1
|
Li XH, Lu HZ, Yao JB, Zhang C, Shi TQ, Huang H. Recent advances in the application of CRISPR/Cas-based gene editing technology in Filamentous Fungi. Biotechnol Adv 2025; 81:108561. [PMID: 40086675 DOI: 10.1016/j.biotechadv.2025.108561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/03/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
Filamentous fungi are essential industrial microorganisms that can serve as sources of enzymes, organic acids, terpenoids, and other bioactive compounds with significant applications in food, medicine, and agriculture. However, the underdevelopment of gene editing tools limits the full exploitation of filamentous fungi, which still present numerous untapped potential applications. In recent years, the CRISPR/Cas (clustered regularly interspaced short palindromic repeats) system, a versatile genome-editing tool, has advanced significantly and been widely applied in filamentous fungi, showcasing considerable research potential. This review examines the development and mechanisms of genome-editing tools in filamentous fungi, and contrasts the CRISPR/Cas9 and CRISPR/Cpf1 systems. The transformation and delivery strategies of the CRISPR/Cas system in filamentous fungi are also examined. Additionally, recent applications of CRISPR/Cas systems in filamentous fungi are summarized, such as gene disruption, base editing, and gene regulation. Strategies to enhance editing efficiency and reduce off-target effects are also highlighted, with the aim of providing insights for the future construction and optimization of CRISPR/Cas systems in filamentous fungi.
Collapse
Affiliation(s)
- Xu-Hong Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China
| | - Hui-Zhi Lu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China
| | - Ji-Bao Yao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China
| | - Chi Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China.
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China
| |
Collapse
|
2
|
Subbiahanadar Chelladurai K, Selvan Christyraj JD, Rajagopalan K, Vadivelu K, Chandrasekar M, Das P, Kalimuthu K, Balamurugan N, Subramanian V, Selvan Christyraj JRS. Ex vivo functional whole organ in biomedical research: a review. J Artif Organs 2025; 28:131-145. [PMID: 39592544 DOI: 10.1007/s10047-024-01478-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/29/2024] [Indexed: 11/28/2024]
Abstract
Model systems are critical in biomedical and preclinical research. Animal and in vitro models serve an important role in our current understanding of human physiology, disease pathophysiology, and therapy development. However, if the system is between cell culture and animal models, it may be able to overcome the knowledge gap that exists in the current system. Studies employing ex vivo organs as models have not been thoroughly investigated. Though the integration of other organs and systems has an impact on many biological mechanisms and disorders, it can add a new dimension to modeling and aid in the identification of new possible therapeutic targets. Here, we have discussed why the ex vivo organ model is desirable and the importance of the inclusion of organs from diverse species, described its historical aspects, studied organs as models in scientific research, and its ex vivo stability. We also discussed, how an ex vivo organ model might help researchers better understand organ physiology, as well as organ-specific diseases and therapeutic targets. We emphasized how this ex vivo organ dynamics will be more competent than existing models, as well as what tissues or organs would have potentially viable longevity for ex vivo modeling including human tissues, organs, and/or at least biopsies and its possible advantage in clinical medicine including organ transplantation procedure and precision medicine.
Collapse
Affiliation(s)
- Karthikeyan Subbiahanadar Chelladurai
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology, Chennai, Tamil Nadu, India
- School of Health Sciences, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN, 47907, USA
| | - Jackson Durairaj Selvan Christyraj
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology, Chennai, Tamil Nadu, India.
| | - Kamarajan Rajagopalan
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology, Chennai, Tamil Nadu, India
| | - Kayalvizhi Vadivelu
- Department of Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Meikandan Chandrasekar
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology, Chennai, Tamil Nadu, India
| | - Puja Das
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology, Chennai, Tamil Nadu, India
| | - Kalishwaralal Kalimuthu
- Rajiv Gandhi Centre for Biotechnology, Department of Biotechnology, Thiruvananthapuram, Kerala, India
| | - Nivedha Balamurugan
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology, Chennai, Tamil Nadu, India
| | - Vijayalakshmi Subramanian
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology, Chennai, Tamil Nadu, India
| | - Johnson Retnaraj Samuel Selvan Christyraj
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology, Chennai, Tamil Nadu, India.
