1
|
Foley SL, Kaldhone PR, Ricke SC, Han J. Incompatibility Group I1 (IncI1) Plasmids: Their Genetics, Biology, and Public Health Relevance. Microbiol Mol Biol Rev 2021; 85:e00031-20. [PMID: 33910982 PMCID: PMC8139525 DOI: 10.1128/mmbr.00031-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Bacterial plasmids are extrachromosomal genetic elements that often carry antimicrobial resistance (AMR) genes and genes encoding increased virulence and can be transmissible among bacteria by conjugation. One key group of plasmids is the incompatibility group I1 (IncI1) plasmids, which have been isolated from multiple Enterobacteriaceae of food animal origin and clinically ill human patients. The IncI group of plasmids were initially characterized due to their sensitivity to the filamentous bacteriophage If1. Two prototypical IncI1 plasmids, R64 and pColIb-P9, have been extensively studied, and the plasmids consist of unique regions associated with plasmid replication, plasmid stability/maintenance, transfer machinery apparatus, single-stranded DNA transfer, and antimicrobial resistance. IncI1 plasmids are somewhat unique in that they encode two types of sex pili, a thick, rigid pilus necessary for mating and a thin, flexible pilus that helps stabilize bacteria for plasmid transfer in liquid environments. A key public health concern with IncI1 plasmids is their ability to carry antimicrobial resistance genes, including those associated with critically important antimicrobials used to treat severe cases of enteric infections, including the third-generation cephalosporins. Because of the potential importance of these plasmids, this review focuses on the distribution of the plasmids, their phenotypic characteristics associated with antimicrobial resistance and virulence, and their replication, maintenance, and transfer.
Collapse
Affiliation(s)
- Steven L Foley
- Division of Microbiology, U.S. Food and Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas, USA
| | - Pravin R Kaldhone
- Division of Microbiology, U.S. Food and Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas, USA
- Center for Food Safety and Food Science Department, University of Arkansas, Fayetteville, Arkansas, USA
| | - Steven C Ricke
- Meat Science & Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin, Madison, Wisconsin, USA
| | - Jing Han
- Division of Microbiology, U.S. Food and Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas, USA
| |
Collapse
|
2
|
The shufflon of IncI1 plasmids is rearranged constantly during different growth conditions. Plasmid 2019; 102:51-55. [PMID: 30885787 DOI: 10.1016/j.plasmid.2019.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 12/20/2022]
Abstract
One of the factors that can affect conjugation of IncI1 plasmids, amongst others, is the genetic region known as the shufflon. This multiple inversion system modifies the pilus tip proteins used during conjugation, thus affecting the affinity for different recipient cells. Although recombination is known to occur in in vitro conditions, little is known about the regulation and the extent of recombination that occurs. To measure the recombination of the shufflon, we have amplified the entire shufflon region and sequenced the amplicons using nanopore long-read sequencing. This method was effective to determine the order of the segments of the shufflon and allow for the analysis of the shufflon variants that are present in a heterogeneous pool of templates. Analysis was performed over different growth phases and after addition of cefotaxime. Furthermore, analysis was performed in different E. coli host cells to determine if recombination is likely to be influenced. Recombination of the shufflon was constantly ongoing in all conditions that were measured, although no differences in the amount of different shufflon variants or the rate at which novel variants were formed could be found. As previously reported, some variants were abundant in the population while others were scarce. This leads to the conclusion that the shufflon is continuously recombining at a constant rate, or that the method used here was not sensitive enough to detect differences in this rate. For one of the plasmids, the host cell appeared to have an effect on the specific shufflon variants that were formed which were not predominant in another host, indicating that host factors may be involved. As previously reported, the pilV-A and pilV-A' ORFs are formed at higher frequencies than other pilV ORFs. These results demonstrate that the recombination that occurs within the shufflon is not random. While any regulation of the shufflon affected by these in vitro conditions could not be revealed, the method of amplifying large regions for long-read sequencing for the analysis of multiple inversion systems proved effective.
