1
|
Nanninga N. Molecular Cytology of 'Little Animals': Personal Recollections of Escherichia coli (and Bacillus subtilis). Life (Basel) 2023; 13:1782. [PMID: 37629639 PMCID: PMC10455606 DOI: 10.3390/life13081782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/09/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
This article relates personal recollections and starts with the origin of electron microscopy in the sixties of the previous century at the University of Amsterdam. Novel fixation and embedding techniques marked the discovery of the internal bacterial structures not visible by light microscopy. A special status became reserved for the freeze-fracture technique. By freeze-fracturing chemically fixed cells, it proved possible to examine the morphological effects of fixation. From there on, the focus switched from bacterial structure as such to their cell cycle. This invoked bacterial physiology and steady-state growth combined with electron microscopy. Electron-microscopic autoradiography with pulses of [3H] Dap revealed that segregation of replicating DNA cannot proceed according to a model of zonal growth (with envelope-attached DNA). This stimulated us to further investigate the sacculus, the peptidoglycan macromolecule. In particular, we focused on the involvement of penicillin-binding proteins such as PBP2 and PBP3, and their role in division. Adding aztreonam (an inhibitor of PBP3) blocked ongoing divisions but not the initiation of new ones. A PBP3-independent peptidoglycan synthesis (PIPS) appeared to precede a PBP3-dependent step. The possible chemical nature of PIPS is discussed.
Collapse
Affiliation(s)
- Nanne Nanninga
- Molecular Cytology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
2
|
Billings G, Ouzounov N, Ursell T, Desmarais SM, Shaevitz J, Gitai Z, Huang KC. De novo morphogenesis in L-forms via geometric control of cell growth. Mol Microbiol 2014; 93:883-96. [PMID: 24995493 DOI: 10.1111/mmi.12703] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2014] [Indexed: 01/06/2023]
Abstract
In virtually all bacteria, the cell wall is crucial for mechanical integrity and for determining cell shape. Escherichia coli's rod-like shape is maintained via the spatiotemporal patterning of cell-wall synthesis by the actin homologue MreB. Here, we transiently inhibited cell-wall synthesis in E. coli to generate cell-wall-deficient, spherical L-forms, and found that they robustly reverted to a rod-like shape within several generations after inhibition cessation. The chemical composition of the cell wall remained essentially unchanged during this process, as indicated by liquid chromatography. Throughout reversion, MreB localized to inwardly curved regions of the cell, and fluorescent cell wall labelling revealed that MreB targets synthesis to those regions. When exposed to the MreB inhibitor A22, reverting cells regrew a cell wall but failed to recover a rod-like shape. Our results suggest that MreB provides the geometric measure that allows E. coli to actively establish and regulate its morphology.
Collapse
Affiliation(s)
- Gabriel Billings
- Department of Physics, Stanford University, Stanford, CA, 94305, USA
| | | | | | | | | | | | | |
Collapse
|
3
|
Kumar P, Arora K, Lloyd JR, Lee IY, Nair V, Fischer E, Boshoff HIM, Barry CE. Meropenem inhibits D,D-carboxypeptidase activity in Mycobacterium tuberculosis. Mol Microbiol 2012; 86:367-81. [PMID: 22906310 DOI: 10.1111/j.1365-2958.2012.08199.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2012] [Indexed: 12/28/2022]
Abstract
Carbapenems such as meropenem are being investigated for their potential therapeutic utility against highly drug-resistant tuberculosis. These β-lactams target the transpeptidases that introduce interpeptide cross-links into bacterial peptidoglycan thereby controlling rigidity of the bacterial envelope. Treatment of Mycobacterium tuberculosis (Mtb) with the β-lactamase inhibitor clavulanate together with meropenem resulted in rapid, polar, cell lysis releasing cytoplasmic contents. In Mtb it has been previously demonstrated that 3-3 cross-linkages [involving two diaminopimelate (DAP) molecules] predominate over 4-3 cross-linkages (involving one DAP and one D-alanine) in stationary-phase cells. We purified and analysed peptidoglycan from Mtb and found that 3-3 cross-linkages predominate throughout all growth phases and the ratio of 4-3/3-3 linkages does not vary significantly under any growth condition. Meropenem treatment was accompanied by a dramatic accumulation of unlinked pentapeptide stems with no change in the tetrapeptide pools, suggesting that meropenem inhibits both a D,D-carboxypeptidase and an L,D-transpeptidase. We purified a candidate D,D-carboxypeptidase DacB2 and showed that meropenem indeed directly inhibits this enzyme by forming a stable adduct at the enzyme active site. These results suggest that the rapid lysis of meropenem-treated cells is the result of synergistically inhibiting the transpeptidases that introduce 3,3-cross-links while simultaneously limiting the pool of available substrates available for cross-linking.
Collapse
Affiliation(s)
- Pradeep Kumar
- Tuberculosis Research Section, National Institute of Allergy and Infectious Disease, NIH, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Brandt JM, Charron KDJ, Zhao L, MacDonald SJ, Medley JB. Commissioning of a displacement-controlled knee wear simulator and exploration of some issues related to the lubricant. Proc Inst Mech Eng H 2011; 225:736-52. [DOI: 10.1177/0954411911406061] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A six-station displacement-controlled knee simulator with separately controlled left (L) and right (R) banks (three wear implants per bank) was commissioned for a total of three million cycles (Mc) following ISO 14243-3. A commissioning protocol was applied to compare the polyethylene wear among the six wear stations by exchanging the implants between wear stations. Changes in lubricant characteristics during wear testing, such as polypeptide degradation, low-molecular-weight polypeptide concentration, and possible microbial contamination were also assessed. The total mean wear rate for the implants was 23.60 ± 1.96 mm3/Mc and this was of a similar magnitude to the mean wear rate for the same implant tested under similar conditions by DePuy Orthopaedics Inc. (Warsaw, IN). Repeated run-in wear was observed when the implants were exchanged between wear stations, suggesting that implants should be subjected to the same wear station throughout the duration of a wear test. The total polypeptide degradation for the implants measured 30.53 ± 3.96 per cent; the low-molecular-weight polypeptide concentration of the “used” lubricant for implants (0.131 ± 0.012 g/L) was 3.3 times greater than the mean polypeptide concentration of the fresh, “unused” lubricant (0.039 ± 0.004 g/L). This increase in low-molecular weight polypeptide concentration was suggested to be attributable to protein shear in the articulation of the implant, the circulation of the lubricant, and some proteolytic activity. Sodium azide was ineffective in maintaining a sterile environment for wear testing as a single, highly motile Gram-negative micro-organism was identified in the lubricant from wear tests.