| |
Collapse
|
3
|
Friesner JD, Argueso CT, Busch W, Hamann T, Strader L, Williams M, Wu S, Roeder AHK. In defense of funding foundational plant science. THE PLANT CELL 2025; 37:koaf106. [PMID: 40324389 DOI: 10.1093/plcell/koaf106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 04/24/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
Plants are essential for life as we know it on Earth. They oxygenate the atmosphere, regulate the climate, and comprise much of the primary producers underpinning complex food systems. In the 1980s, a multinational group of plant scientists chose the small angiosperm-Arabidopsis thaliana-to serve as the model flowering plant for genetic and molecular studies that would be leveraged to produce vast new datasets, resources, and tools. The rationale they used to persuade funding agencies to make significant investments and focus intense effort on this single plant species was to produce a deep fundamental knowledge of the biology of plants and to apply this knowledge to valuable, but typically less tractable, plant species. Over the past 40 yr, Arabidopsis has emerged as the most powerful and versatile plant model to uncover core biological principles and served as a prototyping system to test advanced molecular and genetic concepts. We argue that the emerging challenges of accelerating climate instability and a rapidly growing global population call for renewed and robust investments in fundamental plant biology research. Leveraging the power of Arabidopsis research, resources, datasets, and global collaborative community is more important than ever. This commentary lays out a vigorous defense of foundational, i.e. "basic," plant science research; describes that often, Arabidopsis is preferable to working directly in crops; highlights several transformative applications generated from basic plant research; and makes the argument that plant science is vital to the survival of humanity.
Collapse
Affiliation(s)
- Joanna D Friesner
- North American Arabidopsis Steering Committee, Corvallis, OR 97330, USA
| | - Cristiana T Argueso
- North American Arabidopsis Steering Committee, Corvallis, OR 97330, USA
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Wolfgang Busch
- North American Arabidopsis Steering Committee, Corvallis, OR 97330, USA
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Thorsten Hamann
- Institute for Biology, Norwegian University of Science and Technology, Trondheim 7491, Norway
- Multinational Arabidopsis Steering Committee
| | - Lucia Strader
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Mary Williams
- American Society of Plant Biologists, Rockville, MD 20855, USA
| | - Shuang Wu
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Adrienne H K Roeder
- North American Arabidopsis Steering Committee, Corvallis, OR 97330, USA
- Weill Institute for Cell and Molecular Biology and School of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
4
|
Butt H, Sathish S, London E, Lee Johnson T, Essawi K, Leonard A, Tisdale JF, Demirci S. Genome editing strategies for targeted correction of β-globin mutation in sickle cell disease: From bench to bedside. Mol Ther 2025; 33:2154-2171. [PMID: 40165374 DOI: 10.1016/j.ymthe.2025.03.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/22/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025] Open
Abstract
Sickle cell disease (SCD) includes a range of genotypes that result in a clinical syndrome, where abnormal red blood cell (RBC) physiology leads to widespread complications affecting nearly every organ system. Treatment strategies for SCD can be broadly categorized into disease-modifying therapies and those aimed toward a cure. Although several disease-modifying drugs have been approved, they do not fully address the complexity and severity of SCD. Recent advances in allogeneic transplantation and autologous gene therapy show promising outcomes in terms of efficacy and safety. While these approaches have improved the lives of many patients, achieving a durable and comprehensive cure for all remains challenging. To address this, gene-editing technologies, including zinc-finger nucleases, TALENs, CRISPR-Cas, base editing, and prime editing, have been explored both ex vivo and in vivo for targeted correction of the β-globin gene (HBB) in SCD. However, direct correction of HBB and its translation from the laboratory to the clinic presents ongoing limitations, with challenges involved in achieving robust mutation-correction efficiency, off-target effects, and high costs of therapies. The optimal strategy for curing SCD remains uncertain, but several promising approaches are emerging. This review touches on past, present, and future developments in HBB correction.
Collapse
Affiliation(s)
- Henna Butt
- Cellular and Molecular Therapeutics Branch (CMTB), National Heart Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20814, USA
| | - Shruti Sathish
- Cellular and Molecular Therapeutics Branch (CMTB), National Heart Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20814, USA
| | - Evan London
- Cellular and Molecular Therapeutics Branch (CMTB), National Heart Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20814, USA
| | - Taylor Lee Johnson
- Cellular and Molecular Therapeutics Branch (CMTB), National Heart Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20814, USA
| | - Khaled Essawi
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Gizan 45142, Saudi Arabia
| | - Alexis Leonard
- Cellular and Molecular Therapeutics Branch (CMTB), National Heart Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20814, USA; Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - John F Tisdale
- Cellular and Molecular Therapeutics Branch (CMTB), National Heart Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20814, USA.
