MA02142
- Biozentrum, Ludwig-Maximilians-Universität München, Martinsried82152, Germany
| |
Collapse
|
6
|
Surveying a Swarm: Experimental Techniques to Establish and Examine Bacterial Collective Motion. Appl Environ Microbiol 2021; 88:e0185321. [PMID: 34878816 DOI: 10.1128/aem.01853-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The survival and successful spread of many bacterial species hinges on their mode of motility. One of the most distinct of these is swarming, a collective form of motility where a dense consortium of bacteria employ flagella to propel themselves across a solid surface. Surface environments pose unique challenges, derived from higher surface friction/tension and insufficient hydration. Bacteria have adapted by deploying an array of mechanisms to overcome these challenges. Beyond allowing bacteria to colonize new terrain in the absence of bulk liquid, swarming also bestows faster speeds and enhanced antibiotic resistance to the collective. These crucial attributes contribute to the dissemination, and in some cases pathogenicity, of an array of bacteria. This mini-review highlights; 1) aspects of swarming motility that differentiates it from other methods of bacterial locomotion. 2) Facilitatory mechanisms deployed by diverse bacteria to overcome different surface challenges. 3) The (often difficult) approaches required to cultivate genuine swarmers. 4) The methods available to observe and assess the various facets of this collective motion, as well as the features exhibited by the population as a whole.
Collapse
|
7
|
Tague JG, Regmi A, Gregory GJ, Boyd EF. Fis Connects Two Sensory Pathways, Quorum Sensing and Surface Sensing, to Control Motility in Vibrio parahaemolyticus. Front Microbiol 2021; 12:669447. [PMID: 34858358 PMCID: PMC8630636 DOI: 10.3389/fmicb.2021.669447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 09/22/2021] [Indexed: 01/13/2023] Open
Abstract
Factor for inversion stimulation (Fis) is a global regulator that is highly expressed during exponential phase growth and undetectable in stationary phase growth. Quorum sensing (QS) is a global regulatory mechanism that controls gene expression in response to changes in cell density and growth phase. In Vibrio parahaemolyticus, a marine species and a significant human pathogen, the QS regulatory sRNAs, Qrr1 to Qrr5, are expressed during exponential growth and negatively regulate the high cell density QS master regulator OpaR. OpaR is a positive regulator of capsule polysaccharide (CPS) formation, which is required for biofilm formation, and is a repressor of lateral flagella required for swarming motility. In V. parahaemolyticus, we show that Fis is a positive regulator of the qrr sRNAs expression. In an in-frame fis deletion mutant, qrr expression was repressed and opaR expression was induced. The Δfis mutant produced CPS and biofilm, but swarming motility was abolished. Also, the fis deletion mutant was more sensitive to polymyxin B. Swarming motility requires expression of both the surface sensing scrABC operon and lateral flagella laf operon. Our data showed that in the Δfis mutant both laf and scrABC genes were repressed. Fis controlled swarming motility indirectly through the QS pathway and directly through the surface sensing pathway. To determine the effects of Fis on cellular metabolism, we performed in vitro growth competition assays, and found that Δfis was outcompeted by wild type in minimal media supplemented with intestinal mucus as a sole nutrient source. The data showed that Fis positively modulated mucus components L-arabinose, D-gluconate and N-acetyl-D-glucosamine catabolism gene expression. In an in vivo colonization competition assay, Δfis was outcompeted by wild type, indicating Fis is required for fitness. Overall, these data demonstrate a global regulatory role for Fis in V. parahaemolyticus that includes QS, motility, and metabolism.
Collapse
Affiliation(s)
- Jessica G Tague
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - Abish Regmi
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - Gwendolyn J Gregory
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - E Fidelma Boyd
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| |
Collapse
|
8
|
Phylogenomics of a new fungal phylum reveals multiple waves of reductive evolution across Holomycota. Nat Commun 2021; 12:4973. [PMID: 34404788 PMCID: PMC8371127 DOI: 10.1038/s41467-021-25308-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
Compared to multicellular fungi and unicellular yeasts, unicellular fungi with free-living flagellated stages (zoospores) remain poorly known and their phylogenetic position is often unresolved. Recently, rRNA gene phylogenetic analyses of two atypical parasitic fungi with amoeboid zoospores and long kinetosomes, the sanchytrids Amoeboradix gromovi and Sanchytrium tribonematis, showed that they formed a monophyletic group without close affinity with known fungal clades. Here, we sequence single-cell genomes for both species to assess their phylogenetic position and evolution. Phylogenomic analyses using different protein datasets and a comprehensive taxon sampling result in an almost fully-resolved fungal tree, with Chytridiomycota as sister to all other fungi, and sanchytrids forming a well-supported, fast-evolving clade sister to Blastocladiomycota. Comparative genomic analyses across fungi and their allies (Holomycota) reveal an atypically reduced metabolic repertoire for sanchytrids. We infer three main independent flagellum losses from the distribution of over 60 flagellum-specific proteins across Holomycota. Based on sanchytrids' phylogenetic position and unique traits, we propose the designation of a novel phylum, Sanchytriomycota. In addition, our results indicate that most of the hyphal morphogenesis gene repertoire of multicellular fungi had already evolved in early holomycotan lineages.
Collapse
|
9
|
Abstract
Bacteria thrive both in liquids and attached to surfaces. The concentration of bacteria on surfaces is generally much higher than in the surrounding environment, offering bacteria ample opportunity for mutualistic, symbiotic, and pathogenic interactions. To efficiently populate surfaces, they have evolved mechanisms to sense mechanical or chemical cues upon contact with solid substrata. This is of particular importance for pathogens that interact with host tissue surfaces. In this review we discuss how bacteria are able to sense surfaces and how they use this information to adapt their physiology and behavior to this new environment. We first survey mechanosensing and chemosensing mechanisms and outline how specific macromolecular structures can inform bacteria about surfaces. We then discuss how mechanical cues are converted to biochemical signals to activate specific cellular processes in a defined chronological order and describe the role of two key second messengers, c-di-GMP and cAMP, in this process.
Collapse
Affiliation(s)
| | - Urs Jenal
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland; ,
| |
Collapse
|
10
|
A Trigger Phosphodiesterase Modulates the Global c-di-GMP Pool, Motility, and Biofilm Formation in Vibrio parahaemolyticus. J Bacteriol 2021; 203:e0004621. [PMID: 33846117 DOI: 10.1128/jb.00046-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Vibrio parahaemolyticus cells transit from free-swimming to surface adapted lifestyles, such as swarming colonies and three-dimensional biofilms. These transitions are regulated by sensory modules and regulatory networks that involve the second messenger cyclic diguanylate monophosphate (c-di-GMP). In this work, we show that a previously uncharacterized c-di-GMP phosphodiesterase (VP1881) from V. parahaemolyticus plays an important role in modulating the c-di-GMP pool. We found that the product of VP1881 promotes its own expression when the levels of c-di-GMP are low or when the phosphodiesterase (PDE) is catalytically inactive. This behavior has been observed in a class of c-di-GMP receptors called trigger phosphodiesterases, and hence we named the product of VP1881 TpdA, for trigger phosphodiesterase A. The absence of tpdA showed a negative effect on swimming motility while, its overexpression from an isopropyl-β-d-thiogalactopyranoside (IPTG)-inducible promoter showed a positive effect on both swimming and swarming motility and a negative effect on biofilm formation. Changes in TpdA abundance altered the expression of representative polar and lateral flagellar genes, as well as that of the biofilm-related gene cpsA. Our results also revealed that autoactivation of the native PtpdA promoter is sufficient to alter c-di-GMP signaling responses such as swarming and biofilm formation in V. parahaemolyticus, an observation that could have important implications in the dynamics of these social behaviors. IMPORTANCE c-di-GMP trigger phosphodiesterases (PDEs) could play a key role in controlling the heterogeneity of biofilm matrix composition, a property that endows characteristics that are potentially relevant for sustaining integrity and functionality of biofilms in a variety of natural environments. Trigger PDEs are not always easy to identify based on their sequence, and hence not many examples of these type of signaling proteins have been reported in the literature. Here, we report on the identification of a novel trigger PDE in V. parahaemolyticus and provide evidence suggesting that its autoactivation could play an important role in the progression of swarming motility and biofilm formation, multicellular behaviors that are important for the survival and dissemination of this environmental pathogen.
Collapse
|
11
|
Biquet-Bisquert A, Labesse G, Pedaci F, Nord AL. The Dynamic Ion Motive Force Powering the Bacterial Flagellar Motor. Front Microbiol 2021; 12:659464. [PMID: 33927708 PMCID: PMC8076557 DOI: 10.3389/fmicb.2021.659464] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/02/2021] [Indexed: 11/13/2022] Open
Abstract
The bacterial flagellar motor (BFM) is a rotary molecular motor embedded in the cell membrane of numerous bacteria. It turns a flagellum which acts as a propeller, enabling bacterial motility and chemotaxis. The BFM is rotated by stator units, inner membrane protein complexes that stochastically associate to and dissociate from individual motors at a rate which depends on the mechanical and electrochemical environment. Stator units consume the ion motive force (IMF), the electrochemical gradient across the inner membrane that results from cellular respiration, converting the electrochemical energy of translocated ions into mechanical energy, imparted to the rotor. Here, we review some of the main results that form the base of our current understanding of the relationship between the IMF and the functioning of the flagellar motor. We examine a series of studies that establish a linear proportionality between IMF and motor speed, and we discuss more recent evidence that the stator units sense the IMF, altering their rates of dynamic assembly. This, in turn, raises the question of to what degree the classical dependence of motor speed on IMF is due to stator dynamics vs. the rate of ion flow through the stators. Finally, while long assumed to be static and homogeneous, there is mounting evidence that the IMF is dynamic, and that its fluctuations control important phenomena such as cell-to-cell signaling and mechanotransduction. Within the growing toolbox of single cell bacterial electrophysiology, one of the best tools to probe IMF fluctuations may, ironically, be the motor that consumes it. Perfecting our incomplete understanding of how the BFM employs the energy of ion flow will help decipher the dynamical behavior of the bacterial IMF.