Collapse
|
3
|
Whole-Genome Sequencing Identifies In Vivo Acquisition of a blaCTX-M-27-Carrying IncFII Transmissible Plasmid as the Cause of Ceftriaxone Treatment Failure for an Invasive Salmonella enterica Serovar Typhimurium Infection. Antimicrob Agents Chemother 2016; 60:7224-7235. [PMID: 27671066 DOI: 10.1128/aac.01649-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/12/2016] [Indexed: 12/11/2022] Open
Abstract
We report a case of ceftriaxone treatment failure for bacteremia caused by Salmonella enterica subsp. enterica serovar Typhimurium, due to the in vivo acquisition of a blaCTX-M-27-encoding IncFII group transmissible plasmid. The original β-lactamase-susceptible isolate ST882S was replaced by the resistant isolate ST931R during ceftriaxone treatment. After relapse, treatment was changed to ciprofloxacin, and the patient recovered. Isolate ST931R could transfer resistance to Escherichia coli at 37°C. We used whole-genome sequencing of ST882S and ST931R, the E. coli transconjugant, and isolated plasmid DNA to unequivocally show that ST882S and ST931R had identical chromosomes, both having 206 identical single-nucleotide polymorphisms (SNPs) versus S Typhimurium 14028s. We assembled a complete circular genome for ST931R, to which ST882S reads mapped with no SNPs. ST882S and ST931R were isogenic except for the presence of three additional plasmids in ST931R. ST931R and the E. coli transconjugant were ceftriaxone resistant due to the presence of a 60.5-kb IS26-flanked, blaCTX-M-27-encoding IncFII plasmid. Compared to 14082s, ST931R has almost identical Gifsy-1, Gifsy-2, and ST64B prophages, lacks Gifsy-3, and instead carries a unique Fels-2 prophage related to that found in LT2. ST882S and ST931R both had a 94-kb virulence plasmid showing >99% identity with pSLT14028s and a cryptic 3,904-bp replicon; ST931R also has cryptic 93-kb IncI1 and 62-kb IncI2 group plasmids. To the best of our knowledge, in vivo acquisition of extended-spectrum β-lactamase resistance by S Typhimurium and blaCTX-M-27 genes in U.S. isolates of Salmonella have not previously been reported.
Collapse
|
4
|
Panda P, Vanga BR, Lu A, Fiers M, Fineran PC, Butler R, Armstrong K, Ronson CW, Pitman AR. Pectobacterium atrosepticum and Pectobacterium carotovorum Harbor Distinct, Independently Acquired Integrative and Conjugative Elements Encoding Coronafacic Acid that Enhance Virulence on Potato Stems. Front Microbiol 2016; 7:397. [PMID: 27065965 PMCID: PMC4814525 DOI: 10.3389/fmicb.2016.00397] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/14/2016] [Indexed: 12/25/2022] Open
Abstract
Integrative and conjugative elements (ICEs) play a central role in the evolution of bacterial virulence, their transmission between bacteria often leading to the acquisition of virulence factors that alter host range or aggressiveness. Much is known about the functions of the virulence determinants that ICEs harbor, but little is understood about the cryptic effects of ICEs on their host cell. In this study, the importance of horizontally acquired island 2 (HAI2), an ICE in the genome of Pectobacterium atrosepticum SCRI1043, was studied using a strain in which the entire ICE had been removed by CRISPR-Cas-mediated genome editing. HAI2 encodes coronafacic acid, a virulence factor that enhances blackleg disease of potato stems caused by P. atrosepticum SCRI1043. As expected, deletion of HAI2 resulted in reduced blackleg symptoms in potato stems. A subsequent screen for HAI2-related ICEs in other strains of the Pectobacterium genus revealed their ubiquitous nature in P. atrosepticum. Yet, HAI2-related ICEs were only detected in the genomes of a few P. carotovorum strains. These strains were notable as blackleg causing strains belonging to two different subspecies of P. carotovorum. Sequence analysis of the ICEs in different strains of both P. atrosepticum and P. carotovorum confirmed that they were diverse and were present in different locations on the genomes of their bacterial host, suggesting that the cfa cluster was probably acquired independently on a number of occasions via chromosomal insertion of related ICEs. Excision assays also demonstrated that the ICEs in both P. atrosepticum and P. carotovorum are mobilized from the host chromosome. Thus, the future spread of these ICEs via lateral gene transfer might contribute to an increase in the prevalence of blackleg-causing strains of P. carotovorum.