| | - Selami Demirci
- Cellular and Molecular Therapeutics Branch (CMTB), National Heart Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20814, USA.
| |
Collapse
|
5
|
Aja PM, Agu PC, Ogbu C, Alum EU, Fasogbon IV, Musyoka AM, Ngwueche W, Egwu CO, Tusubira D, Ross K. RNA research for drug discovery: Recent advances and critical insight. Gene 2025; 947:149342. [PMID: 39983851 DOI: 10.1016/j.gene.2025.149342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/12/2025] [Accepted: 02/16/2025] [Indexed: 02/23/2025]
Abstract
The field of RNA research has experienced significant changes and is now at the forefront of contemporary drug development. This narrative overview explores the scientific developments and historical turning points in RNA research, emphasising the field's critical significance in the development of novel therapeutics. Important discoveries like antisense oligonucleotides (ASOs), mRNA therapies, and RNA interference (RNAi) have created novel treatment options that can be targeted, such as the ground-breaking mRNA vaccinations against COVID-19. Advances in high-throughput sequencing, single-cell RNA sequencing, and epitranscriptomics have further unravelled the complexity of RNA biology, shedding light on the intricacies of gene regulation and cellular diversity. The integration of computational tools and bioinformatics has propelled the identification of RNA-based biomarkers and the development of RNA therapeutics. Despite significant progress, challenges such as RNA stability, delivery, and off-target effects persist, necessitating continuous innovation and ethical considerations. This review provides a critical insight into the current state and prospects of RNA research, emphasising its transformative potential in drug discovery. By examining the interplay between technological advancements and therapeutic applications, we underscore the promising horizon for RNA-based interventions in treating a myriad of diseases, marking a new era in precision medicine.
Collapse
Affiliation(s)
- Patrick Maduabuchi Aja
- Biochemistry Department, Biomedical Sciences Faculty, Kampala International University, P.O. Box Ishaka, Bushenyi, Uganda; Biochemistry Department, Faculty of Science, Ebonyi State University, P.M.B. 053 Abakaliki, Ebonyi State, Nigeria.
| | - Peter Chinedu Agu
- Biochemistry Department, Faculty of Science, Ebonyi State University, P.M.B. 053 Abakaliki, Ebonyi State, Nigeria; Department of Biochemistry, Faculty of Science, Evangel University, Nigeria
| | - Celestine Ogbu
- Department of Biochemistry, Faculty of Basic Medical Sciences, Federal University of Health Sciences, Otukpo, Nigeria
| | - Esther Ugo Alum
- Publications and Extension Department, Kampala International University, P. O. Box 20000, Uganda; Biochemistry Department, Faculty of Science, Ebonyi State University, P.M.B. 053 Abakaliki, Ebonyi State, Nigeria
| | - Ilemobayo Victor Fasogbon
- Biochemistry Department, Biomedical Sciences Faculty, Kampala International University, P.O. Box Ishaka, Bushenyi, Uganda
| | - Angela Mumbua Musyoka
- Biochemistry Department, Biomedical Sciences Faculty, Kampala International University, P.O. Box Ishaka, Bushenyi, Uganda
| | - Wisdom Ngwueche
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chinedu Ogbonia Egwu
- Department of Biochemistry, Faculty of Basic Medical Sciences, Alex Ekwueme Federal University, Ndufu-Alike, Ikwo, Ebonyi State, Nigeria
| | - Deusdedit Tusubira
- Department of Biochemistry, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Kehinde Ross
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom; Institute for Health Research, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
6
|
Wang KC, Zheng T, Hubbard BP. CRISPR/Cas technologies for cancer drug discovery and treatment. Trends Pharmacol Sci 2025; 46:437-452. [PMID: 40133194 DOI: 10.1016/j.tips.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) tools are revolutionizing the establishment of genotype-phenotype relationships and are transforming cell- and gene-based therapies. In the field of oncology, CRISPR/CRISPR-associated protein 9 (Cas9), Cas12, and Cas13 have advanced the generation of cancer models, the study of tumor evolution, the identification of target genes involved in cancer growth, and the discovery of genes involved in chemosensitivity and resistance. Moreover, preclinical therapeutic strategies employing CRISPR/Cas have emerged. These include the generation of chimeric antigen receptor T (CAR-T) cells and engineered immune cells, and the use of precision anticancer gene-editing agents to inactivate driver oncogenes, suppress tumor support genes, and cull cancer cells in response to genetic circuit output. This review summarizes the collective impact that CRISPR technology has had on basic and applied cancer research, and highlights the promises and challenges facing its clinical translation.