Collapse
Affiliation(s)
- Anaïs Biquet-Bisquert
- Centre de Biologie Structurale (CBS), INSERM, CNRS, Université Montpellier, Montpellier, France
| | - Gilles Labesse
- Centre de Biologie Structurale (CBS), INSERM, CNRS, Université Montpellier, Montpellier, France
| | - Francesco Pedaci
- Centre de Biologie Structurale (CBS), INSERM, CNRS, Université Montpellier, Montpellier, France
| | - Ashley L Nord
- Centre de Biologie Structurale (CBS), INSERM, CNRS, Université Montpellier, Montpellier, France
| |
Collapse
|
12
|
Identification of Three New GGDEF and EAL Domain-Containing Proteins Participating in the Scr Surface Colonization Regulatory Network in Vibrio parahaemolyticus. J Bacteriol 2021; 203:JB.00409-20. [PMID: 33199284 DOI: 10.1128/jb.00409-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/06/2020] [Indexed: 11/20/2022] Open
Abstract
Vibrio parahaemolyticus rapidly colonizes surfaces using swarming motility. Surface contact induces the surface-sensing regulon, including lateral flagellar genes, spurring dramatic shifts in physiology and behavior. The bacterium can also adopt a sessile, surface-associated lifestyle and form robust biofilms. These alternate colonization strategies are influenced reciprocally by the second messenger c-di-GMP. Although V. parahaemolyticus possesses 43 predicted proteins with the c-di-GMP-forming GGDEF domain, none have been previously been identified as contributors to surface colonization. We sought to explore this knowledge gap by using a suppressor transposon screen to restore the swarming motility of a nonswarming, high-c-di-GMP strain. Two diguanylate cyclases, ScrJ and ScrL, each containing tetratricopeptide repeat-coupled GGDEF domains, were demonstrated to contribute additively to swarming gene repression. Both proteins required an intact catalytic motif to regulate. Another suppressor mapped in lafV, the last gene in a lateral flagellar operon. Containing a degenerate phosphodiesterase (EAL) domain, LafV repressed transcription of multiple genes in the surface sensing regulon; its repressive activity required LafK, the primary swarming regulator. Mutation of the signature EAL motif had little effect on LafV's repressive activity, suggesting that LafV belongs to the subclass of EAL-type proteins that are regulatory but not enzymatic. Consistent with these activities and their predicted effects on c-di-GMP, scrJ and scrL but not lafV, mutants affected the transcription of the c-di-GMP-responsive biofilm reporter cpsA::lacZ Our results expand the knowledge of the V. parahaemolyticus GGDEF/EAL repertoire and its roles in this surface colonization regulatory network.IMPORTANCE A key survival decision, in the environment or the host, is whether to emigrate or aggregate. In bacteria, c-di-GMP signaling almost universally influences solutions to this dilemma. In V. parahaemolyticus, c-di-GMP reciprocally regulates swarming and sticking (i.e., biofilm formation) programs of surface colonization. Key c-di-GMP-degrading phosphodiesterases responsive to quorum and nutritional signals have been previously identified. c-di-GMP binding transcription factors programming biofilm development have been studied. Here, we further develop the blueprint of the c-di-GMP network by identifying new participants involved in dictating the complex decision of whether to swarm or stay. These include diguanylate cyclases with tetratricopeptide domains and a degenerate EAL protein that, analogously to the negative flagellar regulator RflP/YdiV of enteric bacteria, serves to regulate swarming.
Collapse
|
13
|
Harper CE, Hernandez CJ. Cell biomechanics and mechanobiology in bacteria: Challenges and opportunities. APL Bioeng 2020; 4:021501. [PMID: 32266323 PMCID: PMC7113033 DOI: 10.1063/1.5135585] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/27/2020] [Indexed: 12/11/2022] Open
Abstract
Physical forces play a profound role in the survival and function of all known forms of life. Advances in cell biomechanics and mechanobiology have provided key insights into the physiology of eukaryotic organisms, but much less is known about the roles of physical forces in bacterial physiology. This review is an introduction to bacterial mechanics intended for persons familiar with cells and biomechanics in mammalian cells. Bacteria play a major role in human health, either as pathogens or as beneficial commensal organisms within the microbiome. Although bacteria have long been known to be sensitive to their mechanical environment, understanding the effects of physical forces on bacterial physiology has been limited by their small size (∼1 μm). However, advancements in micro- and nano-scale technologies over the past few years have increasingly made it possible to rigorously examine the mechanical stress and strain within individual bacteria. Here, we review the methods currently used to examine bacteria from a mechanical perspective, including the subcellular structures in bacteria and how they differ from those in mammalian cells, as well as micro- and nanomechanical approaches to studying bacteria, and studies showing the effects of physical forces on bacterial physiology. Recent findings indicate a large range in mechanical properties of bacteria and show that physical forces can have a profound effect on bacterial survival, growth, biofilm formation, and resistance to toxins and antibiotics. Advances in the field of bacterial biomechanics have the potential to lead to novel antibacterial strategies, biotechnology approaches, and applications in synthetic biology.
Collapse
Affiliation(s)
- Christine E. Harper
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
14
|
|
15
|
Kimbrough JH, Cribbs JT, McCarter LL. Homologous c-di-GMP-Binding Scr Transcription Factors Orchestrate Biofilm Development in Vibrio parahaemolyticus. J Bacteriol 2020; 202:e00723-19. [PMID: 31932310 PMCID: PMC7043675 DOI: 10.1128/jb.00723-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 01/02/2020] [Indexed: 12/25/2022] Open
Abstract
The marine bacterium and human pathogen Vibrio parahaemolyticus rapidly colonizes surfaces by using swarming motility and forming robust biofilms. Entering one of the two colonization programs, swarming motility or sessility, involves differential regulation of many genes, resulting in a dramatic shift in physiology and behavior. V. parahaemolyticus has evolved complex regulation to control these two processes that have opposing outcomes. One mechanism relies on the balance of the second messenger c-di-GMP, where high c-di-GMP favors biofilm formation. V. parahaemolyticus possesses four homologous regulators, the Scr transcription factors, that belong in a Vibrio-specific family of W[F/L/M][T/S]R motif transcriptional regulators, some members of which have been demonstrated to bind c-di-GMP. In this work, we explore the role of these Scr regulators in biofilm development. We show that each protein binds c-di-GMP, that this binding requires a critical R in the binding motif, and that the biofilm-relevant activities of CpsQ, CpsS, and ScrO but not ScrP are dependent upon second messenger binding. ScrO and CpsQ are the primary drivers of biofilm formation, as biofilms are eliminated when both of these regulators are absent. ScrO is most important for capsule expression. CpsQ is most important for RTX-matrix protein expression, although it contributes to capsule expression when c-di-GMP levels are high. Both regulators contribute to O-antigen ligase expression. ScrP works oppositely in a minor role to repress the ligase gene. CpsS plays a regulatory checkpointing role by negatively modulating expression of these biofilm-pertinent genes under fluctuating c-di-GMP conditions. Our work further elucidates the multifactorial network that contributes to biofilm development in V. parahaemolyticusIMPORTANCEVibrio parahaemolyticus can inhabit open ocean, chitinous shells, and the human gut. Such varied habitats and the transitions between them require adaptable regulatory networks controlling energetically expensive behaviors, including swarming motility and biofilm formation, which are promoted by low and high concentrations of the signaling molecule c-di-GMP, respectively. Here, we describe four homologous c-di-GMP-binding Scr transcription factors in V. parahaemolyticus Members of this family of regulators are present in many vibrios, yet their numbers and the natures of their activities differ across species. Our work highlights the distinctive roles that these transcription factors play in dynamically controlling biofilm formation and architecture in V. parahaemolyticus and serves as a powerful example of regulatory network evolution and diversification.
Collapse
Affiliation(s)
- John H Kimbrough
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - J Thomas Cribbs
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Linda L McCarter
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
16
|
Minasyan H. Rototrichous: a new type of bacterial flagellation. Arch Microbiol 2019; 202:519-523. [PMID: 31712863 DOI: 10.1007/s00203-019-01765-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 08/30/2018] [Accepted: 10/31/2019] [Indexed: 11/28/2022]
Abstract
A rod-shaped microorganism with unknown type of flagellation has been accidentally discovered during phase-contrast microscopy of a sample of contaminated human donor blood. The flagellum consists of three fragments that form a complex locomotor device attached to bacterial body. The device provides bacterial motility by rotating around longitudinal axis of bacterial body and so this type of flagellation has been named "rototrichous." This newly discovered bacterial flagellation should be included in the classification of bacterial flagellations.