Collapse
Affiliation(s)
- Preetinanda Panda
- The Bio-Protection Research CentreLincoln, New Zealand
- Plant Pathology, The New Zealand Institute for Plant and Food Research LimitedLincoln, New Zealand
| | - Bhanupratap R. Vanga
- Plant Pathology, The New Zealand Institute for Plant and Food Research LimitedLincoln, New Zealand
- Department of Microbiology and Immunology, University of OtagoDunedin, New Zealand
| | - Ashley Lu
- Plant Pathology, The New Zealand Institute for Plant and Food Research LimitedLincoln, New Zealand
| | - Mark Fiers
- Plant Pathology, The New Zealand Institute for Plant and Food Research LimitedLincoln, New Zealand
| | - Peter C. Fineran
- The Bio-Protection Research CentreLincoln, New Zealand
- Department of Microbiology and Immunology, University of OtagoDunedin, New Zealand
| | - Ruth Butler
- Plant Pathology, The New Zealand Institute for Plant and Food Research LimitedLincoln, New Zealand
| | | | - Clive W. Ronson
- Department of Microbiology and Immunology, University of OtagoDunedin, New Zealand
| | - Andrew R. Pitman
- The Bio-Protection Research CentreLincoln, New Zealand
- Plant Pathology, The New Zealand Institute for Plant and Food Research LimitedLincoln, New Zealand
| |
Collapse
|
5
|
Complete nucleotide sequence of a blaKPC-harboring IncI2 plasmid and its dissemination in New Jersey and New York hospitals. Antimicrob Agents Chemother 2013; 57:5019-25. [PMID: 23896467 DOI: 10.1128/aac.01397-13] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae strains have spread worldwide and become a significant public health threat. blaKPC, the plasmid-borne KPC gene, was frequently identified on numerous transferable plasmids in different incompatibility replicon groups. Here we report the complete nucleotide sequence of a novel blaKPC-3-harboring IncI2 plasmid, pBK15692, isolated from a multidrug-resistant K. pneumoniae ST258 strain isolated from a New Jersey hospital in 2005. pBK15692 is 78 kb in length and carries a backbone that is similar to those of other IncI2 plasmids (pR721, pChi7122-3, pHN1122-1, and pSH146-65), including the genes encoding type IV pili and shufflon regions. Comparative genomics analysis of IncI2 plasmids reveals that they possess a conserved plasmid backbone but are divergent with respect to the integration sites of resistance genes. In pBK15692, the blaKPC-3-harboring Tn4401 was inserted into a Tn1331 element and formed a nested transposon. A PCR scheme was designed to detect the prevalence of IncI2 and pBK15692-like plasmids from a collection of clinical strains from six New Jersey and New York hospitals isolated between 2007 and 2011. IncI2 plasmids were found in 46.2% isolates from 318 clinical K. pneumoniae strains. Notably, 59 pBK15692-like plasmids (23%) have been identified in 256 KPC-bearing K. pneumoniae strains, and all carried KPC-3 and belong to the epidemic ST258 clone. Our study revealed that the prevalence of IncI2 plasmids has been considerably underestimated. Further studies are needed to understand the distribution of this plasmid group in other health care regions and decipher the association between IncI2 plasmids and blaKPC-3-bearing ST258 strains.