Collapse
Affiliation(s)
- J-M Brandt
- Concordia Joint Replacement Group, Concordia Hip & Knee Institute, Winnipeg, Canada
| | - K D J Charron
- Division of Orthopaedic Surgery, London Health Sciences Centre, University of Western Ontario, London, Canada
| | - L Zhao
- Department of Biochemistry, University of Western Ontario, London, Canada
| | - S J MacDonald
- Division of Orthopaedic Surgery, London Health Sciences Centre, University of Western Ontario, London, Canada
| | - J B Medley
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Canada
| |
Collapse
|
5
|
Architecture of peptidoglycan: more data and more models. Trends Microbiol 2010; 18:59-66. [DOI: 10.1016/j.tim.2009.12.004] [Citation(s) in RCA: 244] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 10/28/2009] [Accepted: 12/08/2009] [Indexed: 01/09/2023]
|
6
|
Acid-susceptible mutants of Mycobacterium tuberculosis share hypersusceptibility to cell wall and oxidative stress and to the host environment. J Bacteriol 2008; 191:625-31. [PMID: 19011036 DOI: 10.1128/jb.00932-08] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mycobacterium tuberculosis can persist in macrophage phagosomes that acidify to a pH of approximately 4.5 after activation of the macrophage with gamma interferon. How the bacterium resists the low pH of the acidified phagosome is incompletely understood. A screen of 10,100 M. tuberculosis transposon mutants for mutants hypersensitive to pH 4.5 led to the discovery of 21 genes whose disruption attenuated survival of M. tuberculosis at a low pH (41). Here, we show that acid-sensitive M. tuberculosis mutants with transposon insertions in Rv2136c, Rv2224c, ponA2, and lysX were hypersensitive to antibiotics, sodium dodecyl sulfate, heat shock, and reactive oxygen and nitrogen intermediates, indicating that acid resistance can be associated with protection against other forms of stress. The Rv2136c mutant was impaired in intrabacterial pH homeostasis and unable to maintain a neutral intrabacterial pH in activated macrophages. The Rv2136c, Rv2224c, and ponA2 mutants were attenuated in mice, with the Rv2136c mutant displaying the most severe level of attenuation. Pathways utilized by M. tuberculosis for acid resistance and intrabacterial pH maintenance are potential targets for chemotherapy.
Collapse
|
7
|
Mainardi JL, Villet R, Bugg TD, Mayer C, Arthur M. Evolution of peptidoglycan biosynthesis under the selective pressure of antibiotics in Gram-positive bacteria. FEMS Microbiol Rev 2008; 32:386-408. [PMID: 18266857 DOI: 10.1111/j.1574-6976.2007.00097.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Acquisition of resistance to the two classes of antibiotics therapeutically used against Gram-positive bacteria, the glycopeptides and the beta-lactams, has revealed an unexpected flexibility in the peptidoglycan assembly pathway. Glycopeptides select for diversification of the fifth position of stem pentapeptides because replacement of D-Ala by D-lactate or D-Ser at this position prevents binding of the drugs to peptidoglycan precursors. The substitution is generally well tolerated by the classical D,D-transpeptidases belonging to the penicillin-binding protein family, except by low-affinity enzymes. Total elimination of the fifth residue by a D,D-carboxypeptidase requires a novel cross-linking enzyme able to process the resulting tetrapeptide stems. This enzyme, an L,D-transpeptidase, confers cross-resistance to beta-lactams and glycopeptides. Diversification of the side chain of the precursors, presumably in response to the selective pressure of peptidoglycan endopeptidases, is controlled by aminoacyl transferases of the Fem family that redirect specific aminoacyl-tRNAs from translation to peptidoglycan synthesis. Diversification of the side chains has been accompanied by a parallel divergent evolution of the substrate specificity of the L,D-transpeptidases, in contrast to the D,D-transpeptidases, which display an unexpected broad specificity. This review focuses on the role of antibiotics in selecting or counter-selecting diversification of the structure of peptidoglycan precursors and their mode of polymerization.
Collapse
Affiliation(s)
- Jean-Luc Mainardi
- INSERM, U872, LRMA, Centre de Recherche des Cordeliers, Paris, France
| | | | | | | | | |
Collapse
|
8
|
Mainardi JL, Morel V, Fourgeaud M, Cremniter J, Blanot D, Legrand R, Frehel C, Arthur M, Van Heijenoort J, Gutmann L. Balance between two transpeptidation mechanisms determines the expression of beta-lactam resistance in Enterococcus faecium. J Biol Chem 2002; 277:35801-7. [PMID: 12077139 DOI: 10.1074/jbc.m204319200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The d,d-transpeptidase activity of high molecular weight penicillin-binding proteins (PBPs) is essential to maintain cell wall integrity as it catalyzes the final cross-linking step of bacterial peptidoglycan synthesis. We investigated a novel beta-lactam resistance mechanism involving by-pass of the essential PBPs by l,d-transpeptidation in Enterococcus faecium. Determination of the peptidoglycan structure by reverse phase high performance liquid chromatography coupled to mass spectrometry revealed that stepwise selection for ampicillin resistance led to the gradual replacement of the usual cross-links generated by the PBPs (d-Ala(4) --> d-Asx-Lys(3)) by cross-links resulting from l,d-transpeptidation (l-Lys(3) --> d-Asx-Lys(3)). This was associated with no modification of the level of production of the PBPs or of their affinity for beta-lactams, indicating that altered PBP activity was not required for ampicillin resistance. A beta-lactam-insensitive l,d-transpeptidase was detected in membrane preparations of the parental susceptible strain. Acquisition of resistance was not because of variation of this activity. Instead, selection led to production of a beta-lactam-insensitive d,d-carboxypeptidase that cleaved the C-terminal d-Ala residue of pentapeptide stems in vitro and caused massive accumulation of cytoplasmic precursors containing a tetrapeptide stem in vivo. The parallel dramatic increase in the proportion of l-Lys(3) --> d-Asx-Lys(3) cross-links showed that the enzyme was activating the resistance pathway by generating the substrate for the l,d-transpeptidase.