Collapse
|
17
|
Schniederberend M, Williams JF, Shine E, Shen C, Jain R, Emonet T, Kazmierczak BI. Modulation of flagellar rotation in surface-attached bacteria: A pathway for rapid surface-sensing after flagellar attachment. PLoS Pathog 2019; 15:e1008149. [PMID: 31682637 PMCID: PMC6855561 DOI: 10.1371/journal.ppat.1008149] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 11/14/2019] [Accepted: 10/16/2019] [Indexed: 12/11/2022] Open
Abstract
Attachment is a necessary first step in bacterial commitment to surface-associated behaviors that include colonization, biofilm formation, and host-directed virulence. The Gram-negative opportunistic pathogen Pseudomonas aeruginosa can initially attach to surfaces via its single polar flagellum. Although many bacteria quickly detach, some become irreversibly attached and express surface-associated structures, such as Type IV pili, and behaviors, including twitching motility and biofilm initiation. P. aeruginosa that lack the GTPase FlhF assemble a randomly placed flagellum that is motile; however, we observed that these mutant bacteria show defects in biofilm formation comparable to those seen for non-motile, aflagellate bacteria. This phenotype was associated with altered behavior of ΔflhF bacteria immediately following surface-attachment. Forward and reverse genetic screens led to the discovery that FlhF interacts with FimV to control flagellar rotation at a surface, and implicated cAMP signaling in this pathway. Although cAMP controls many transcriptional programs in P. aeruginosa, known targets of this second messenger were not required to modulate flagellar rotation in surface-attached bacteria. Instead, alterations in switching behavior of the motor appeared to result from direct or indirect effects of cAMP on switch complex proteins and/or the stators associated with them.
Collapse
Affiliation(s)
- Maren Schniederberend
- Department of Medicine (Infectious Diseases), Yale University, New Haven, Connecticut, United States of America
| | - Jessica F. Williams
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Emilee Shine
- Program in Microbiology, Yale University, New Haven, Connecticut, United States of America
| | - Cong Shen
- Program in Microbiology, Yale University, New Haven, Connecticut, United States of America
| | - Ruchi Jain
- Department of Medicine (Infectious Diseases), Yale University, New Haven, Connecticut, United States of America
| | - Thierry Emonet
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, Connecticut, United States of America
- Department of Physics, Yale University, New Haven, Connecticut, United States of America
| | - Barbara I. Kazmierczak
- Department of Medicine (Infectious Diseases), Yale University, New Haven, Connecticut, United States of America
- Department of Microbial Pathogenesis, Yale University, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
18
|
Ultee E, Ramijan K, Dame RT, Briegel A, Claessen D. Stress-induced adaptive morphogenesis in bacteria. Adv Microb Physiol 2019; 74:97-141. [PMID: 31126537 DOI: 10.1016/bs.ampbs.2019.02.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bacteria thrive in virtually all environments. Like all other living organisms, bacteria may encounter various types of stresses, to which cells need to adapt. In this chapter, we describe how cells cope with stressful conditions and how this may lead to dramatic morphological changes. These changes may not only allow harmless cells to withstand environmental insults but can also benefit pathogenic bacteria by enabling them to escape from the immune system and the activity of antibiotics. A better understanding of stress-induced morphogenesis will help us to develop new approaches to combat such harmful pathogens.
Collapse
Affiliation(s)
- Eveline Ultee
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands; Centre for Microbial Cell Biology, Leiden University, Leiden, the Netherlands
| | - Karina Ramijan
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands; Centre for Microbial Cell Biology, Leiden University, Leiden, the Netherlands
| | - Remus T Dame
- Centre for Microbial Cell Biology, Leiden University, Leiden, the Netherlands; Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CE Leiden, the Netherlands
| | - Ariane Briegel
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands; Centre for Microbial Cell Biology, Leiden University, Leiden, the Netherlands
| | - Dennis Claessen
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands; Centre for Microbial Cell Biology, Leiden University, Leiden, the Netherlands
| |
Collapse
|
19
|
Abstract
Mechanosensing mechanisms for surface recognition by bacteria allow biofilm
formation
Collapse
Affiliation(s)
- Kelly T Hughes
- Department of Biology, University of Utah, Salt Lake City, UT, USA.
| | - Howard C Berg
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
20
|
Diethmaier C, Chawla R, Canzoneri A, Kearns DB, Lele PP, Dubnau D. Viscous drag on the flagellum activates Bacillus subtilis entry into the K-state. Mol Microbiol 2017; 106:367-380. [PMID: 28800172 DOI: 10.1111/mmi.13770] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2017] [Indexed: 12/23/2022]
Abstract
Bacillus subtilis flagella are not only required for locomotion but also act as sensors that monitor environmental changes. Although how the signal transmission takes place is poorly understood, it has been shown that flagella play an important role in surface sensing by transmitting a mechanical signal to control the DegS-DegU two-component system. Here we report a role for flagella in the regulation of the K-state, which enables transformability and antibiotic tolerance (persistence). Mutations impairing flagellar synthesis are inferred to increase DegU-P, which inhibits the expression of ComK, the master regulator for the K-state, and reduces transformability. Tellingly, both deletion of the flagellin gene and straight filament (hagA233V ) mutations increased DegU phosphorylation despite the fact that both mutants had wild type numbers of basal bodies and the flagellar motors were functional. We propose that higher viscous loads on flagellar motors result in lower DegU-P levels through an unknown signaling mechanism. This flagellar-load based mechanism ensures that cells in the motile subpopulation have a tenfold enhanced likelihood of entering the K-state and taking up DNA from the environment. Further, our results suggest that the developmental states of motility and competence are related and most commonly occur in the same epigenetic cell type.
Collapse
Affiliation(s)
- Christine Diethmaier
- Public Health Research Institute Center, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Ravi Chawla
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station Texas, TX, USA
| | | | - Daniel B Kearns
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Pushkar P Lele
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station Texas, TX, USA
| | - David Dubnau
- Public Health Research Institute Center, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| |
Collapse
|
21
|
Wang H, Wilksch JJ, Chen L, Tan JWH, Strugnell RA, Gee ML. Influence of Fimbriae on Bacterial Adhesion and Viscoelasticity and Correlations of the Two Properties with Biofilm Formation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:100-106. [PMID: 27959542 DOI: 10.1021/acs.langmuir.6b03764] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The surface polymers of bacteria determine the ability of bacteria to adhere to a substrate for colonization, which is an essential step for a variety of microbial processes, such as biofilm formation and biofouling. Capsular polysaccharides and fimbriae are two major components on a bacterial surface, which are critical for mediating cell-surface interactions. Adhesion and viscoelasticity of bacteria are two major physical properties related to bacteria-surface interactions. In this study, we employed atomic force microscopy (AFM) to interrogate how the adhesion work and the viscoelasticity of a bacterial pathogen, Klebsiella pneumoniae, influence biofilm formation. To do this, the wild-type, type 3 fimbriae-deficient, and type 3 fimbriae-overexpressed K. pneumoniae strains have been investigated in an aqueous environment. The results show that the measured adhesion work is positively correlated to biofilm formation; however, the viscoelasticity is not correlated to biofilm formation. This study indicates that AFM-based adhesion measurements of bacteria can be used to evaluate the function of bacterial surface polymers in biofilm formation and to predict the ability of bacterial biofilm formation.
Collapse
Affiliation(s)
- Huabin Wang
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences , Chongqing 400714, China
- Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences , Shanghai 201800, China
| | | | - Ligang Chen
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences , Chongqing 400714, China
| | | | | | | |
Collapse
|
22
|
Hollenbeck EC, Douarche C, Allain JM, Roger P, Regeard C, Cegelski L, Fuller GG, Raspaud E. Mechanical Behavior of a Bacillus subtilis Pellicle. J Phys Chem B 2016; 120:6080-8. [PMID: 27046510 DOI: 10.1021/acs.jpcb.6b02074] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Bacterial biofilms consist of a complex network of biopolymers embedded with microorganisms, and together these components form a physically robust structure that enables bacteria to grow in a protected environment. This structure can help unwanted biofilms persist in situations ranging from chronic infection to the biofouling of industrial equipment, but under certain circumstances it can allow the biofilm to disperse and colonize new niches. Mechanical properties are therefore a key aspect of biofilm life. In light of the recently discovered growth-induced compressive stress present within a biofilm, we studied the mechanical behavior of Bacillus subtilis pellicles, or biofilms at the air-liquid interface, and tracked simultaneously the force response and macroscopic structural changes during elongational deformations. We observed that pellicles behaved viscoelastically in response to small deformations, such that the growth-induced compressive stress was still present, and viscoplastically at large deformations, when the pellicles were under tension. In addition, by using particle imaging velocimetry we found that the pellicle deformations were nonaffine, indicating heterogeneous mechanical properties with the pellicle being more pliable near attachment surfaces. Overall, our results indicate that we must consider not only the viscoelastic but also the viscoplastic and mechanically heterogeneous nature of these structures to understand biofilm dispersal and removal.
Collapse
Affiliation(s)
- Emily C Hollenbeck
- Department of Chemical Engineering, Stanford University , Stanford, California 94305, United States
| | - Carine Douarche
- Laboratoire de Physique des Solides, CNRS, Université Paris-Sud, Université Paris-Saclay , Orsay, France
| | - Jean-Marc Allain
- Laboratoire de Mécanique des Solides, École Polytechnique, CNRS, Université Paris-Saclay , Palaiseau, France
| | - Philippe Roger
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), CNRS, Université Paris-Sud, Université Paris-Saclay , Orsay, France
| | - Christophe Regeard
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay , Gif sur Yvette, France
| | - Lynette Cegelski
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | - Gerald G Fuller
- Department of Chemical Engineering, Stanford University , Stanford, California 94305, United States
| | - Eric Raspaud
- Laboratoire de Physique des Solides, CNRS, Université Paris-Sud, Université Paris-Saclay , Orsay, France
| |
Collapse
|
23
|
Swimming performance of Bradyrhizobium diazoefficiens is an emergent property of its two flagellar systems. Sci Rep 2016; 6:23841. [PMID: 27053439 PMCID: PMC4823718 DOI: 10.1038/srep23841] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/16/2016] [Indexed: 01/05/2023] Open
Abstract
Many bacterial species use flagella for self-propulsion in aqueous media. In the soil, which is a complex and structured environment, water is found in microscopic channels where viscosity and water potential depend on the composition of the soil solution and the degree of soil water saturation. Therefore, the motility of soil bacteria might have special requirements. An important soil bacterial genus is Bradyrhizobium, with species that possess one flagellar system and others with two different flagellar systems. Among the latter is B. diazoefficiens, which may express its subpolar and lateral flagella simultaneously in liquid medium, although its swimming behaviour was not described yet. These two flagellar systems were observed here as functionally integrated in a swimming performance that emerged as an epistatic interaction between those appendages. In addition, each flagellum seemed engaged in a particular task that might be required for swimming oriented toward chemoattractants near the soil inner surfaces at viscosities that may occur after the loss of soil gravitational water. Because the possession of two flagellar systems is not general in Bradyrhizobium or in related genera that coexist in the same environment, there may be an adaptive tradeoff between energetic costs and ecological benefits among these different species.