Collapse
|
6
|
Johnson TJ, Shepard SM, Rivet B, Danzeisen JL, Carattoli A. Comparative genomics and phylogeny of the IncI1 plasmids: A common plasmid type among porcine enterotoxigenic Escherichia coli. Plasmid 2011; 66:144-51. [DOI: 10.1016/j.plasmid.2011.07.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 07/17/2011] [Accepted: 07/19/2011] [Indexed: 11/25/2022]
|
7
|
Takahashi H, Shao M, Furuya N, Komano T. The genome sequence of the incompatibility group Iγ plasmid R621a: Evolution of IncI plasmids. Plasmid 2011; 66:112-21. [DOI: 10.1016/j.plasmid.2011.06.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 06/21/2011] [Accepted: 06/27/2011] [Indexed: 10/18/2022]
|
8
|
Woodford N, Carattoli A, Karisik E, Underwood A, Ellington MJ, Livermore DM. Complete nucleotide sequences of plasmids pEK204, pEK499, and pEK516, encoding CTX-M enzymes in three major Escherichia coli lineages from the United Kingdom, all belonging to the international O25:H4-ST131 clone. Antimicrob Agents Chemother 2009; 53:4472-82. [PMID: 19687243 PMCID: PMC2764225 DOI: 10.1128/aac.00688-09] [Citation(s) in RCA: 238] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 07/07/2009] [Accepted: 08/06/2009] [Indexed: 11/20/2022] Open
Abstract
We determined the complete nucleotide sequences of three plasmids that encode CTX-M extended-spectrum beta-lactamases (ESBLs) in pulsed-field gel electrophoresis-defined United Kingdom variants (strains A, C, and D) of the internationally prevalent Escherichia coli O25:H4-ST131 clone. Plasmid pEK499 (strain A; 117,536 bp) was a fusion of type FII and FIA replicons and harbored the following 10 antibiotic resistance genes conferring resistance to eight antibiotic classes: bla(CTX-M-15), bla(OXA-1), bla(TEM-1,) aac6'-Ib-cr, mph(A), catB4, tet(A), and the integron-borne dfrA7, aadA5, and sulI genes. pEK516 (strain D; 64,471 bp) belonged to incompatibility group IncFII and carried seven antibiotic resistance genes: bla(CTX-M-15), bla(OXA-1), bla(TEM-1), aac6'-Ib-cr, catB4, and tet(A), all as in pEK499. It also carried aac3-IIa, conferring gentamicin resistance, and was highly related to pC15-1a, a plasmid encoding the CTX-M-15 enzyme in Canada. By contrast, pEK204 (strain C; 93,732 bp) belonged to incompatibility group IncI1 and carried only two resistance genes, bla(CTX-M-3) and bla(TEM-1). It probably arose by the transposition of Tn3 and ISEcp1-bla(CTX-M-3) elements into a pCOLIb-P9-like plasmid. We conclude that (i) United Kingdom variants of the successful E. coli ST131 clone have acquired different plasmids encoding CTX-M ESBLs on separate occasions, (ii) the bla(CTX-M-3) and bla(CTX-M-15) genes on pEK204 and pEK499/pEK516 represent separate escape events, and (iii) IncFII plasmids harboring bla(CTX-M-15) have played a crucial role in the global spread of CTX-M-15 ESBLs in E. coli.
Collapse
Affiliation(s)
- Neil Woodford
- ARMRL, Centre for Infections, Health Protection Agency, London, United Kingdom.
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
The shufflon, a multiple DNA inversion system in plasmid R64, consists of four invertible DNA segments which are separated and flanked by seven 19-bp repeat sequences. The product of a site-specific recombinase gene, rci, promotes site-specific recombination between any two of the inverted 19-bp repeat sequences of the shufflon. To analyze the molecular mechanism of this recombination reaction, Rci protein was overproduced and purified. The purified Rci protein promoted the in vitro recombination reaction between the inverted 19-bp repeats of supercoiled DNA of a plasmid carrying segment A of the R64 shufflon. The recombination reaction was enhanced by the bacterial host factor HU. Gel electrophoretic analysis indicated that the Rci protein specifically binds to the DNA segments carrying the 19-bp sequences. The binding affinity of the Rci protein to the four shufflon segments as well as four synthetic 19-bp sequences differed greatly: among the four 19-bp repeat sequences, the repeat-a and -d sequences displayed higher affinity to Rci protein. These results suggest that the differences in the affinity of Rci protein for the 19-bp repeat sequences determine the inversion frequencies of the four segments.
Collapse
Affiliation(s)
- A Gyohda
- Department of Biology, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
| | | |
Collapse
|
10
|
Abstract
Conservative site-specific recombination functions to create biological diversity in prokaryotes. Simple site-specific recombination systems consist of two recombination sites and a recombinase gene. The plasmid R64 shufflon contains seven recombination sites, which flank and separate four DNA segments. Site-specific recombinations mediated by the product of the rci gene between any two inverted recombination sites result in the inversion of four DNA segments independently or in groups. The shufflon functions as a biological switch to select one of seven C-terminal segments of the PilV proteins, which is a minor component of R64 thin pilus. The shufflon determines the recipient specificity in liquid matings of plasmid R64. Other multiple inversion systems as well as integrons, which are multiple insertion systems, are also described in this review.