Collapse
Affiliation(s)
- Jean-Luc Mainardi
- INSERM EMI-U 0004 Laboratoire de Recherche Moléculaire sur les Antibiotiques, UFR Broussais-Hôtel Dieu, Université Paris VI, 75270 Paris, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
|
10
|
Mainardi JL, Legrand R, Arthur M, Schoot B, van Heijenoort J, Gutmann L. Novel mechanism of beta-lactam resistance due to bypass of DD-transpeptidation in Enterococcus faecium. J Biol Chem 2000; 275:16490-6. [PMID: 10748168 DOI: 10.1074/jbc.m909877199] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The peptidoglycan structure of in vitro selected ampicillin-resistant mutant Enterococcus faecium D344M512 and of the susceptible parental strain D344S was determined by reverse phase high performance liquid chromatography and mass spectrometry. The muropeptide monomers were almost identical in the two strains. The substantial majority (99.3%) of the oligomers from the susceptible strain D344S contained the usual d-alanyl --> d-asparaginyl (or d-aspartyl)-l-lysyl cross-link (d-Ala --> d-Asx-l-Lys) generated by beta-lactam-sensitive DD-transpeptidation. The remaining oligomers (0.7%) were produced by beta-lactam-insensitive LD-transpeptidation, because they contained l-Lys --> d-Asx-l-Lys cross-links. The muropeptide oligomers of the ampicillin-resistant mutant D344M512 contained only these l-Lys --> d-Asx-l-Lys cross-links indicating that resistance was due to the bypass of the beta-lactam-sensitive DD-transpeptidation reaction. The discovery of this novel resistance mechanism indicates that DD-transpeptidases cannot be considered anymore as the sole essential transpeptidase enzymes.
Collapse
Affiliation(s)
- J L Mainardi
- L.R.M.A., UFR Broussais-Hôtel Dieu, Université Paris VI, 75270 Paris, France.
| | | | | | | | | | | |
Collapse
|
11
|
Signoretto C, Lleò MM, Tafi MC, Canepari P. Cell wall chemical composition of Enterococcus faecalis in the viable but nonculturable state. Appl Environ Microbiol 2000; 66:1953-9. [PMID: 10788366 PMCID: PMC101439 DOI: 10.1128/aem.66.5.1953-1959.2000] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The viable but nonculturable (VBNC) state is a survival mechanism adopted by many bacteria (including those of medical interest) when exposed to adverse environmental conditions. In this state bacteria lose the ability to grow in bacteriological media but maintain viability and pathogenicity and sometimes are able to revert to regular division upon restoration of normal growth conditions. The aim of this work was to analyze the biochemical composition of the cell wall of Enterococcus faecalis in the VBNC state in comparison with exponentially growing and stationary cells. VBNC enterococcal cells appeared as slightly elongated and were endowed with a wall more resistant to mechanical disruption than dividing cells. Analysis of the peptidoglycan chemical composition showed an increase in total cross-linking, which rose from 39% in growing cells to 48% in VBNC cells. This increase was detected in oligomers of a higher order than dimers, such as trimers (24% increase), tetramers (37% increase), pentamers (65% increase), and higher oligomers (95% increase). Changes were also observed in penicillin binding proteins (PBPs), the enzymes involved in the terminal stages of peptidoglycan assembly, with PBPs 5 and 1 being prevalent, and in autolytic enzymes, with a threefold increase in the activity of latent muramidase-1 in E. faecalis in the VBNC state. Accessory wall polymers such as teichoic acid and lipoteichoic acid proved unchanged and doubled in quantity, respectively, in VBNC cells in comparison to dividing cells. It is suggested that all these changes in the cell wall of VBNC enterococci are specific to this particular physiological state. This may provide indirect confirmation of the viability of these cells.
Collapse
Affiliation(s)
- C Signoretto
- Dipartimento di Patologia, Sezione di Microbiologia, Università di Verona, 37134 Verona, Italy
| | | | | | | |
Collapse
|
12
|
Ishidate K, Ursinus A, Höltje JV, Rothfield L. Analysis of the length distribution of murein glycan strands in ftsZ and ftsI mutants of E. coli. FEMS Microbiol Lett 1998; 168:71-5. [PMID: 9812365 DOI: 10.1111/j.1574-6968.1998.tb13257.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The chain length distribution of murein glycan strands was analyzed in wild-type cells and in cells in which preseptal and/or septal murein synthesis was prevented in ftsZ84 and ftsI36 mutants of E. coli. This revealed a significant change in glycan chain lengths in newly synthesized murein associated with inactivation of the ftsZ gene product but not with inactivation of the ftsI gene product. This is the first reported abnormality in murein biosynthesis associated with mutation of an essential cell division gene.
Collapse
Affiliation(s)
- K Ishidate
- Department of Microbiology, University of Connecticut Health Center, Farmington 06032, USA
| | | | | | | |
Collapse
|
13
|
Meijer W, van de Bunt B, Twigt M, de Jonge B, Smit G, Hugenholtz J. Lysis of Lactococcus lactis subsp. cremoris SK110 and its nisin-immune transconjugant in relation to flavor development in cheese. Appl Environ Microbiol 1998; 64:1950-3. [PMID: 9572979 PMCID: PMC106258 DOI: 10.1128/aem.64.5.1950-1953.1998] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
To develop a nisin-producing cheese starter, Lactococcus lactis subsp. cremoris SK110 was conjugated with transposon Tn5276-NI, which codes for nisin immunity but not for nisin production. Cheese made with transconjugant SK110::Tn5276-NI as the starter was bitter. The muropeptide of the transconjugant contained a significantly greater amount of tetrapeptides than the muropeptide of strain SK110, which could have decreased the susceptibility of the cells to lysis and thereby the release of intracellular debittering enzymes.