Collapse
|
24
|
Caburlotto G, Suffredini E, Toson M, Fasolato L, Antonetti P, Zambon M, Manfrin A. Occurrence and molecular characterisation of Vibrio parahaemolyticus in crustaceans commercialised in Venice area, Italy. Int J Food Microbiol 2015; 220:39-49. [PMID: 26773255 DOI: 10.1016/j.ijfoodmicro.2015.12.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 09/08/2015] [Accepted: 12/20/2015] [Indexed: 02/09/2023]
Abstract
Infections due to the pathogenic human vibrios, Vibrio parahaemolyticus, Vibrio cholerae and Vibrio vulnificus, are mainly associated with consumption of raw or partially cooked bivalve molluscs. At present, little is known about the presence of Vibrio species in crustaceans and the risk of vibriosis associated with the consumption of these products. The aim of the present study was to evaluate the prevalence and concentration of the main pathogenic Vibrio spp. in samples of crustaceans (n=143) commonly eaten in Italy, taking into account the effects of different variables such as crustacean species, storage conditions and geographic origin. Subsequently, the potential pathogenicity of V. parahaemolyticus strains isolated from crustaceans (n=88) was investigated, considering the classic virulence factors (tdh and trh genes) and four genes coding for relevant proteins of the type III secretion systems 2 (T3SS2α and T3SS2β). In this study, the presence of V. cholerae and V. vulnificus was never detected, whereas 40 samples (28%) were positive for V. parahaemolyticus with an overall prevalence of 41% in refrigerated products and 8% in frozen products. The highest prevalence and average contamination levels were detected in Crangon crangon (prevalence 58% and median value 3400 MPN/g) and in products from the northern Adriatic Sea (35%), with the samples from the northern Venetian Lagoon reaching a median value of 1375 MPN/g. While genetic analysis confirmed absence of the tdh gene, three of the isolates contained the trh gene and, simultaneously, the T3SS2β genes. Moreover three possibly clonal tdh-negative/trh-negative isolates carried the T3SS2α apparatus. The detection of both T3SS2α and T3SS2β apparatuses in V. parahaemolyticus strains isolated from crustaceans emphasised the importance of considering new genetic markers associated with virulence besides the classical factors. Moreover this study represents the first report dealing with Vibrio spp. in crustaceans in Italy, and it may provide useful information for the development of sanitary surveillance plans to prevent the risk of vibriosis in seafood consumers.
Collapse
Affiliation(s)
- Greta Caburlotto
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale Dell'Università 10, 35020 Legnaro, Padua, Italy.
| | - Elisabetta Suffredini
- Istituto Superiore di Sanità, Department of Veterinary Public Health and Food Safety, Viale Regina Elena 299, 00161 Rome, Italy
| | - Marica Toson
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale Dell'Università 10, 35020 Legnaro, Padua, Italy
| | - Luca Fasolato
- University of Padova, Department of Comparative Biomedicine and Food Science, Viale dell'Università 16, 35020 Legnaro, Padua, Italy
| | - Paolo Antonetti
- Azienda Ulss 12 Veneziana, Department of Prevention - Veterinary Service, P.le San Lorenzo Giustiniani 11/d, 30174 Venezia Mestre, VE, Italy
| | - Michela Zambon
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale Dell'Università 10, 35020 Legnaro, Padua, Italy
| | - Amedeo Manfrin
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale Dell'Università 10, 35020 Legnaro, Padua, Italy
| |
Collapse
|
25
|
Antisocial luxO Mutants Provide a Stationary-Phase Survival Advantage in Vibrio fischeri ES114. J Bacteriol 2015; 198:673-87. [PMID: 26644435 DOI: 10.1128/jb.00807-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 11/25/2015] [Indexed: 01/13/2023] Open
Abstract
UNLABELLED The squid light organ symbiont Vibrio fischeri controls bioluminescence using two acyl-homoserine lactone pheromone-signaling (PS) systems. The first of these systems to be activated during host colonization, AinS/AinR, produces and responds to N-octanoyl homoserine lactone (C(8)-AHL). We screened activity of a P(ainS)-lacZ transcriptional reporter in a transposon mutant library and found three mutants with decreased reporter activity, low C(8)-AHL output, and other traits consistent with low ainS expression. However, the transposon insertions were unrelated to these phenotypes, and genome resequencing revealed that each mutant had a distinct point mutation in luxO. In the wild type, LuxO is phosphorylated by LuxU and then activates transcription of the small RNA (sRNA) Qrr, which represses ainS indirectly by repressing its activator LitR. The luxO mutants identified here encode LuxU-independent, constitutively active LuxO* proteins. The repeated appearance of these luxO mutants suggested that they had some fitness advantage during construction and/or storage of the transposon mutant library, and we found that luxO* mutants survived better and outcompeted the wild type in prolonged stationary-phase cultures. From such cultures we isolated additional luxO* mutants. In all, we isolated LuxO* allelic variants with the mutations P41L, A91D, F94C, P98L, P98Q, V106A, V106G, T107R, V108G, R114P, L205F, H319R, H324R, and T335I. Based on the current model of the V. fischeri PS circuit, litR knockout mutants should resemble luxO* mutants; however, luxO* mutants outcompeted litR mutants in prolonged culture and had much poorer host colonization competitiveness than is reported for litR mutants, illustrating additional complexities in this regulatory circuit. IMPORTANCE Our results provide novel insight into the function of LuxO, which is a key component of pheromone signaling (PS) cascades in several members of the Vibrionaceae. Our results also contribute to an increasingly appreciated aspect of bacterial behavior and evolution whereby mutants that do not respond to a signal from like cells have a selective advantage. In this case, although "antisocial" mutants locked in the PS signal-off mode can outcompete parents, their survival advantage does not require wild-type cells to exploit. Finally, this work strikes a note of caution for those conducting or interpreting experiments in V. fischeri, as it illustrates how pleiotropic mutants could easily and inadvertently be enriched in this bacterium during prolonged culturing.
Collapse
|
26
|
Harshey RM, Partridge JD. Shelter in a Swarm. J Mol Biol 2015; 427:3683-94. [PMID: 26277623 DOI: 10.1016/j.jmb.2015.07.025] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 07/29/2015] [Accepted: 07/31/2015] [Indexed: 01/04/2023]
Abstract
Flagella propel bacteria during both swimming and swarming, dispersing them widely. However, while swimming bacteria use chemotaxis to find nutrients and avoid toxic environments, swarming bacteria appear to suppress chemotaxis and to use the dynamics of their collective motion to continuously expand and acquire new territory, barrel through lethal chemicals in their path, carry along bacterial and fungal cargo that assists in exploration of new niches, and engage in group warfare for niche dominance. Here, we focus on two aspects of swarming, which, if understood, hold the promise of revealing new insights into microbial signaling and behavior, with ramifications beyond bacterial swarming. These are as follows: how bacteria sense they are on a surface and turn on programs that promote movement and how they override scarcity and adversity as dense packs.
Collapse
Affiliation(s)
- Rasika M Harshey
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA.
| | - Jonathan D Partridge
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
27
|
Abstract
Mechanosensing of surfaces in bacteria is a process that often uses obstruction of flagellum rotation to trigger behaviors such as adhesion and surface-associated movement. In a recent publication, the PilY1 protein of Pseudomonas aeruginosa has been implicated as a novel mechanosensor that stimulates virulence in response to surface attachment.
Collapse
Affiliation(s)
- Courtney Ellison
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Yves V Brun
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
28
|
Kernell Burke A, Guthrie LTC, Modise T, Cormier G, Jensen RV, McCarter LL, Stevens AM. OpaR controls a network of downstream transcription factors in Vibrio parahaemolyticus BB22OP. PLoS One 2015; 10:e0121863. [PMID: 25901572 PMCID: PMC4406679 DOI: 10.1371/journal.pone.0121863] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 02/16/2015] [Indexed: 11/22/2022] Open
Abstract
Vibrio parahaemolyticus is an emerging world-wide human pathogen that is associated with food-borne gastroenteritis when raw or undercooked seafood is consumed. Expression of virulence factors in this organism is modulated by the phenomenon known as quorum sensing, which permits differential gene regulation at low versus high cell density. The master regulator of quorum sensing in V. parahaemolyticus is OpaR. OpaR not only controls virulence factor gene expression, but also the colony and cellular morphology associated with growth on a surface and biofilm formation. Whole transcriptome Next Generation sequencing (RNA-Seq) was utilized to determine the OpaR regulon by comparing strains BB22OP (opaR+, LM5312) and BB22TR (∆opaR1, LM5674). This work, using the published V. parahaemolyticus BB22OP genome sequence, confirms and expands upon a previous microarray analysis for these two strains that used an Affymetrix GeneChip designed from the closely related V. parahaemolyticus RIMD2210633 genome sequence. Overall there was excellent correlation between the microarray and RNA-Seq data. Eleven transcription factors under OpaR control were identified by both methods and further confirmed by quantitative reverse transcription PCR (qRT-PCR) analysis. Nine of these transcription factors were demonstrated to be direct OpaR targets via in vitro electrophoretic mobility shift assays with purified hexahistidine-tagged OpaR. Identification of the direct and indirect targets of OpaR, including small RNAs, will enable the construction of a network map of regulatory interactions important for the switch between the nonpathogenic and pathogenic states.