Collapse
Affiliation(s)
- T Komano
- Department of Biology, Tokyo Metropolitan University, Japan.
| |
Collapse
|
11
|
Zhang XL, Morris C, Hackett J. Molecular cloning, nucleotide sequence, and function of a site-specific recombinase encoded in the major 'pathogenicity island' of Salmonella typhi. Gene 1997; 202:139-46. [PMID: 9427557 DOI: 10.1016/s0378-1119(97)00466-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The genome of the typhoid fever bacterium, Salmonella typhi, contains at least three large insertions ('pathogenicity islands') relative to the chromosome of Salmonella typhimurium (which is normally non-invasive for humans) [Liu, S.-L., Sanderson, K.E., 1995. Rearrangements in the genome of the bacterium Salmonella typhi. Proc. Natl. Acad. Sci. USA 92, 1018-1022]. DNA encoding a site-specific recombinase (the rci gene) and an adjacent putative pilus-tip adhesin protein (the pilV gene) was located (near min 94) in the major 'pathogenicity island' of the S. typhi chromosome, cloned, and sequenced. It was shown that the Rci protein inverted a DNA segment of 490 bp, between two 19-bp inverted repeat elements, to place either of two possible C-termini on a constant N-terminal region of the PilV protein. Both possible PilV proteins were seen when the alternative pilV genes were transcribed from the T7 promoter and translated in vivo. Both the rci and the N-terminal region of the pilV gene show a high degree of homology to genes encoded by the IncI2 plasmid R721 and the IncI1 plasmid R64. One of the possible pilV C-termini (in the pilV1 gene) is highly homologous to shufflon C (one of the possible PilV C-termini) of R64; the other possible pilV C-terminus (in the pilV2 gene) shows no homology to any published shufflon. In the R64 plasmid, the PilV proteins are pilus-tip adhesins; different PilV proteins recognize different potential recipient bacterial strains as a prelude to mating in liquid culture [Komano, T., Kim, S.-R., Yoshida, T., Nisioka, T., 1994. DNA rearrangement of the shufflon determines recipient specificity in liquid mating of IncI1 plasmid R64. J. Mol. Biol. 243, 6-9]. It is likely that S. typhi encodes pili bearing two alternative PilV proteins as tip adhesins, one of which recognizes, specifically, a membrane component of Escherichia coli K-12, while the specificity of the other PilV protein is not known.
Collapse
Affiliation(s)
- X L Zhang
- Department of Biochemistry, Hong Kong University of Science and Technology, Kowloon, People's Republic of China.
| | | | | |
Collapse
|
12
|
Abstract
The shufflon, a multiple DNA inversion system in the plasmid R64, consists of four DNA segments flanked and separated by seven 19-bp repeat sequences. Site-specific recombinations mediated by the rci product occur between each inverted repeat sequence, resulting in inversions of the four segments independently or in groups. The seven 19-bp repeat sequences are classified into four types (repeat-a, -b, -c, and -d), according to their 3-bp variable sequences. We individually cloned A, B, and C segments of the R64 shufflon and determined the in vivo inversion frequency of each segment. The inversion frequencies of three segments differed greatly. The inversion frequency declined in the following order: segments A, B, and C. Synthetic 19-mer oligonucleotides corresponding to both strands of repeat-a, -b, -c, and -d sequences were inserted into appropriate sites of pBR322. The rci-mediated DNA inversion occurred between two synthetic inverted repeats, indicating that the 19-bp inverted repeat sequences are the sole elements required in cis for the shufflon system. The inversion frequencies of DNA segments flanked by various sequences indicate that the four types of repeat sequences determine the inversion frequency of the four DNA segments of the R64 shufflon. Deletion of a DNA segment flanked by direct repeat sequences could not be detected.