Collapse
Affiliation(s)
- W Meijer
- Flavour and Starters Section, Netherlands Institute for Dairy Research (NIZO), Ede, The Netherlands.
| | | | | | | | | | | |
Collapse
|
14
|
Höltje JV. Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol Mol Biol Rev 1998; 62:181-203. [PMID: 9529891 PMCID: PMC98910 DOI: 10.1128/mmbr.62.1.181-203.1998] [Citation(s) in RCA: 861] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
To withstand the high intracellular pressure, the cell wall of most bacteria is stabilized by a unique cross-linked biopolymer called murein or peptidoglycan. It is made of glycan strands [poly-(GlcNAc-MurNAc)], which are linked by short peptides to form a covalently closed net. Completely surrounding the cell, the murein represents a kind of bacterial exoskeleton known as the murein sacculus. Not only does the sacculus endow bacteria with mechanical stability, but in addition it maintains the specific shape of the cell. Enlargement and division of the murein sacculus is a prerequisite for growth of the bacterium. Two groups of enzymes, hydrolases and synthases, have to cooperate to allow the insertion of new subunits into the murein net. The action of these enzymes must be well coordinated to guarantee growth of the stress-bearing sacculus without risking bacteriolysis. Protein-protein interaction studies suggest that this is accomplished by the formation of a multienzyme complex, a murein-synthesizing machinery combining murein hydrolases and synthases. Enlargement of both the multilayered murein of gram-positive and the thin, single-layered murein of gram-negative bacteria seems to follow an inside-to-outside growth strategy. New material is hooked in a relaxed state underneath the stress-bearing sacculus before it becomes inserted upon cleavage of covalent bonds in the layer(s) under tension. A model is presented that postulates that maintenance of bacterial shape is achieved by the enzyme complex copying the preexisting murein sacculus that plays the role of a template.
Collapse
Affiliation(s)
- J V Höltje
- Max-Planck-Institut für Entwicklungsbiologie, Abteilung Biochemie, Tübingen, Germany.
| |
Collapse
|
15
|
de Jonge BL, Handwerger S, Gage D. Altered peptidoglycan composition in vancomycin-resistant Enterococcus faecalis. Antimicrob Agents Chemother 1996; 40:863-9. [PMID: 8849241 PMCID: PMC163220 DOI: 10.1128/aac.40.4.863] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The muropeptide compositions of isogenic vancomycin-resistant and -susceptible Enterococcus faecalis strains were analyzed by reverse-phase high-performance liquid chromatography combined with amino acid analysis and fast atom bombardment mass spectrometry. Peptidoglycan of the susceptible strain contained pentapeptides as stem peptides, whereas peptidoglycan of the isogenic resistant strain was composed of muropeptides with tetrapeptide stem peptides. Despite the synthesis of lactate-terminating peptidoglycan precursors, no lactate-containing muropeptides were detected in peptidoglycan of the resistant strain. These findings indicate that either lactate-terminating precursors are not incorporated into peptidoglycan of the resistant strain or that the lactate residues are removed from peptidoglycan during synthesis.
Collapse
Affiliation(s)
- B L de Jonge
- Laboratory of Microbiology, Rockefeller University, New York, New York 10021, USA
| | | | | |
Collapse
|
16
|
Abstract
Analysis by high-performance liquid chromatography of the stem peptide composition of cell walls purified from a large number of pneumococcal strains indicates that these bacteria produce a highly conserved species-specific peptidoglycan independent of serotype, isolation date, and geographic origin. Characteristic features of this highly reproducible peptide pattern are the dominance of linear stem peptides with a monomeric tripeptide, a tri-tetra linear dimer, and two indirectly cross-linked tri-tetra dimers being the most abundant components. Screening of strains with the high-performance liquid chromatography technique has identified two naturally occurring peptidoglycan variants in which the species-specific stem peptide composition was replaced by two drastically different and distinct stem peptide patterns, each unique to the particular clone of pneumococci producing it. Both isolates were multidrug resistant, including resistance to penicillin. In one of these clones--defined by multilocus enzyme analysis and pulsed-field gel electrophoresis of the chromosomal DNAs--the linear stem peptides were replaced by branched peptides that most frequently carried an alanyl-alanine substituent on the epsilon amino group of the diamino acid residue. In the second clone, the predominant stem peptide species replacing the linear stem peptides carried a seryl-alanine substituent. The abnormal peptidoglycans may be related to the altered substrate preference of transpeptidases (penicillin-binding proteins) in the pneumococcal variants.
Collapse
Affiliation(s)
- A Severin
- Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
17
|
Watt SR, Clarke AJ. Initial characterization of two extracellular autolysins from Pseudomonas aeruginosa PAO1. J Bacteriol 1994; 176:4784-9. [PMID: 7913931 PMCID: PMC196306 DOI: 10.1128/jb.176.15.4784-4789.1994] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Two extracellular autolysins have been detected in the spent culture supernatants of Pseudomonas aeruginosa PAO1 by using renaturing polyacrylamide gel electrophoresis. The two autolysins were isolated from the culture supernatant by trichloroacetic acid precipitation and were shown to have apparent molecular masses of 26 and 29 kDa. The 26-kDa autolysin first appears during the early exponential phase of growth and then declines sharply, while the 29-kDa autolysin first appears in the late exponential phase of growth and continues well into the stationary phase. Fractionation of whole cells indicated that the 26-kDa enzyme was also localized within the periplasm, with a lesser amount of activity associated with the cytoplasmic membrane. The 29-kDa autolytic activity was distributed within the cell equally between the periplasm and the cytoplasmic membrane. The pH optima of the isolated 26- and 29-kDa autolysins are 6.0 and 5.0, respectively. Further evidence from both protease susceptibility and inhibition studies confirms that these two extracellular autolysins isolated from P. aeruginosa PAO1 are separate and distinct.