Collapse
Affiliation(s)
- Alison Kernell Burke
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States of America
| | - Leah T. C. Guthrie
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States of America
| | - Thero Modise
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States of America
| | - Guy Cormier
- Georgia Advanced Computing Resource Center, University of Georgia, Athens, GA, United States of America
| | - Roderick V. Jensen
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States of America
| | - Linda L. McCarter
- Department of Microbiology, University of Iowa, Iowa City, IA, United States of America
| | - Ann M. Stevens
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States of America
| |
Collapse
|
29
|
González Y, Camarena L, Dreyfus G. Induction of the lateral flagellar system of Vibrio shilonii is an early event after inhibition of the sodium ion flux in the polar flagellum. Can J Microbiol 2015; 61:183-91. [DOI: 10.1139/cjm-2014-0579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, we show the induction of lateral flagella by the action of the sodium channel blocker phenamil, in the marine bacterium Vibrio shilonii, a coral pathogen that causes bleaching. We analyzed the growth and morphology of cells treated with phenamil. A time course analysis showed that after 30 min of exposure to the sodium channel blocker, lateral flagella were present and could be detected by electron microscopy. Detection of the mRNA of the master regulator (lafK) and lateral flagellin (lafA) by RT–PCR confirmed the expression of lateral flagellar genes. We show the simultaneous isolation of polar and, for the first time, lateral flagellar hook-basal bodies. This allowed us to compare the dimensions and morphological characteristics of the 2 structures.
Collapse
Affiliation(s)
- Yael González
- Instituto de Fisiología Celular, Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México. Ap. Postal 70-243, Cd. Universitaria, México DF 04510, Mexico
| | - Laura Camarena
- Instituto de Investigaciones Biomédicas, Departamento de Biología Molecular y Biotecnología, Universidad Nacional Autónoma de México, México DF, Mexico
| | - Georges Dreyfus
- Instituto de Fisiología Celular, Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México. Ap. Postal 70-243, Cd. Universitaria, México DF 04510, Mexico
| |
Collapse
|
30
|
Role of VcrD1 protein in expression and secretion of flagellar components in Vibrio parahaemolyticus. Arch Microbiol 2014; 197:397-410. [PMID: 25516430 DOI: 10.1007/s00203-014-1069-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 10/31/2014] [Accepted: 12/03/2014] [Indexed: 12/27/2022]
Abstract
VcrD1 protein is a component of type III secretion system (T3SS) 1 in Vibrio parahaemolyticus. A comparative analysis of secretomes of wild-type and ΔvcrD1 strains revealed that the mutant was defective in secretion of diverse proteins including several flagellar components. Western blot analyses using specific antibodies confirmed that the secretion of at least four flagellar components, such as FlaA, FlgL, FlgE, and FlgM, was affected by the vcrD1 mutation, which was consistent with decreased motility on soft agar plates and the non-flagellated morphology of the mutant. The ΔexsA mutant, another T3SS1 mutant, did not showed reduced motility, but became non-motile phenotype with the additional ΔvcrD1 mutation. Complementation of wild-type vcrD1 gene into ΔvcrD1 mutant resulted in restored motility. Fractionation of bacterial cytoplasm from the periplasm and membrane revealed lower levels of FlaA and FlgM in the cytoplasm of the ΔvcrD1 mutant, indicating that VcrD1 might regulate the expression of flagellar genes in addition to the secretion of flagellar components in V. parahaemolyticus. Quantitative RT-PCR assays of seven representative flagellar genes in the wild-type and ΔvcrD1 mutant strains demonstrated that transcript levels of two early flagellar genes, flaK and flaL, were not reduced by the vcrD1 mutation, whereas the middle and late flagellar genes were expressed at a lower level in the vcrD1 mutant. This study raises a possibility that VcrD1 plays a role in flagellar morphogenesis in V. parahaemolyticus by regulating the expression and secretion of flagellar components.
Collapse
|
31
|
Biofilms, flagella, and mechanosensing of surfaces by bacteria. Trends Microbiol 2014; 22:517-27. [DOI: 10.1016/j.tim.2014.05.002] [Citation(s) in RCA: 251] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 05/06/2014] [Accepted: 05/08/2014] [Indexed: 11/18/2022]
|
32
|
Wozniak DJ, Parsek MR. Surface-associated microbes continue to surprise us in their sophisticated strategies for assembling biofilm communities. F1000PRIME REPORTS 2014; 6:26. [PMID: 24860649 PMCID: PMC4018179 DOI: 10.12703/p6-26] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Microorganisms are rarely found in isolation. Frequently, they live as complex consortia or communities known as biofilms. The microbes within these complex structures are typically enmeshed in a matrix of macromolecules collectively known as the extracellular polymeric substances (EPS). The last decade has seen enormous growth in the breadth and depth of biofilm-related research. An important area of focus has been the study of pure culture biofilms of different model species. This work has informed us about the different genetic determinants involved in biofilm formation and the environmental conditions that influence the process. These studies have also highlighted both species-specific aspects of biofilm development and common trends observed across many different organisms. This report highlights some exciting findings in recent biofilm-related research.
Collapse
Affiliation(s)
- Daniel J. Wozniak
- Department of Microbial Infection and Immunity, Department of Microbiology, Center for Microbial Interface Biology, The Ohio State University460 W 12th Avenue, Columbus, OH 43210USA
| | - Matthew R. Parsek
- Department of Microbiology, University of Washington1705 NE Pacific Street, Seattle, WA 98195USA
| |
Collapse
|
33
|
Kalai Chelvam K, Chai LC, Thong KL. Variations in motility and biofilm formation of Salmonella enterica serovar Typhi. Gut Pathog 2014; 6:2. [PMID: 24499680 PMCID: PMC3922113 DOI: 10.1186/1757-4749-6-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 01/28/2014] [Indexed: 01/02/2023] Open
Abstract
Background Salmonella enterica serovar Typhi (S. Typhi) exhibits unique characteristics as an intracellular human pathogen. It causes both acute and chronic infection with various disease manifestations in the human host only. The principal factors underlying the unique lifestyle of motility and biofilm forming ability of S. Typhi remain largely unknown. The main objective of this study was to explore and investigate the motility and biofilm forming behaviour among S. Typhi strains of diverse background. Results Swim and swarm motility tests were performed with 0.25% and 0.5% agar concentration, respectively; while biofilm formation was determined by growing the bacterial cultures for 48 hrs in 96-well microtitre plate. While all S. Typhi strains demonstrated swarming motility with smooth featureless morphology, 58 out of 60 strains demonstrated swimming motility with featureless or bull’s eye morphology. Interestingly, S. Typhi strains of blood-borne origin exhibited significantly higher swimming motility (P < 0.05) than stool-borne strains suggesting that swimming motility may play a role in the systemic invasion of S. Typhi in the human host. Also, stool-borne S. Typhi displayed a negative relationship between motility and biofilm forming behaviour, which was not observed in the blood-borne strains. Conclusion In summary, both swimming and swarming motility are conserved among S. Typhi strains but there was variation for biofilm forming ability. There was no difference observed in this phenotype for S. Typhi strains from diverse background. These findings serve as caveats for future studies to understand the lifestyle and transmission of this pathogen.
Collapse
Affiliation(s)
| | | | - Kwai Lin Thong
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
34
|
Chan JM, Guttenplan SB, Kearns DB. Defects in the flagellar motor increase synthesis of poly-γ-glutamate in Bacillus subtilis. J Bacteriol 2014; 196:740-53. [PMID: 24296669 PMCID: PMC3911173 DOI: 10.1128/jb.01217-13] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 11/25/2013] [Indexed: 12/20/2022] Open
Abstract
Bacillus subtilis swims in liquid media and swarms over solid surfaces, and it encodes two sets of flagellar stator homologs. Here, we show that B. subtilis requires only the MotA/MotB stator during swarming motility and that the residues required for stator force generation are highly conserved from the Proteobacteria to the Firmicutes. We further find that mutants that abolish stator function also result in an overproduction of the extracellular polymer poly-γ-glutamate (PGA) to confer a mucoid colony phenotype. PGA overproduction appeared to be the result of an increase in the expression of the pgs operon that encodes genes for PGA synthesis. Transposon mutagenesis was conducted to identify insertions that abolished colony mucoidy and disruptions in known transcriptional regulators of PGA synthesis (Com and Deg two-component systems) as well as mutants defective in transcription-coupled DNA repair (Mfd)-reduced expression of the pgs operon. A final class of insertions disrupted proteins involved in the assembly of the flagellar filament (FliD, FliT, and FlgL), and these mutants did not reduce expression of the pgs operon, suggesting a second mechanism of PGA control.