Collapse
Affiliation(s)
- Kevin C Wang
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Tiffany Zheng
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Basil P Hubbard
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
7
|
Sun T, He W, Chen X, Shu X, Liu W, Ouyang G. Nanomaterials-Integrated CRISPR/Cas Systems: Expanding the Toolbox for Optical Detection. ACS Sens 2025; 10:2453-2473. [PMID: 40202271 DOI: 10.1021/acssensors.5c00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Nanomaterials-integrated CRISPR/Cas systems have rapidly emerged as powerful next-generation platforms for optical biosensing. These integrated platforms harness the precision of CRISPR/Cas-mediated nucleic acid detection while leveraging the unique properties of nanomaterials to achieve enhanced sensitivity and expanded analytical capabilities, thereby broadening their diagnostic potential. By incorporating a diverse range of nanomaterials, these systems effectively expand the analytical toolbox for optical detection, offering adaptable solutions tailored to various diagnostic challenges. This review provides a comprehensive overview of the nanomaterials successfully integrated into CRISPR/Cas-based optical sensing systems. It examines multiple optical detection modalities, including fluorescence, electrochemiluminescence, colorimetry, and surface-enhanced Raman spectroscopy, highlighting how nanomaterials facilitate signal amplification, enable multiplexing, and support the development of point-of-care applications. Additionally, practical applications of these integrated systems in critical fields such as healthcare diagnostics and environmental monitoring are showcased. While these platforms offer considerable advantages, several real-world challenges such as the complexity of assay workflows, environmental impact of nanomaterials, cost, and regulatory hurdles must be addressed before widespread implementation can be achieved. By identifying these critical obstacles and proposing strategic solutions, we aim to pave the way for the continued advancement and adoption of nanomaterial-integrated CRISPR/Cas optical biosensing technologies.
Collapse
Affiliation(s)
- Tianying Sun
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Wenfen He
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Xiangmei Chen
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Xiaoying Shu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Wei Liu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Gangfeng Ouyang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| |
Collapse
|
8
|
Zhu T, Jiang W, Wu Y, Fang R, Deng F, Yang D. Advances in CRISPR/Cas13a-based biosensors for non-coding RNA detection. Talanta 2025; 294:128223. [PMID: 40300474 DOI: 10.1016/j.talanta.2025.128223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/29/2025] [Accepted: 04/24/2025] [Indexed: 05/01/2025]
Abstract
Non-coding RNAs play crucial roles in disease initiation and progression, making them promising biomarkers for early diagnosis and treatment monitoring. Conventional nucleic acid diagnostic methods, including polymerase chain reaction (PCR), next-generation sequencing (NGS), and enzyme-linked immunosorbent assay (ELISA), alongside emerging techniques such as single-molecule fluorescence in situ hybridization (smFISH), nanopore sequencing, and single-cell RNA sequencing (scRNA-seq), face inherent limitations in detecting regulatory non-coding RNAs. These challenges include laborious workflows, prolonged processing times, and technical complexities, hindering their broad applicability in rapid and high-throughput RNA analysis. CRISPR/Cas13a-based biosensors, integrated with various signal transduction systems-such as fluorescence, electrochemistry, colorimetry, surface-enhanced Raman spectroscopy (SERS)-show great promise for real-world diagnostic applications. This review provides a comprehensive overview of the CRISPR/Cas13a-mediated RNA detection mechanism, the development of CRISPR/Cas13a-based biosensors, and their integration with innovative signal detection methods. Additionally, we highlight the progress in portable detection devices, including lateral flow assay strips and smartphone-based platforms. Finally, the review discusses the current challenges and future prospects of CRISPR/Cas13a-based biosensors, particularly in the context of clinical diagnostics and personalized medicine.