Collapse
Affiliation(s)
- S R Watt
- Department of Microbiology, University of Guelph, Ontario, Canada
| | | |
Collapse
|
18
|
Labischinski H, Maidhof H. Chapter 2 Bacterial peptidoglycan: overview and evolving concepts. BACTERIAL CELL WALL 1994. [DOI: 10.1016/s0167-7306(08)60405-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
19
|
Satta G, Fontana R, Canepari P. The two-competing site (TCS) model for cell shape regulation in bacteria: the envelope as an integration point for the regulatory circuits of essential physiological events. Adv Microb Physiol 1994; 36:181-245. [PMID: 7942315 DOI: 10.1016/s0065-2911(08)60180-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- G Satta
- Institute of Microbiology, Catholic University of Sacred Heart, Rome, Italy
| | | | | |
Collapse
|
20
|
Allison DG, Nolan RD. Influence of growth rate and nutrient limitation on monobactam production and peptidoglycan synthesis in Pseudomonas aeruginosa. J Basic Microbiol 1994; 34:217-24. [PMID: 7932106 DOI: 10.1002/jobm.3620340403] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The effects of growth rate and nutrient limitation on monobactam production, peptidoglycan content and mean cell length in Pseudomonas aeruginosa was studied using continuous culture techniques. All three parameters increased progressively with growth rate, a greater response being shown under carbon limitation compared to that occurring under nitrogen limiting conditions. Interestingly, monobactum production mirrored peptidoglycan synthesis. In addition, the monobactam exhibited a broad range of antibacterial activity and bound preferentially to PBP 1A in the producing organism. Moreover, addition of the monobactam to a growing culture inhibited cell wall synthesis. These results are discussed in relation to the control and regulation of peptidoglycan synthesis.
Collapse
Affiliation(s)
- D G Allison
- Pharmacy Department, University of Manchester, England, UK
| | | |
Collapse
|
21
|
Bishop RE, Weiner JH. Complementation of growth defect in an ampC deletion mutant of Escherichia coli. FEMS Microbiol Lett 1993; 114:349-54. [PMID: 8288112 DOI: 10.1111/j.1574-6968.1993.tb06597.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
beta-Lactamase genes of class-A (Rtem) and class-C (ampC) were placed under control of an inducible tac-promoter and expressed in Escherichia coli. Expression of RTEM had no observable effect on the growth properties of E. coli strains HB101 (ampC+) or MI1443 (delta ampC). E. coli MI1443 exhibited a decline in growth rate at mid-exponential phase which could be delayed by expression of AmpC at early-exponential phase. AmpC expression otherwise inhibited growth, particularly during the transition into exponential phase where growth was prevented altogether. We suggest that the AmpC beta-lactamase, but not RTEM, may have an additional cellular function as a peptidoglycan hydrolase.
Collapse
Affiliation(s)
- R E Bishop
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
22
|
Bishop RE, Weiner JH. Coordinate regulation of murein peptidase activity and AmpC beta-lactamase synthesis in Escherichia coli. FEBS Lett 1992; 304:103-8. [PMID: 1618308 DOI: 10.1016/0014-5793(92)80598-b] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In the periplasmic space of Escherichia coli, the (L)-m-A2pm-(D)-m-A2pm peptide, the lipoprotein, and the AmpC beta-lactamase are controlled by growth rate. To explain this coordinate regulation, it is proposed that the AmpC protein functions as an LD-endopeptidase in addition to its known function as a beta-lactamase. As LD-peptides, DD-peptides and beta-lactams are structurally similar, LD-peptidases may belong to the larger family of DD-peptidases and serine beta-lactamases. In contrast to E. coli, many related bacteria possess an inducible AmpC protein. Several gene systems necessary for AmpC induction are known to affect various aspects of peptidoglycan metabolism. It is proposed that AmpC induction occurs indirectly via a recyclable cell wall peptide.
Collapse
Affiliation(s)
- R E Bishop
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
23
|
Driehuis F, de Jonge B, Nanninga N. Cross-linkage and cross-linking of peptidoglycan in Escherichia coli: definition, determination, and implications. J Bacteriol 1992; 174:2028-31. [PMID: 1548240 PMCID: PMC205810 DOI: 10.1128/jb.174.6.2028-2031.1992] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The glycan chains in peptidoglycan or murein are cross-linked by transpeptidation of the peptide side chains. To assess the fraction of side chains involved in cross-bridges, distinction has been made between cross-linkage and cross-linking. The first expression refers to the situation in unlabeled (or fully labeled) peptidoglycan, and the second refers to pulse-labeled peptidoglycan. It is argued that for the determination of the cross-linking value, the mode of insertion as denoted by the so-called acceptor/donor radioactivity ratio should be taken into account.
Collapse
Affiliation(s)
- F Driehuis
- Department of Microbiology, University of Amsterdam, The Netherlands
| | | | | |
Collapse
|
24
|
Cooper S. Synthesis of the cell surface during the division cycle of rod-shaped, gram-negative bacteria. Microbiol Rev 1991; 55:649-74. [PMID: 1779930 PMCID: PMC372841 DOI: 10.1128/mr.55.4.649-674.1991] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
When the growth of the gram-negative bacterial cell wall is considered in relation to the synthesis of the other components of the cell, a new understanding of the pattern of wall synthesis emerges. Rather than a switch in synthesis between the side wall and pole, there is a partitioning of synthesis such that the volume of the cell increases exponentially and thus perfectly encloses the exponentially increasing cytoplasm. This allows the density of the cell to remain constant during the division cycle. This model is explored at both the cellular and molecular levels to give a unified description of wall synthesis which has the following components: (i) there is no demonstrable turnover of peptidoglycan during cell growth, (ii) the side wall grows by diffuse intercalation, (iii) pole synthesis starts by some mechanism and is preferentially synthesized compared with side wall, and (iv) the combined side wall and pole syntheses enclose the newly synthesized cytoplasm at a constant cell density. The central role of the surface stress model in wall growth is distinguished from, and preferred to, models that propose cell-cycle-specific signals as triggers of changes in the rate of wall synthesis. The actual rate of wall synthesis during the division cycle is neither exponential nor linear, but is close to exponential when compared with protein synthesis during the division cycle.