Collapse
Affiliation(s)
- Jia Mun Chan
- Indiana University, Department of Biology, Bloomington, Indiana, USA
| | | | | |
Collapse
|
35
|
Abstract
Aeromonas hydrophila AH-3 lateral flagella are not assembled when bacteria grow in liquid media; however, lateral flagellar genes are transcribed. Our results indicate that A. hydrophila lateral flagellar genes are transcribed at three levels (class I to III genes) and share some similarities with, but have many important differences from, genes of Vibrio parahaemolyticus. A. hydrophila lateral flagellum class I gene transcription is σ(70) dependent, which is consistent with the fact that lateral flagellum is constitutively transcribed, in contrast to the characteristics of V. parahaemolyticus. The fact that multiple genes are included in class I highlights that lateral flagellar genes are less hierarchically transcribed than polar flagellum genes. The A. hydrophila lafK-fliEJL gene cluster (where the subscript L distinguishes genes for lateral flagella from those for polar flagella) is exclusively from class I and is in V. parahaemolyticus class I and II. Furthermore, the A. hydrophila flgAMNL cluster is not transcribed from the σ(54)/LafK-dependent promoter and does not contain class II genes. Here, we propose a gene transcriptional hierarchy for the A. hydrophila lateral flagella.
Collapse
|
36
|
Abstract
Movement over an agar surface via swarming motility is subject to formidable challenges not encountered during swimming. Bacteria display a great deal of flexibility in coping with these challenges, which include attracting water to the surface, overcoming frictional forces, and reducing surface tension. Bacteria that swarm on "hard" agar surfaces (robust swarmers) display a hyperflagellated and hyperelongated morphology. Bacteria requiring a "softer" agar surface (temperate swarmers) do not exhibit such a dramatic morphology. For polarly flagellated robust swarmers, there is good evidence that restriction of flagellar rotation somehow signals the induction of a large number of lateral flagella, but this scenario is apparently not relevant to temperate swarmers. Swarming bacteria can be further subdivided by their requirement for multiple stators (Mot proteins) or a stator-associated protein (FliL), secretion of essential polysaccharides, cell density-dependent gene regulation including surfactant synthesis, a functional chemotaxis signaling pathway, appropriate cyclic (c)-di-GMP levels, induction of virulence determinants, and various nutritional requirements such as iron limitation or nitrate availability. Swarming strategies are as diverse as the bacteria that utilize them. The strength of these numerous designs stems from the vantage point they offer for understanding mechanisms for effective colonization of surface niches, acquisition of pathogenic potential, and identification of environmental signals that regulate swarming. The signature swirling and streaming motion within a swarm is an interesting phenomenon in and of itself, an emergent behavior with properties similar to flocking behavior in diverse systems, including birds and fish, providing a convenient new avenue for modeling such behavior.
Collapse
|
37
|
More than motility: Salmonella flagella contribute to overriding friction and facilitating colony hydration during swarming. J Bacteriol 2012; 195:919-29. [PMID: 23264575 DOI: 10.1128/jb.02064-12] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We show in this study that Salmonella cells, which do not upregulate flagellar gene expression during swarming, also do not increase flagellar numbers per μm of cell length as determined by systematic counting of both flagellar filaments and hooks. Instead, doubling of the average length of a swarmer cell by suppression of cell division effectively doubles the number of flagella per cell. The highest agar concentration at which Salmonella cells swarmed increased from the normal 0.5% to 1%, either when flagella were overproduced or when expression of the FliL protein was enhanced in conjunction with stator proteins MotAB. We surmise that bacteria use the resulting increase in motor power to overcome the higher friction associated with harder agar. Higher flagellar numbers also suppress the swarming defect of mutants with changes in the chemotaxis pathway that were previously shown to be defective in hydrating their colonies. Here we show that the swarming defect of these mutants can also be suppressed by application of osmolytes to the surface of swarm agar. The "dry" colony morphology displayed by che mutants was also observed with other mutants that do not actively rotate their flagella. The flagellum/motor thus participates in two functions critical for swarming, enabling hydration and overriding surface friction. We consider some ideas for how the flagellum might help attract water to the agar surface, where there is no free water.
Collapse
|
38
|
Stabili L, Cardone F, Alifano P, Tredici SM, Piraino S, Corriero G, Gaino E. Epidemic mortality of the sponge Ircinia variabilis (Schmidt, 1862) associated to proliferation of a Vibrio bacterium. MICROBIAL ECOLOGY 2012; 64:802-813. [PMID: 22573240 DOI: 10.1007/s00248-012-0068-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 04/25/2012] [Indexed: 05/31/2023]
Abstract
In recent years, several episodes of mass mortality of sessile epibenthic invertebrates, including sponges, have been recorded worldwide. In the present study, we report a disease event on Ircinia variabilis recorded in September 2009 along the southern Adriatic and Ionian seas (Apulian coast), with the aim to quantify the mortality incidence on the sponge population, to investigate the effect of the disease on the sponge tissues and to assess whether the disease is associated with vibrios proliferation. The injured sponges showed wide necrotic areas on the surface or disruption of the body in several portions. Necrotic areas were whitish and often were covered with a thin mucous coat formed by bacteria. In the most affected specimens, sponge organisation resulted partial or complete loss, with the final exposure of the dense skeletal network of spongine fibres to the environment. The results of microbiological cultural analysis using in parallel Marine Agar 2216 and thiosulphate/citrate/bile salts/sucrose agar demonstrated that, in affected specimens, vibrios represented 15.8 % of the total I. variabilis surface culturable bacteria. Moreover, all the isolated vibrios, grown from the wide whitish areas that characterize the surface of the diseased sponges, were identified, and their assignment to the Vibrio rotiferianus was consistent with phylogenetic analysis and data of morphological, cultural and biochemical tests. Studies on V. rotiferianus have shown that its pathogenicity, with respect to various aquatic organisms, is higher than that of Vibrio harveyi. The factors triggering the disease outbreak in Ircinia variabilis populations remain unclear. At present, we can hypothesize the involvement in the disease of a synergetic mechanism that, under stressful physiological conditions (high temperature, elevated nutrients and reduced water flow), induces sponge pathogens, in our case V. rotiferanius, to become virulent, making sponges unable to control their proliferation. Additional studies are needed to understand the etiological processes as well as the factors involved in sponges recovering from this epidemic event allowing them to face mass mortality. A drastic reduction of sponge-specific representatives could have marked a negative impact on the environmental health on account of their role in the sea remediation processes as filter-feeding organisms.
Collapse
Affiliation(s)
- Loredana Stabili
- Istituto per l'Ambiente Marino Costiero IAMC-CNR, UOS Taranto, Via Roma 3, 74100 Taranto, Italy.
| | | | | | | | | | | | | |
Collapse
|
39
|
Bonomi HR, Posadas DM, Paris G, Carrica MDC, Frederickson M, Pietrasanta LI, Bogomolni RA, Zorreguieta A, Goldbaum FA. Light regulates attachment, exopolysaccharide production, and nodulation in Rhizobium leguminosarum through a LOV-histidine kinase photoreceptor. Proc Natl Acad Sci U S A 2012; 109:12135-40. [PMID: 22773814 PMCID: PMC3409720 DOI: 10.1073/pnas.1121292109] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Rhizobium leguminosarum is a soil bacterium that infects root hairs and induces the formation of nitrogen-fixing nodules on leguminous plants. Light, oxygen, and voltage (LOV)-domain proteins are blue-light receptors found in higher plants and many algae, fungi, and bacteria. The genome of R. leguminosarum bv. viciae 3841, a pea-nodulating endosymbiont, encodes a sensor histidine kinase containing a LOV domain at the N-terminal end (R-LOV-HK). R-LOV-HK has a typical LOV domain absorption spectrum with broad bands in the blue and UV-A regions and shows a truncated photocycle. Here we show that the R-LOV-HK protein regulates attachment to an abiotic surface and production of flagellar proteins and exopolysaccharide in response to light. Also, illumination of bacterial cultures before inoculation of pea roots increases the number of nodules per plant and the number of intranodular bacteroids. The effects of light on nodulation are dependent on a functional lov gene. The results presented in this work suggest that light, sensed by R-LOV-HK, is an important environmental factor that controls adaptive responses and the symbiotic efficiency of R. leguminosarum.
Collapse
Affiliation(s)
- Hernán R. Bonomi
- Fundación Instituto Leloir, IIBBA-Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, C1405BWE, Buenos Aires, Argentina
| | - Diana M. Posadas
- Fundación Instituto Leloir, IIBBA-Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, C1405BWE, Buenos Aires, Argentina
| | - Gastón Paris
- Fundación Instituto Leloir, IIBBA-Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, C1405BWE, Buenos Aires, Argentina
| | - Mariela del Carmen Carrica
- Fundación Instituto Leloir, IIBBA-Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, C1405BWE, Buenos Aires, Argentina
| | | | - Lía Isabel Pietrasanta
- Centro de Microscopías Avanzadas, Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires, C1428EHA, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, C1033AAJ, Buenos Aires, Argentina; and
| | | | - Angeles Zorreguieta
- Fundación Instituto Leloir, IIBBA-Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, C1405BWE, Buenos Aires, Argentina
- Departamento de Química Biológica, FCEyN, Universidad de Buenos Aires, C1428EHA, Buenos Aires, Argentina
| | - Fernando A. Goldbaum
- Fundación Instituto Leloir, IIBBA-Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, C1405BWE, Buenos Aires, Argentina
| |
Collapse
|
40
|
Borić M, Danevčič T, Stopar D. Viscosity dictates metabolic activity of Vibrio ruber. Front Microbiol 2012; 3:255. [PMID: 22826705 PMCID: PMC3399222 DOI: 10.3389/fmicb.2012.00255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 06/29/2012] [Indexed: 11/13/2022] Open
Abstract
Little is known about metabolic activity of bacteria, when viscosity of their environment changes. In this work, bacterial metabolic activity in media with viscosity ranging from 0.8 to 29.4 mPas was studied. Viscosities up to 2.4 mPas did not affect metabolic activity of Vibrio ruber. On the other hand, at 29.4 mPas respiration rate and total dehydrogenase activity increased 8 and 4-fold, respectively. The activity of glucose-6-phosphate dehydrogenase (GPD) increased up to 13-fold at higher viscosities. However, intensified metabolic activity did not result in faster growth rate. Increased viscosity delayed the onset as well as the duration of biosynthesis of prodigiosin. As an adaptation to viscous environment V. ruber increased metabolic flux through the pentose phosphate pathway and reduced synthesis of a secondary metabolite. In addition, V. ruber was able to modify the viscosity of its environment.