Collapse
Affiliation(s)
- Tao Zhu
- Department of Preventive Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Medicine, Ningbo University, Ningbo, 315000, China
| | - Weiwei Jiang
- Department of Preventive Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Medicine, Ningbo University, Ningbo, 315000, China
| | - Yingyu Wu
- Department of Preventive Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Medicine, Ningbo University, Ningbo, 315000, China
| | - Rong Fang
- Ningbo Clinical and Pathological Diagnosis Center, Ningbo, 315000, China
| | - Fei Deng
- ARC Centre of Excellence in Nanoscale Biophotonics, University of New South Wales, Sydney, 2052, Australia
| | - Danting Yang
- Department of Preventive Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Medicine, Ningbo University, Ningbo, 315000, China.
| |
Collapse
|
9
|
Mukherjee A, Samanta S, Das S, Haque MZ, Jana PS, Samanta I, Kar I, Das S, Nanda PK, Thomas P, Dandapat P. Leveraging CRISPR-Cas-Enhanced Isothermal Amplification Tools for Quick Identification of Pathogens Causing Livestock Diseases. Curr Microbiol 2025; 82:260. [PMID: 40274667 DOI: 10.1007/s00284-025-04226-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 03/31/2025] [Indexed: 04/26/2025]
Abstract
Prompt and accurate diagnosis of infectious pathogens of livestock origin is of utmost importance for epidemiological surveillance and effective therapeutic strategy formulation. Among various methods, nucleic acid-based detection of pathogens is the most sensitive and specific; but the majority of these assays need expensive equipment and skilled workers. Due to the rapid advancement of clustered regularly interspaced short palindromic repeats-CRISPR-associated protein (CRISPR-Cas)-based nucleic acid detection methods, these are now being widely used for pathogen detection. CRISPR-Cas is a bacterial counterpart of "adaptive immunity", generally used for editing genome. Many CRISPR systems have been modified for nucleic acid detection due to their excellent selectivity in detecting DNA and RNA sequences. The combination of CRISPR with suitable isothermal amplification technologies has made it more sensitive, specific, versatile, and reproducible for the detection of pathogen nucleic acids at the point of care. Amplification of pathogen nucleic acid by isothermal amplification followed by CRISPR-Cas-based detection has several advantages, including short sample-to-answer times and no requirement for laboratory set-up. They are also significantly less expensive than the existing nucleic acid detection methods. This review focuses on the recent trends in the use of this precision diagnostic method for diagnosis of a wide range of animal pathogens with or without zoonotic potential, particularly various isothermal amplification strategies, and visualization methods for sensing bacteria, viruses, and parasites of veterinary and public health importance.
Collapse
Affiliation(s)
- Ayan Mukherjee
- Faculty of Veterinary and Animal Sciences, West Bengal University of Animal & Fishery Sciences, Mohanpur, West Bengal, 741 252, India.
| | - Sukhen Samanta
- Department of Microbiology, University of Kalyani, Nadia, West Bengal, 741 235, India
| | - Subhasree Das
- Faculty of Veterinary and Animal Sciences, West Bengal University of Animal & Fishery Sciences, Mohanpur, West Bengal, 741 252, India
| | - Molla Zakirul Haque
- Faculty of Veterinary and Animal Sciences, West Bengal University of Animal & Fishery Sciences, Mohanpur, West Bengal, 741 252, India
| | - Partha Sarathi Jana
- Faculty of Veterinary and Animal Sciences, West Bengal University of Animal & Fishery Sciences, Mohanpur, West Bengal, 741 252, India
| | - Indranil Samanta
- Faculty of Veterinary and Animal Sciences, West Bengal University of Animal & Fishery Sciences, Mohanpur, West Bengal, 741 252, India
| | - Indrajit Kar
- Faculty of Veterinary and Animal Sciences, West Bengal University of Animal & Fishery Sciences, Mohanpur, West Bengal, 741 252, India
| | - Srinibas Das
- Faculty of Veterinary and Animal Sciences, West Bengal University of Animal & Fishery Sciences, Mohanpur, West Bengal, 741 252, India
- Faculty of Fishery Sciences, West Bengal University of Animal and Fishery Sciences, Chakgaria, Kolkata, 700 094, West Bengal, India
| | - Pramod Kumar Nanda
- ICAR-Indian Veterinary Research Institute, Eastern Regional Station, Belgachia Road, Kolkata, West Bengal, 700 037, India
| | - Prasad Thomas
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243 122, India
| | - Premanshu Dandapat
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243 122, India.