Collapse
Affiliation(s)
- S Cooper
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor 48109-0620
| |
Collapse
|
25
|
Abstract
Research on bacterial cell division has recently gained renewed impetus because of new information about peptidoglycan assembly and about specific cell-division genes and their products. This paper concerns aspects of cell division that specifically concern the peptidoglycan. It is shown that upon division, peptidoglycan assembly switches from lateral wall location to the cell centre, that assembly takes place at the leading edge of the invaginating constriction, that the mode of glycan strand insertion changes from a single-stranded mode to a multi-stranded mode, and that the initiation of division (in contrast to its continuation) requires penicillin-insensitive peptidoglycan synthesis (PIPS). A membrane component X (possibly FtsQ) is proposed to coordinate PIPS with the cell division-initiating protein FtsZ. It is suggested that a largely proteinaceous macromolecular complex (divisome) at the leading edge of constriction encompasses three compartments (cytoplasm, membrane and periplasm). The composition of this complex is proposed to vary depending on whether division is being initiated or completed.
Collapse
Affiliation(s)
- N Nanninga
- Department of Molecular Cell Biology, University of Amsterdam, The Netherlands
| |
Collapse
|
26
|
Romeis T, Kohlrausch U, Burgdorf K, Höltje JV. Murein chemistry of cell division in Escherichia coli. Res Microbiol 1991; 142:325-32. [PMID: 1925031 DOI: 10.1016/0923-2508(91)90048-f] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The length distribution of the glycan strands of murein has been analysed with a novel method in filamentous and spherical cells of Escherichia coli, as well as during septum formation and cell separation. A shift to the longer glycan strands was observed in the murein of furazlocillin-induced filaments. In contrast, shorter glycan strands were increased in the murein of mecillinam-induced spherical cells. During septum formation in a chain-forming envA mutant that is defective in the splitting process of the septum, a shift to the shorter glycan strands was detected that was not seen in wild type E. coli cells. It is concluded that septum-specific murein structures of rather short glycan strands are released during splitting of the septum. This intermediate material remains present in the septum of the envA mutant. The splitting process of the septum was investigated by analysing the murein during penicillin-induced bacteriolysis, which is known to take place by strictly localized murein degradation in the equatorial zone of the cell. No changes in the length distribution of the glycan strands could be detected during penicillin-induced lysis, with the exception of an increase in disaccharides, the shortest glycan strands possible. This is explained by the action of exo-muramidases progressively digesting glycan strands, leaving disaccharide units covalently linked to the remaining murein at the sites of murein cross-linkage. It is proposed that this "zipper-like" mechanism represents the normal cutting process of the septum during cell separation.
Collapse
Affiliation(s)
- T Romeis
- Max-Planck-Institut für Entwicklungsbiologie, Abteilung Biochemie, Tübingen, Germany
| | | | | | | |
Collapse
|
27
|
Abstract
We recognize organisms first and foremost by their forms, but how they grow and shape themselves still largely passes understanding. The objective of this article is to survey what has been learned of morphogenesis of walled eucaryotic microorganisms as a set of problems in cellular heredity, biochemistry, physiology, and organization. Despite the diversity of microbial forms and habits, some common principles can be discerned. (i) That the form of each organism represents the expression of a genetic program is almost universally taken for granted. However, reflection on the findings with morphologically aberrant mutants suggests that the metaphor of a genetic program is misleading. Cellular form is generated by a web of interacting chemical and physical processes, whose every strand is woven of multiple gene products. The relationship between genes and form is indirect and cumulative; therefore, morphogenesis must be addressed as a problem not of molecular genetics but of cellular physiology. (ii) The shape of walled cells is determined by the manner in which the wall is laid down during growth and development. Turgor pressure commonly, perhaps always, supplies the driving force for surface enlargement. Cells yield to this scalar force by localized, controlled wall synthesis; their forms represent variations on the theme of local compliance with global force. (iii) Growth and division in bacteria display most immediately the interplay of hydrostatic pressure, localized wall synthesis, and structural constraints. Koch's surface stress theory provides a comprehensive and quantitative framework for understanding bacterial shapes. (iv) In the larger and more versatile eucaryotic cells, expansion is mediated by the secretion of vesicles. Secretion and ancillary processes, such as cytoplasmic transport, are spatially organized on the micrometer scale. The diversity of vectorial physiology and of the forms it generates is illustrated by examples: apical growth of fungal hyphae, bud formation in yeasts, germination of fucoid zygotes, and development of cells of Nitella, Closterium, and other unicellular algae. (v) Unicellular organisms, no less than embryos, have a remarkable capacity to impose spatial order upon themselves with or without the help of directional cues. Self-organization is reviewed here from two perspectives: the theoretical exploration of morphogens, gradients, and fields, and experimental study of polarization in Fucus cells, extension of hyphal tips, and pattern formation in ciliates. Here is the heart of the matter, yet self-organization remains nearly as mysterious as it was a century ago, a subject in search of a paradigm.
Collapse
Affiliation(s)
- F M Harold
- Department of Biochemistry, Colorado State University, Fort Collins 80523
| |
Collapse
|
28
|
Abstract
Acceleration of the autoxidation of Fe2+ by apotransferrin or apolactoferrin at acid pH is indicated by the disappearance of Fe2+, the uptake of oxygen, and the binding of iron to transferrin or lactoferrin. The product(s) formed oxidize iodide to an iodinating species and are bactericidal to Escherichia coli. Toxicity to E. coli by FeSO4 (10(-5) M) and human apotransferrin (100 micrograms/ml) or human apolactoferrin (25 micrograms/ml) was optimal at acid pH (4.5-5.0) and with logarithmic phase organisms. Both the iodinating and bactericidal activities were inhibited by catalase and the hydroxyl radical (OH.) scavenger mannitol, whereas superoxide dismutase was ineffective. NaCl at 0.1 M inhibited bactericidal activity, but had little or no effect on iodination. Iodide increased the bactericidal activity of Fe2+ and apotransferrin or apolactoferrin. The formation of OH.was suggested by the formation of the OH.spin-trap adduct (5,5-dimethyl-1-pyroline N-oxide [DMPO]/OH)., with the spin trap DMPO and the formation of the methyl radical adduct on the further addition of dimethyl sulfoxide. (DMPO/OH).formation was inhibited by catalase, whereas superoxide dismutase had little or no effect. These findings suggest that Fe2+ and apotransferrin or apolactoferrin can generate OH.via an H2O2 intermediate with toxicity to microorganisms, and raise the possibility that such a mechanism may contribute to the microbicidal activity of phagocytes.