Collapse
Affiliation(s)
- A Gyohda
- Department of Biology, Tokyo Metropolitan University, Japan
| | | | | |
Collapse
|
13
|
Komano T, Kim SR, Yoshida T. Mating variation by DNA inversions of shufflon in plasmid R64. ADVANCES IN BIOPHYSICS 1995; 31:181-93. [PMID: 7625273 DOI: 10.1016/0065-227x(95)99391-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Gene organization of the 54-kb transfer region of IncI1 plasmid R64 was deduced from the DNA sequence. Forty-eight ORFs were found in this region. A unique DNA rearrangement designated shufflon is located at the downstream region of an operon responsible for synthesis of thin pilus. The shufflon of R64 consists of four DNA segments, designated as A, B, C, and D, which are flanked and separated by seven 19-bp repeat sequences. Site-specific recombination mediated by the product of the rci gene between any two inverted repeats results in a complex DNA rearrangement. An analysis of open reading frames revealed that the shufflon is a biological switch to select one of seven C-terminal segments of the pilV genes. The products of pilV genes were shown to be components of thin pilus which was required for liquid mating. Seven R64 derivatives where the pilV genes were fixed in the seven C-terminal segments were constructed and their transfer frequencies in liquid mating were measured using various bacterial strains as recipients. Transfer frequencies of R64 in liquid mating strongly depended on the combination of C-terminal segments of the pilV genes in donor cells and bacterial strains of recipient cells, suggesting that the shufflon determines the recipient specificity in liquid mating of plasmid R64.
Collapse
Affiliation(s)
- T Komano
- Department of Biology, Tokyo Metropolitan University, Japan
| | | | | |
Collapse
|
14
|
Abstract
Microorganisms have numerous strategies for coping with environmental changes. In many systems, a single cell has the capacity to generate a seemingly infinite array of phenotypic variants in just a few generations of growth. The resulting heterogeneous population is well equipped for sudden environmental change; even if only a few cells in the population possess a phenotype needed for survival, these cells have the capacity to regenerate a similarly diverse population. Phenotypic switching in these systems usually results from high-frequency DNA rearrangements which are the subject of this review.
Collapse
Affiliation(s)
- K Dybvig
- Department of Comparative Medicine, University of Alabama at Birmingham 35294
| |
Collapse
|
15
|
Kim SR, Funayama N, Komano T. Nucleotide sequence and characterization of the traABCD region of IncI1 plasmid R64. J Bacteriol 1993; 175:5035-42. [PMID: 8349545 PMCID: PMC204969 DOI: 10.1128/jb.175.16.5035-5042.1993] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A 3.6-kb BglII-SmaI segment of the transfer region of IncI1 plasmid R64drd-11 was sequenced and characterized. Analysis of the DNA sequence indicated the presence of four genes, traA, traB, traC, and traD, in this region. The expression of the traB, traC, and traD genes was examined by maxicell experiments and that of the traA gene was examined by constructing the traA-lacZ fusion gene. The introduction of frameshift mutations into the four genes indicated that the traB and traC genes are essential for conjugal transfer in liquid medium and on a solid surface. Both were also required for the formation of the thin pilus, which is the receptor for phages I alpha and PR64FS. Upstream of the traA gene, a promoter sequence for sigma 70 of E. coli RNA polymerase was identified by S1 nuclease mapping and primer extension experiments.
Collapse
Affiliation(s)
- S R Kim
- Department of Biology, Tokyo Metropolitan University, Japan
| | | | | |
Collapse
|
16
|
Abstract
The shufflon is a DNA region that undergoes complex rearrangement mediated by the product of a putative site-specific recombinase gene, rci. The DNA sequences of the shufflon region and the rci gene of IncI2 plasmid R721 were determined. The R721 shufflon consists of three invertible DNA segments that are homologous to the shufflon segments found in IncI1 plasmid R64. Structural analysis of open reading frames indicated that the R721 shufflon possibly functions as a biological switch for selecting one of the six pilV genes in which the N-terminal region is constant and the C-terminal region is variable. The R721 rci gene was shown to encode a basic protein of 374 amino acid residues.