| |
Collapse
|
10
|
Xiong Q, Zhu C, Yin X, Zhu L. CRISPR/Cas and Argonaute-based biosensors for nucleic acid detection. Talanta 2025; 294:128210. [PMID: 40280080 DOI: 10.1016/j.talanta.2025.128210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/20/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Nowadays, nucleic acid detection technology has been applied to disease diagnosis, prevention, food safety, environmental testing and many other aspects. However, traditional methods still have shortcomings. Therefore, there is an urgent need for a simple, rapid, sensitive, and specific new method to supersede traditional nucleic acid detection technology. CRISPR/Cas(Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated) system and Argonaute (Ago) system play an important role in microbial immune defense. Their targeting specificity, programmability and special trans-cleavage activity make it possible to develop some new platforms for nucleic acid detection in combination with a variety of biosensors. We introduce the origins of these two systems and the biosensors developed based on CRISPR/Cas system and Ago system, respectively, especially the prospects for the future development of Cascade Amplification biosensors. This review is expected to provide useful guidance for researchers in related fields and provide inspiration for the development of Cascade Amplification biosensors in the future.
Collapse
Affiliation(s)
- Qiangyuan Xiong
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China; University of Science and Technology of China, Hefei, 230026, PR China
| | - Cancan Zhu
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China.
| | - Xueer Yin
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China; University of Science and Technology of China, Hefei, 230026, PR China
| | - Ling Zhu
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China; University of Science and Technology of China, Hefei, 230026, PR China.
| |
Collapse
|
11
|
Zhang Y, Jin Z, Liu L, Zhang D. The Strategy and Application of Gene Attenuation in Metabolic Engineering. Microorganisms 2025; 13:927. [PMID: 40284763 PMCID: PMC12029929 DOI: 10.3390/microorganisms13040927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025] Open
Abstract
Metabolic engineering has a wide range of applications, spanning key sectors such as energy, pharmaceuticals, agriculture, chemicals, and environmental sustainability. Its core focus is on precisely modulating metabolic pathways to achieve efficient, sustainable, and environmentally friendly biomanufacturing processes, offering new possibilities for societal sustainable development. Gene attenuation is a critical technique within metabolic engineering, pivotal in optimizing metabolic fluxes and improving target metabolite yields. This review article discusses gene attenuation mechanisms, the applications across various biological systems, and implementation strategies. Additionally, we address potential future challenges and explore its potential to drive further advancements in the field.
Collapse
Affiliation(s)
- Yahui Zhang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China;
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China;
| | - Zhaoxia Jin
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China;
| | - Linxia Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
12
|
Dudley EG. The E. coli CRISPR-Cas conundrum: are they functional immune systems or genomic singularities? EcoSal Plus 2025:eesp00402020. [PMID: 40202350 DOI: 10.1128/ecosalplus.esp-0040-2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 03/13/2025] [Indexed: 04/10/2025]
Abstract
The discovery and subsequent characterization and applications of CRISPR-Cas is one of the most fascinating scientific stories from the past two decades. While first identified in Escherichia coli, this microbial workhorse often took a back seat to other bacteria during the early race to detail CRISPR-Cas function as an adaptive immune system. This was not a deliberate slight, but the result of early observations that the CRISPR-Cas systems found in E. coli were not robust phage defense systems as first described in Streptococcus thermophilus. This apparent lack of activity was discovered to result from transcriptional repression by the nucleoid protein H-NS. Despite extensive evidence arguing against such roles, some studies still present E. coli CRISPR-Cas systems in the context of anti-phage and/or anti-plasmid activities. Here, the studies that led to our understanding of its cryptic nature are highlighted, along with ongoing research to uncover potential alternative functions in E. coli.
Collapse
Affiliation(s)
- Edward G Dudley
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA
- The Penn State E. coli Reference Center, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
13
|
Buyukyoruk M, Krishna P, Santiago-Frangos A, Wiedenheft B. Discovery of Diverse CRISPR Leader Motifs, Putative Functions, and Applications for Enhanced CRISPR Detection and Subtype Annotation. CRISPR J 2025; 8:137-148. [PMID: 39792480 DOI: 10.1089/crispr.2024.0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
Bacteria and archaea acquire resistance to genetic parasites by preferentially integrating short fragments of foreign DNA at one end of a Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR). "Leader" DNA upstream of CRISPR loci regulates transcription and foreign DNA integration into the CRISPR. Here, we analyze 37,477 CRISPRs from 39,277 bacterial and 556 archaeal genomes to identify conserved sequence motifs in CRISPR leaders. A global analysis of all leader sequences fails to identify universally conserved motifs. However, an analysis of leader sequences that have been grouped by 16S rRNA-based taxonomy and CRISPR subtype reveals 87 specific motifs in type I, II, III, and V CRISPR leaders. Fourteen of these leader motifs have biochemically demonstrated roles in CRISPR biology including integration, transcription, and CRISPR RNA processing. Another 28 motifs are related to DNA binding sites for proteins with functions that are consistent with regulating CRISPR activity. In addition, we show that these leader motifs can be used to improve existing CRISPR detection methods and enhance the accuracy of CRISPR classification.