Collapse
Affiliation(s)
- S J Klebanoff
- Department of Medicine, University of Washington, Seattle 98195
| | | |
Collapse
|
29
|
de Jonge BL. Isogenic variants of Escherichia coli with altered morphology have peptidoglycan with identical muropeptide composition. J Bacteriol 1990; 172:4682-4. [PMID: 2198272 PMCID: PMC213303 DOI: 10.1128/jb.172.8.4682-4684.1990] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The peptidoglycan compositions of three isogenic morphological mutants of Escherichia coli were determined by high-pressure liquid chromatography analysis. The muropeptide compositions of the peptidoglycan of these mutants were the same, indicating that the shape of E. coli is not (solely) determined by the chemical composition of the peptidoglycan. Furthermore, it appeared that the muropeptide composition of the peptidoglycan was not affected by growth temperature.
Collapse
Affiliation(s)
- B L de Jonge
- Department of Microbiology, University of Amsterdam, The Netherlands
| |
Collapse
|
30
|
Antranikian G. Physiology and enzymology of thermophilic anaerobic bacteria degrading starch. FEMS Microbiol Lett 1990. [DOI: 10.1111/j.1574-6968.1990.tb04095.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
31
|
Affiliation(s)
- J V Höltje
- Max-Planck-Institut für Entwicklungsbiologie, Abteilung Biochemie, Tübingen, FRG
| | | |
Collapse
|
32
|
Nanninga N, Wientjes FB, de Jonge BL, Woldringh CL. Polar cap formation during cell division in Escherichia coli. Res Microbiol 1990; 141:103-18. [PMID: 2194244 DOI: 10.1016/0923-2508(90)90102-v] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- N Nanninga
- Department of Molecular Cell Biology, University of Amsterdam
| | | | | | | |
Collapse
|
33
|
Interaction of monoclonal antibodies with the enzymatic domains of penicillin-binding protein 1b of Escherichia coli. J Bacteriol 1990; 172:63-70. [PMID: 2403551 PMCID: PMC208401 DOI: 10.1128/jb.172.1.63-70.1990] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Monoclonal antibodies (MAbs) against four different antigenic determinants of penicillin-binding protein (PBP) 1b were used to study the transglycosylase and transpeptidase activities of PBP 1b. Enzyme kinetics in the presence of and without the MAbs were determined, and the synthesized murein was analyzed. Two MAbs against the transglycosylase domain of PBP 1b appeared to inhibit this reaction. One MAb inhibited only the transpeptidase reaction, and one inhibited both enzymatic activities of PBP 1b. The latter two MAbs bound to the transpeptidase domain of PBP 1b. The following major conclusions were deduced from the results. (i) Transpeptidation is the rate-limiting step of the reaction cascade, and it is dependent on the product of transglycosylation. (ii) PBP 1b has only one type of transpeptidase activity, i.e., a penta-tetra transpeptidase activity. (iii) PBP 1b is probably a globular protein which has two intimately associated enzymatic domains.
Collapse
|
34
|
de Jonge BL, Wientjes FB, Jurida I, Driehuis F, Wouters JT, Nanninga N. Peptidoglycan synthesis during the cell cycle of Escherichia coli: composition and mode of insertion. J Bacteriol 1989; 171:5783-94. [PMID: 2681142 PMCID: PMC210437 DOI: 10.1128/jb.171.11.5783-5794.1989] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The composition and the mode of insertion of peptidoglycan synthesized during the cell cycle of Escherichia coli were determined. This was carried out on peptidoglycan that was periodically pulse-labeled in synchronously growing cultures. The chemical composition of the pulse-labeled (newly synthesized) peptidoglycan remained constant throughout the cell cycle, as judged from high-pressure liquid chromatography analysis of the muropeptide composition. The mode of insertion was deduced from the acceptor-donor radioactivity ratio in the bis-disaccharide tetratetra compound. The ratio was low in elongating cells and high in constricting cells. This indicates that during elongation, peptidoglycan was inserted as single strands, whereas during constriction, a multistranded (or sequential single-stranded) insertion occurred. Experiments with an ftsA division mutant suggested that the composition and mode of insertion of newly synthesized peptidoglycan remained the same throughout the constriction process. Our results imply that the changed mode of insertion rather than the chemical structure of the peptidoglycan might be responsible for the transition from cell elongation to polar cap formation.
Collapse
Affiliation(s)
- B L de Jonge
- Department of Microbiology, University of Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
35
|
Wientjes FB, Nanninga N. Rate and topography of peptidoglycan synthesis during cell division in Escherichia coli: concept of a leading edge. J Bacteriol 1989; 171:3412-9. [PMID: 2656655 PMCID: PMC210065 DOI: 10.1128/jb.171.6.3412-3419.1989] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The rate at which the peptidoglycan of Escherichia coli is synthesized during the division cycle was studied with two methods. One method involved synchronization of E. coli MC4100 lysA cultures by centrifugal elutriation and subsequent pulse-labeling of the synchronously growing cultures with [meso-3H]diaminopimelic acid ([3H]Dap). The second method was autoradiography of cells pulse-labeled with [3H]Dap. It was found that the peptidoglycan is synthesized at a more or less exponentially increasing rate during the division cycle with a slight acceleration in this rate as the cells start to constrict. Apparently, polar cap formation requires synthesis of extra surface components, presumably to accommodate for a change in the surface-to-volume ratio. Furthermore, it was found that the pool size of Dap was constant during the division cycle. Close analysis of the topography of [3H]Dap incorporation at the constriction site revealed that constriction proceeded by synthesis of peptidoglycan at the leading edge of the invaginating cell envelope. During constriction, no reallocation of incorporation occurred, i.e., the incorporation at the leading edge remained high throughout the process of constriction. Impairment of penicillin-binding protein 3 by mutation or by the specific beta-lactam antibiotic furazlocillin did not affect [3H]Dap incorporation during initiation of constriction. However, the incorporation at the constriction site was inhibited in later stages of the constriction process. It is concluded that during division at least two peptidoglycan-synthesizing systems are operating sequentially.