Collapse
Affiliation(s)
| | | | - David Stopar
- Chair of Microbiology, Biotechnical Faculty, Department of Food Science and Technology, University of LjubljanaLjubljana, Slovenia
| |
Collapse
|
41
|
The evolution of the bacterial luciferase gene cassette (lux) as a real-time bioreporter. SENSORS 2012; 12:732-52. [PMID: 22368493 PMCID: PMC3279237 DOI: 10.3390/s120100732] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Revised: 12/30/2011] [Accepted: 01/09/2012] [Indexed: 01/23/2023]
Abstract
The bacterial luciferase gene cassette (lux) is unique among bioluminescent bioreporter systems due to its ability to synthesize and/or scavenge all of the substrate compounds required for its production of light. As a result, the lux system has the unique ability to autonomously produce a luminescent signal, either continuously or in response to the presence of a specific trigger, across a wide array of organismal hosts. While originally employed extensively as a bacterial bioreporter system for the detection of specific chemical signals in environmental samples, the use of lux as a bioreporter technology has continuously expanded over the last 30 years to include expression in eukaryotic cells such as Saccharomyces cerevisiae and even human cell lines as well. Under these conditions, the lux system has been developed for use as a biomedical detection tool for toxicity screening and visualization of tumors in small animal models. As the technologies for lux signal detection continue to improve, it is poised to become one of the first fully implantable detection systems for intra-organismal optical detection through direct marriage to an implantable photon-detecting digital chip. This review presents the basic biochemical background that allows the lux system to continuously autobioluminesce and highlights the important milestones in the use of lux-based bioreporters as they have evolved from chemical detection platforms in prokaryotic bacteria to rodent-based tumorigenesis study targets. In addition, the future of lux imaging using integrated circuit microluminometry to image directly within a living host in real-time will be introduced and its role in the development of dose/response therapeutic systems will be highlighted.
Collapse
|
42
|
Bubendorfer S, Held S, Windel N, Paulick A, Klingl A, Thormann KM. Specificity of motor components in the dual flagellar system of Shewanella putrefaciens CN-32. Mol Microbiol 2011; 83:335-50. [PMID: 22151089 DOI: 10.1111/j.1365-2958.2011.07934.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bacterial flagellar motors are intricate nanomachines in which the stator units and rotor component FliM may be dynamically exchanged during function. Similar to other bacterial species, the gammaproteobacterium Shewanella putrefaciens CN-32 possesses a complete secondary flagellar system along with a corresponding stator unit. Expression of the secondary system occurs during planktonic growth in complex media and leads to the formation of a subpopulation with one or more additional flagella at random positions in addition to the primary polar system. We used physiological and phenotypic characterizations of defined mutants in concert with fluorescent microscopy on labelled components of the two different systems, the stator proteins PomB and MotB, the rotor components FliM(1) and FliM(2), and the auxiliary motor components MotX and MotY, to determine localization, function and dynamics of the proteins in the flagellar motors. The results demonstrate that the polar flagellum is driven by a Na(+)-dependent FliM(1)/PomAB/MotX/MotY flagellar motor while the secondary system is rotated by a H(+)-dependent FliM(2)/MotAB motor. The components were highly specific for their corresponding motor and are unlikely to be extensively swapped or shared between the two flagellar systems under planktonic conditions. The results have implications for both specificity and dynamics of flagellar motor components.
Collapse
Affiliation(s)
- Sebastian Bubendorfer
- Department of Ecophysiology, Max-Planck-Institut für terrestrische Mikrobiologie, Marburg, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Patrick JE, Kearns DB. Swarming motility and the control of master regulators of flagellar biosynthesis. Mol Microbiol 2011; 83:14-23. [PMID: 22092493 DOI: 10.1111/j.1365-2958.2011.07917.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Swarming motility is the movement of bacteria over a solid surface powered by rotating flagella. The expression of flagellar biosynthesis genes is governed by species-specific master regulator transcription factors. Mutations that reduce or enhance master regulator activity have a commensurate effect on swarming motility. Here we review what is known about the proteins that modulate swarming motility and appear to act upstream of the master flagellar regulators in diverse swarming bacteria. We hypothesize that environmental control of the master regulators is important to the swarming phenotype perhaps at the level of controlling flagellar number.
Collapse
Affiliation(s)
- Joyce E Patrick
- Indiana University, Department of Biology, 1001 East Third Street, Bloomington, IN 47405, USA
| | | |
Collapse
|
44
|
Abstract
The quorum regulatory cascade is poorly characterized in Vibrio parahaemolyticus, in part because swarming and virulence factors--the hallmarks of the organism--are repressed by this scheme of gene control, and quorum sensing seems to be silenced in many isolates. In these studies, we examine a swarming-proficient, virulent strain and identify an altered-function allele of the quorum regulator luxO that is demonstrated to produce a constitutively active mimic of LuxO∼P. We find that LuxO* affects the expression of three small regulatory RNAs (Qrrs) and the activity of a translational fusion in opaR, the output regulator. Tests for epistasis showed that luxO* is dominant over luxO and that opaR is dominant over luxO. Thus, information flow through the central elements of the V. parahaemolyticus quorum pathway is proven for the first time. Quorum-sensing output was explored using microarray profiling: the OpaR regulon encompasses ∼5.2% of the genome. OpaR represses the surface-sensing and type III secretion system 1 (T3SS1) regulons. One novel discovery is that OpaR strongly and oppositely regulates two type VI secretion systems (T6SS). New functional consequences of OpaR control were demonstrated: OpaR increases the cellular cyclic di-GMP (c-di-GMP) level, positively controls chitin-induced DNA competency, and profoundly blocks cytotoxicity toward host cells. In expanding the previously known quorum effects beyond the induction of the capsule and the repression of swarming to elucidate the global scope of genes in the OpaR regulon, this study yields many clues to distinguishing traits of this Vibrio species; it underscores the profoundly divergent survival strategies of the quorum On/Off phase variants.
Collapse
|
45
|
Yadav V, Panilaitis B, Shi H, Numuta K, Lee K, Kaplan DL. N-acetylglucosamine 6-phosphate deacetylase (nagA) is required for N-acetyl glucosamine assimilation in Gluconacetobacter xylinus. PLoS One 2011; 6:e18099. [PMID: 21655093 PMCID: PMC3107205 DOI: 10.1371/journal.pone.0018099] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 02/25/2011] [Indexed: 11/18/2022] Open
Abstract
Metabolic pathways for amino sugars (N-acetylglucosamine; GlcNAc and glucosamine; Gln) are essential and remain largely conserved in all three kingdoms of life, i.e., microbes, plants and animals. Upon uptake, in the cytoplasm these amino sugars undergo phosphorylation by phosphokinases and subsequently deacetylation by the enzyme N-acetylglucosamine 6-phosphate deacetylase (nagA) to yield glucosamine-6-phosphate and acetate, the first committed step for both GlcNAc assimilation and amino-sugar-nucleotides biosynthesis. Here we report the cloning of a DNA fragment encoding a partial nagA gene and its implications with regard to amino sugar metabolism in the cellulose producing bacterium Glucoacetobacter xylinus (formally known as Acetobacter xylinum). For this purpose, nagA was disrupted by inserting tetracycline resistant gene (nagA::tet(r); named as ΔnagA) via homologous recombination. When compared to glucose fed conditions, the UDP-GlcNAc synthesis and bacterial growth (due to lack of GlcNAc utilization) was completely inhibited in nagA mutants. Interestingly, that inhibition occured without compromising cellulose production efficiency and its molecular composition under GlcNAc fed conditions. We conclude that nagA plays an essential role for GlcNAc assimilation by G. xylinus thus is required for the growth and survival for the bacterium in presence of GlcNAc as carbon source. Additionally, G. xylinus appears to possess the same molecular machinery for UDP-GlcNAc biosynthesis from GlcNAc precursors as other related bacterial species.