Collapse
Affiliation(s)
- Murat Buyukyoruk
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Pushya Krishna
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Andrew Santiago-Frangos
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Blake Wiedenheft
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
14
|
Dort EN, Feau N, Hamelin RC. Novel application of ribonucleoprotein-mediated CRISPR-Cas9 gene editing in plant pathogenic oomycete species. Microbiol Spectr 2025; 13:e0301224. [PMID: 40014012 PMCID: PMC11960053 DOI: 10.1128/spectrum.03012-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/30/2025] [Indexed: 02/28/2025] Open
Abstract
CRISPR-Cas9 gene editing has become an important tool for the study of plant pathogens, allowing researchers to functionally characterize specific genes involved in phytopathogenicity, virulence, and fungicide resistance. Protocols for CRISPR-Cas9 gene editing have already been developed for Phytophthoras, an important group of oomycete plant pathogens; however, these efforts have exclusively focused on agricultural pathosystems, with research lacking for forest pathosystems. We sought to develop CRISPR-Cas9 gene editing in two forest pathogenic Phytophthoras, Phytophthora cactorum and P. ramorum, using a plasmid-ribonucleoprotein (RNP) co-transformation approach. Our gene target in both species was the ortholog of PcORP1, which encodes an oxysterol-binding protein that is the target of the fungicide oxathiapiprolin in the agricultural pathogen P. capsici. We delivered liposome complexes, each containing plasmid DNA and CRISPR-Cas9 RNPs, to Phytophthora protoplasts using a polyethylene glycol-mediated transformation protocol. We obtained two ORP1 mutants in P. cactorum but were unable to obtain any mutants in P. ramorum. The two P. cactorum mutants exhibited decreased resistance to oxathiapiprolin, as measured by their radial growth relative to wild-type cultures on oxathiapiprolin-supplemented medium. Our results demonstrate the potential for RNP-mediated CRISPR-Cas9 gene editing in P. cactorum and provide a foundation for future optimization of our protocol in other forest pathogenic Phytophthora species.IMPORTANCECRISPR-Cas9 gene editing has become a valuable tool for characterizing the genetics driving virulence and pathogenicity in plant pathogens. CRISPR-Cas9 protocols are now well-established in several Phytophthora species, an oomycete genus with significant economic and ecological impact globally. These protocols, however, have been developed for agricultural Phytophthora pathogens only; CRISPR-Cas9 systems have not yet been developed for any forest pathogenic Phytophthoras. In this study, we sought to establish CRISPR-Cas9 gene editing in two forest Phytophthora pathogens that cause widespread tree mortality: P. cactorum and P. ramorum. We successfully obtained gene mutations in P. cactorum and demonstrated a decrease in fungicide resistance, a trait that could impact the pathogen's ability to cause disease. However, the same protocol did not yield any mutants in P. ramorum. The results of our study will serve as a baseline for the development of CRISPR-Cas9 gene editing in forest Phytophthoras and other oomycetes.
Collapse
Affiliation(s)
- Erika N. Dort
- Department of Forest & Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nicolas Feau
- Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, Victoria, British Columbia, Canada
| | - Richard C. Hamelin
- Department of Forest & Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, British Columbia, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Quebec, Canada
- Département des Sciences du bois et de la Forêt, Faculté de Foresterie et Géographie, Université Laval, Québec, Quebec, Canada
| |
Collapse
|
15
|
Li L, Zhang D, Zhang Z, Zhang B. CRISPR/Cas: a powerful tool for designing and improving oil crops. Trends Biotechnol 2025; 43:773-789. [PMID: 39362812 DOI: 10.1016/j.tibtech.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024]
Abstract
Improving oil yield and quality is a major goal for crop breeding, and CRISPR/Cas-mediated genome editing has opened a new era for designing oil crops with enhanced yield and quality. CRISPR/Cas technology can not only increase oil production but also enhance oil quality, including enhancing pharmaceutical and health components, improving oil nutrients, and removing allergic and toxic components. As new molecular targets for oil biosynthesis are discovered and the CRISPR/Cas system is further improved, CRISPR/Cas will become a better molecular tool for designing new oil crops with higher oil production, enhanced nutrients, and improved health components. 'CRISPRized' oil crops will have broad applications both in industry (e.g., as biofuels) and in daily human life.