Collapse
Affiliation(s)
- F B Wientjes
- Department of Molecular Cell Biology, University of Amsterdam, The Netherlands
| | | |
Collapse
|
36
|
Chatterjee AP, Dasgupta A, Chatterjee AN. Spatial dependence of stress distribution for rod-shaped bacteria. J Theor Biol 1988; 135:309-21. [PMID: 3256723 DOI: 10.1016/s0022-5193(88)80247-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The stress distribution in the cylindrical portion of the cell envelope of a rod-shaped bacterial cell was compared with that at its polar ends. Using a symmetry argument it is shown that the critical internal pressure for the initiation of yielding of the envelope material has a non-uniform distribution and is significantly higher for the polar regions.
Collapse
Affiliation(s)
- A P Chatterjee
- Department of Chemistry, Indian Institute of Technology, Kanpur
| | | | | |
Collapse
|
37
|
Hsu PL, Qin M, Norris SJ, Sell S. Isolation and characterization of recombinant Escherichia coli clones secreting a 24-kilodalton antigen of Treponema pallidum. Infect Immun 1988; 56:1135-43. [PMID: 2833442 PMCID: PMC259774 DOI: 10.1128/iai.56.5.1135-1143.1988] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Escherichia coli clones containing Treponema pallidum DNA in the pUC8 vector and secreting a 24-kilodalton antigen of T. pallidum have been isolated. Both syphilitic human and syphilis-immune rabbit sera reacted with the recombinant p24 antigen, indicating that an equivalent protein in T. pallidum is capable of eliciting antibody responses during natural infections. The p24 antigen of T. pallidum was identified by using two-dimensional gel electrophoresis and immunoblotting with monospecific anti-p24 serum. We tentatively concluded that this cloned antigen is a secreted protein or a labile or minor component of T. pallidum because (i) p24 was secreted by the recombinant E. coli cells; (ii) recombinant p24 in E. coli cells was processed into several smaller species with molecular masses ranging from 12 to 20 kilodaltons, which correlate well with the masses of secreted antigens described by others; and (iii) p24 protein appeared to be highly antigenic during natural infections, but only a very small amount of this antigen was associated with or retained by the purified organisms. The possible role of the p24 protein in determining the growth characteristics of T. pallidum is suggested by the ability of recombinant p24 to induce growth changes in E. coli cells. All E. coli colonies expressing the p24 polypeptide exhibited a flat and rough colony morphology and a filamentous growth pattern that were different from those of other E. coli cells. The DNA sequence coding for the p24 polypeptide is located on a 1.7-kilobase-pair BamHI fragment of the T. pallidum genomic DNA and is absent in the nonpathogenic Treponema phagedenis DNA. However, any possible relationship between the p24 antigen and the virulence of T. pallidum remains to be determined. In preliminary studies, rabbits immunized with the purified p24 were not protected from the infection with live T. pallidum organisms.
Collapse
Affiliation(s)
- P L Hsu
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at Houston 77225
| | | | | | | |
Collapse
|
38
|
Tuomanen E, Markiewicz Z, Tomasz A. Autolysis-resistant peptidoglycan of anomalous composition in amino-acid-starved Escherichia coli. J Bacteriol 1988; 170:1373-6. [PMID: 2893787 PMCID: PMC210918 DOI: 10.1128/jb.170.3.1373-1376.1988] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Nongrowing Escherichia coli deprived of an essential amino acid continued to produce peptidoglycan at a rate approximately 30% of that of growing cells. The composition of this peptidoglycan was very different from that of growing cells and resembled that of peptidoglycan left undegraded during partial autolysis of the bacteria. Synthesis of this peptidoglycan of anomalous composition began at once upon the removal of the amino acid from the medium. Fifteen minutes of amino acid deprivation was sufficient to virtually completely prevent penicillin-induced autolytic wall degradation in vivo. During this time, although the specific activities of soluble and membrane-bound hydrolytic transglycosylases and endopeptidases remained high, the peptidoglycan produced showed decreased sensitivity to degradation in vitro. After more extensive (2-h) starvation, triggering of autolysis by chaotropic agents was also blocked. Autolysis in growing cells may be selective for peptidoglycan representing the cylindrical portion of the sacculus. It is suggested that at least part of the mechanism of the well-known lysis resistance of nongrowing E. coli is related to the deposition of structurally anomalous and relatively autolysin-resistant peptidoglycan at some strategically located sites on the bacterial surface.
Collapse
Affiliation(s)
- E Tuomanen
- Rockefeller University, New York, New York 10021
| | | | | |
Collapse
|
39
|
Driehuis F, Wouters JT. Effect of growth rate on the penicillin-binding proteins ofEscherichia coli. FEMS Microbiol Lett 1987. [DOI: 10.1111/j.1574-6968.1987.tb02521.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
40
|
Garcia-Bustos JF, Chait BT, Tomasz A. Structure of the peptide network of pneumococcal peptidoglycan. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)47739-3] [Citation(s) in RCA: 92] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
41
|
Tuomanen E, Cozens R. Changes in peptidoglycan composition and penicillin-binding proteins in slowly growing Escherichia coli. J Bacteriol 1987; 169:5308-10. [PMID: 3312172 PMCID: PMC213942 DOI: 10.1128/jb.169.11.5308-5310.1987] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The composition of peptidoglycan of chemostat-grown cultures of Escherichia coli was investigated as a function of growth rate. As the generation time was lengthened from 0.8 to 13.8 h, there was a decrease in the major monomer (disaccharide tetrapeptide) and dimer (bis-disaccharide tetrapeptide), while disaccharide tripeptide moieties increased to greater than 50% of the total wall. The average chain length became much shorter; lipoprotein density tripled, and the number of unusual diaminopimelyl-diaminopimelic acid crossbridges increased fivefold. As cells grew more slowly, amounts of penicillin-binding proteins (PBPs) 1a-1b complex and 4 decreased, while amounts of PBPs 3 and the 5-6 complex increased. We propose that the chemical composition of E. coli cell walls changes with growth rate in a manner consistent with alterations in the activities of PBPs and cell shape.
Collapse
Affiliation(s)
- E Tuomanen
- Rockefeller University, New York, New York 10021
| | | |
Collapse
|