Collapse
Affiliation(s)
- Vikas Yadav
- Department of Biomedical Engineering , Tufts University, Medford,
Massachusetts, United States of America
| | - Bruce Panilaitis
- Department of Biomedical Engineering , Tufts University, Medford,
Massachusetts, United States of America
| | - Hai Shi
- Department of Chemical and Biological Engineering, Tufts University,
Medford, Massachusetts, United States of America
| | - Keiji Numuta
- Department of Biomedical Engineering , Tufts University, Medford,
Massachusetts, United States of America
| | - Kyongbum Lee
- Department of Chemical and Biological Engineering, Tufts University,
Medford, Massachusetts, United States of America
| | - David L. Kaplan
- Department of Biomedical Engineering , Tufts University, Medford,
Massachusetts, United States of America
- Department of Chemical and Biological Engineering, Tufts University,
Medford, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
46
|
Francius G, Polyakov P, Merlin J, Abe Y, Ghigo JM, Merlin C, Beloin C, Duval JFL. Bacterial surface appendages strongly impact nanomechanical and electrokinetic properties of Escherichia coli cells subjected to osmotic stress. PLoS One 2011; 6:e20066. [PMID: 21655293 PMCID: PMC3105017 DOI: 10.1371/journal.pone.0020066] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 04/17/2011] [Indexed: 11/19/2022] Open
Abstract
The physicochemical properties and dynamics of bacterial envelope, play a major role in bacterial activity. In this study, the morphological, nanomechanical and electrohydrodynamic properties of Escherichia coli K-12 mutant cells were thoroughly investigated as a function of bulk medium ionic strength using atomic force microscopy (AFM) and electrokinetics (electrophoresis). Bacteria were differing according to genetic alterations controlling the production of different surface appendages (short and rigid Ag43 adhesins, longer and more flexible type 1 fimbriae and F pilus). From the analysis of the spatially resolved force curves, it is shown that cells elasticity and turgor pressure are not only depending on bulk salt concentration but also on the presence/absence and nature of surface appendage. In 1 mM KNO(3), cells without appendages or cells surrounded by Ag43 exhibit large Young moduli and turgor pressures (∼700-900 kPa and ∼100-300 kPa respectively). Under similar ionic strength condition, a dramatic ∼50% to ∼70% decrease of these nanomechanical parameters was evidenced for cells with appendages. Qualitatively, such dependence of nanomechanical behavior on surface organization remains when increasing medium salt content to 100 mM, even though, quantitatively, differences are marked to a much smaller extent. Additionally, for a given surface appendage, the magnitude of the nanomechanical parameters decreases significantly when increasing bulk salt concentration. This effect is ascribed to a bacterial exoosmotic water loss resulting in a combined contraction of bacterial cytoplasm together with an electrostatically-driven shrinkage of the surface appendages. The former process is demonstrated upon AFM analysis, while the latter, inaccessible upon AFM imaging, is inferred from electrophoretic data interpreted according to advanced soft particle electrokinetic theory. Altogether, AFM and electrokinetic results clearly demonstrate the intimate relationship between structure/flexibility and charge of bacterial envelope and propensity of bacterium and surface appendages to contract under hypertonic conditions.
Collapse
Affiliation(s)
- Grégory Francius
- Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, Nancy Université, CNRS UMR7564, Villers-lès-Nancy, France
| | - Pavel Polyakov
- Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, Nancy Université, CNRS UMR7564, Villers-lès-Nancy, France
| | - Jenny Merlin
- Laboratoire Environnement et Minéralurgie, Nancy Université, CNRS UMR7569, Vandoeuvre-lès-Nancy, France
| | - Yumiko Abe
- Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, Nancy Université, CNRS UMR7564, Villers-lès-Nancy, France
| | - Jean-Marc Ghigo
- Institut Pasteur, Unité de Génétique des Biofilms, Paris, France
- CNRS URA 2172, Paris, France
| | - Christophe Merlin
- Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, Nancy Université, CNRS UMR7564, Villers-lès-Nancy, France
| | - Christophe Beloin
- Institut Pasteur, Unité de Génétique des Biofilms, Paris, France
- CNRS URA 2172, Paris, France
| | - Jérôme F. L. Duval
- Laboratoire Environnement et Minéralurgie, Nancy Université, CNRS UMR7569, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
47
|
Matz C, Nouri B, McCarter L, Martinez-Urtaza J. Acquired type III secretion system determines environmental fitness of epidemic Vibrio parahaemolyticus in the interaction with bacterivorous protists. PLoS One 2011; 6:e20275. [PMID: 21629787 PMCID: PMC3100340 DOI: 10.1371/journal.pone.0020275] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 04/28/2011] [Indexed: 11/23/2022] Open
Abstract
Genome analyses of marine microbial communities have revealed the widespread occurrence of genomic islands (GIs), many of which encode for protein secretion machineries described in the context of bacteria-eukaryote interactions. Yet experimental support for the specific roles of such GIs in aquatic community interactions remains scarce. Here, we test for the contribution of type III secretion systems (T3SS) to the environmental fitness of epidemic Vibrio parahaemolyticus. Comparisons of V. parahaemolyticus wild types and T3SS-defective mutants demonstrate that the T3SS encoded on genome island VPaI-7 (T3SS-2) promotes survival of V. parahaemolyticus in the interaction with diverse protist taxa. Enhanced persistence was found to be due to T3SS-2 mediated cytotoxicity and facultative parasitism of V. parahaemolyticus on coexisting protists. Growth in the presence of bacterivorous protists and the T3SS-2 genotype showed a strong correlation across environmental and clinical isolates of V. parahaemolyticus. Short-term microcosm experiments provide evidence that protistan hosts facilitate the invasion of T3SS-2 positive V. parahaemolyticus into a coastal plankton community, and that water temperature and productivity further promote enhanced survival of T3SS-2 positive V. parahaemolyticus. This study is the first to describe the fitness advantage of GI-encoded functions in a microbial food web, which may provide a mechanistic explanation for the global spread and the seasonal dynamics of V. parahaemolyticus pathotypes, including the pandemic serotype cluster O3:K6, in aquatic environments.
Collapse
Affiliation(s)
- Carsten Matz
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Bianka Nouri
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Linda McCarter
- Microbiology Department, University of Iowa, Iowa City, Iowa, United States of America
| | - Jaime Martinez-Urtaza
- Instituto de Acuicultura, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
- * E-mail:
| |
Collapse
|
48
|
González Y, Venegas D, Mendoza-Hernandez G, Camarena L, Dreyfus G. Na(+)- and H(+)-dependent motility in the coral pathogen Vibrio shilonii. FEMS Microbiol Lett 2011; 312:142-50. [PMID: 20979349 DOI: 10.1111/j.1574-6968.2010.02110.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In this work, we analyzed motility and the flagellar systems of the marine bacterium Vibrio shilonii. We show that this bacterium produces lateral flagella when seeded on soft agar plates at concentrations of 0.5% or 0.6%. However, at agar concentrations of 0.7%, cells become round and lose their flagella. The sodium channel blocker amiloride inhibits swimming of V. shilonii with the sheathed polar flagellum, but not swarming with lateral flagella. We also isolated and characterized the filament–hook–basal body of the polar flagellum. The proteins in this structure were analyzed by MS. Eight internal sequences matched with known flagellar proteins. The comparison of these sequences with the protein database from the complete genome of V. shilonii allows us to conclude that some components of the polar flagellum are encoded in two different clusters of flagellar genes, suggesting that this bacterium has a complex flagellar system, more complex possibly than other Vibrio species reported so far.
Collapse
Affiliation(s)
- Yael González
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México DF, Mexico
| | | | | | | | | |
Collapse
|
49
|
Gode-Potratz CJ, Kustusch RJ, Breheny PJ, Weiss DS, McCarter LL. Surface sensing in Vibrio parahaemolyticus triggers a programme of gene expression that promotes colonization and virulence. Mol Microbiol 2010; 79:240-63. [PMID: 21166906 DOI: 10.1111/j.1365-2958.2010.07445.x] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Vibrio parahaemolyticus senses surfaces via impeded rotation of its polar flagellum. We have exploited this surface-sensing mechanism to trick the organism into thinking it is on a surface when it is growing in liquid. This facilitated studies of global gene expression in a way that avoided many of the complications of surface-to-liquid comparisons, and illuminated ∼ 70 genes that respond to surface sensing per se. Almost all are surface-induced (not repressed) and encode swarming motility proteins, virulence factors or sensory enzymes involved with chemoreception and c-di-GMP signalling. Follow-up studies were performed to place the surface-responsive genes in a regulatory hierarchy. Mapping the hierarchy revealed two surprises about LafK, a transcriptional activator that until now has been considered to be the master regulator for the lateral flagellar system. First, LafK controls a more diverse set of genes than previously appreciated. Second, some laf genes are not under LafK control, which means LafK is not the master regulator after all. Additional experiments motivated by the transcriptome analyses revealed that growth on a surface lowers c-di-GMP levels and enhances cytotoxicity. Thus, we demonstrate that V. parahaemolyticus can invoke a programme of gene control upon encountering a surface and the specific identities of the surface-responsive genes are pertinent to colonization and pathogenesis.
Collapse
|
50
|
Calcium and iron regulate swarming and type III secretion in Vibrio parahaemolyticus. J Bacteriol 2010; 192:6025-38. [PMID: 20851895 DOI: 10.1128/jb.00654-10] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Here, we probe the response to calcium during growth on a surface and show that calcium influences the transcriptome and stimulates motility and virulence of Vibrio parahaemolyticus. Swarming (but not swimming) gene expression and motility were enhanced by calcium. Calcium also elevated transcription of one of the organism's two type III secretion systems (T3SS1 but not T3SS2) and heightened cytotoxicity toward host cells in coculture. Calcium stimulation of T3SS gene expression has not been reported before, although low calcium is an inducing signal for the T3SS of many organisms. EGTA was also found to increase T3SS1 gene expression and virulence; however, this was demonstrated to be the consequence of iron rather than calcium chelation. Ectopic expression of exsA, encoding the T3SS1 AraC-type regulator, was used to define the extent of the T3SS1 regulon and verify its coincident induction by calcium and EGTA. To begin to understand the regulatory mechanisms modulating the calcium response, a calcium-repressed, LysR-type transcription factor named CalR was identified and shown to repress swarming and T3SS1 gene expression. Swarming and T3SS1 gene expression were also demonstrated to be linked by LafK, a σ(54)-dependent regulator of swarming, and additionally connected by a negative-feedback loop on the swarming regulon propagated by ExsA. Thus, calcium and iron, two ions pertinent for a marine organism and pathogen, play a signaling role with global consequences on the regulation of gene sets that are relevant for surface colonization and infection.
Collapse
|