Collapse
Affiliation(s)
- S R Kim
- Department of Biology, Tokyo Metropolitan University, Japan
| | | |
Collapse
|
17
|
Komano T, Funayama N, Kim SR, Nisioka T. Transfer region of IncI1 plasmid R64 and role of shufflon in R64 transfer. J Bacteriol 1990; 172:2230-5. [PMID: 1970558 PMCID: PMC208852 DOI: 10.1128/jb.172.5.2230-2235.1990] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
To locate the transfer region of the 122-kiloase plasmid R64drd-11 belonging to incompatibility group I1, a series of deletion derivatives was constructed by in vitro recombinant DNA techniques followed by double homologous recombination in vivo. A plasmid designated pKK609 and bearing a 56.7-kilobase R64 sequence was the smallest transferable plasmid. A plasmid designated pKK610 and no longer possessing the 44-base-pair sequence of the R64 transfer system is located at one end. The other end of the R64 transfer region comprises a DNA segment of about 19 kilobases responsible for pilus formation. Shufflon, DNA with a novel rearrangement in R64, was found to be involved in pilus formation.
Collapse
Affiliation(s)
- T Komano
- Department of Biology, Tokyo Metropolitan University, Japan
| | | | | | | |
Collapse
|
18
|
Komano T, Fujitani S, Funayama N, Kanno A, Sakuma K. Physical and genetic analyses of IncI2 plasmid R721: evidence for the presence of shufflon. Plasmid 1990; 23:248-51. [PMID: 2217575 DOI: 10.1016/0147-619x(90)90057-j] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A physical map of the 75.1-kb IncI2 plasmid R721 was constructed by using 15 restriction enzymes, and the regions of several genetic determinants including the origins of replication and of conjugal DNA transfer were located on the physical map. It was found that R721 bears a DNA region which undergoes DNA rearrangement similar to the shufflon of R64.
Collapse
Affiliation(s)
- T Komano
- Department of Biology, Tokyo Metropolitan University, Japan
| | | | | | | | | |
Collapse
|
19
|
|
20
|
Abstract
The R64 shufflon is a novel type of DNA rearrangement in which four DNA segments invert independently or in groups. The related plasmid ColIb carries a variant shufflon. The present sequence analysis shows that the ColIb shufflon consists of three DNA segments that are highly homologous to the A, B, and C segments of the R64 shufflon. The 329-bp D segment of R64 is not present in the ColIb shufflon. As in the case of R64, the ColIb shufflon may act as a biological switch to select one of the six open reading frames in which the N-terminal region is constant while the C-terminal region is variable.
Collapse
Affiliation(s)
- S R Kim
- Department of Biology, Tokyo Metropolitan University, Japan
| | | |
Collapse
|
21
|
Komano T, Toyoshima A, Morita K, Nisioka T. Cloning and nucleotide sequence of the oriT region of the IncI1 plasmid R64. J Bacteriol 1988; 170:4385-7. [PMID: 3045094 PMCID: PMC211456 DOI: 10.1128/jb.170.9.4385-4387.1988] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The nucleotide sequence at the oriT region of the IncI1 plasmid R64 was determined. A recombinant plasmid carrying a 141-base-pair R64 sequence was mobilized with a normal frequency, while a plasmid carrying only 44 base pairs of this R64 sequence was mobilized with a frequency 1/10 that of the original plasmid. The oriT region of the R64 plasmid contains two inverted-repeat sequences.
Collapse
Affiliation(s)
- T Komano
- Department of Biology, Tokyo Metropolitan University, Japan
| | | | | | | |
Collapse
|
22
|
Kubo A, Kusukawa A, Komano T. Nucleotide sequence of the rci gene encoding shufflon-specific DNA recombinase in the IncI1 plasmid R64: homology to the site-specific recombinases of integrase family. MOLECULAR & GENERAL GENETICS : MGG 1988; 213:30-5. [PMID: 3065610 DOI: 10.1007/bf00333394] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Shufflon is a novel type of DNA rearrangement in which four DNA segments are flanked by seven 19-bp repeat sequences. The site-specific recombination between any inverted repeats results in an inversion of the DNA segment(s) either independently or in groups. The recombination is mediated by a gene designated rci. We have determined the nucleotide sequence of the rci gene and found that it encodes a basic protein with 384 amino acid residues. The rci gene was fused with lacZ and its gene product was identified by Western blot analysis. The Rci protein shows regional homologies to the site-specific recombinases encoded by the bacteriophage genomes, including those of lambda, phi 80, P22, P2, 186, P4 and P1.
Collapse
Affiliation(s)
- A Kubo
- Department of Biology, Tokyo Metropolitan University, Japan
| | | | | |
Collapse
|