Collapse
Affiliation(s)
- Lijie Li
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, and Xinxiang Key Laboratory of Crop Root Biology and Green Efficient Production, School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China; Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| | - Dangquan Zhang
- Henan Province Engineering Research Center for Forest Biomass Value-Added Products, College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China.
| | - Zhiyong Zhang
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, and Xinxiang Key Laboratory of Crop Root Biology and Green Efficient Production, School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China.
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|
16
|
Cao X, Wang X, Chen R, Chen L, Liu Y, Wang M. Improving Bacillus subtilis as Biological Chassis Performance by the CRISPR Genetic Toolkit. ACS Synth Biol 2025; 14:677-688. [PMID: 40040244 DOI: 10.1021/acssynbio.4c00844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Bacillus subtilis is the model Gram-positive and industrial chassis bacterium; it has blossomed as a robust and promising host for enzyme, biochemical, or bioflocculant production. However, synthetic biology and metabolic engineering technologies of B. subtilis have lagged behind the most widely used industrial chassis Saccharomyces cerevisiae and Escherichia coli. CRISPR (an acronym for clustered regularly interspaced short palindromic repeats) enables efficient, site-specific, and programmable DNA cleavage, which has revolutionized the manner of genome editing. In 2016, CRISPR technology was first introduced into B. subtilis and has been intensely upgraded since then. In this Review, we discuss recently developed key additions to CRISPR toolkit design in B. subtilis with gene editing, transcriptional regulation, and enzyme modulation. Second, advances in the B. subtilis chassis of efficient biochemicals and proteins with CRISPR engineering are discussed. Finally, we conclude with perspectives on the challenges and opportunities of CRISPR-based biotechnology in B. subtilis, wishing that B. subtilis can be comparable to traditional industrial microorganisms such as E. coli and S. cerevisiae someday soon.
Collapse
Affiliation(s)
- Xianhai Cao
- Instrumental Analysis and Research Center, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xiaojuan Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ruirui Chen
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Lu Chen
- Instrumental Analysis and Research Center, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China
| | - Yang Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Meng Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
17
|
Peng W, Shi M, Hu B, Jia J, Li X, Wang N, Man S, Ye S, Ma L. Nanotechnology-leveraged CRISPR/Cas systems: icebreaking in trace cancer-related nucleic acids biosensing. Mol Cancer 2025; 24:78. [PMID: 40087758 PMCID: PMC11908094 DOI: 10.1186/s12943-024-02222-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 12/31/2024] [Indexed: 03/17/2025] Open
Abstract
As promising noninvasive biomarkers, nucleic acids provide great potential to innovate cancer early detection methods and promote subsequent diagnosis to improve the survival rates of patient. Accurate, straightforward and sensitive detection of such nucleic acid-based cancer biomarkers in complex biological samples holds significant clinical importance. However, the low abundance creates huge challenges for their routine detection. As the next-generation diagnostic tool, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein (Cas) with their high programmability, sensitivity, fidelity, single-base resolution, and precise nucleic acid positioning capabilities are extremely attractive for trace nucleic acid-based cancer biomarkers (NABCBs), permitting rapid, ultra-sensitive and specific detection. More importantly, by combing with nanotechnology, it can solve the long-lasting problems of poor sensitivity, accuracy and simplicity, as well as to achieve integrated miniaturization and portable point-of-care testing (POCT) detection. However, existing literature lacks specific emphasis on this topic. Thus, we intend to propose a timely one for the readers. This review will bridge this gap by providing insights for CRISPR/Cas-based nano-biosensing development and highlighting the current state-of-art, challenges, and prospects. We expect that it can provide better understanding and valuable insights for trace NABCBs detection, thereby facilitating advancements in early cancer screening/detection/diagnostics and win practical applications in the foreseeable future.
Collapse
Affiliation(s)
- Weipan Peng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Tianjin Key Laboratory of Industry Microbiology, International China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Ministry of Education, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Mengting Shi
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Tianjin Key Laboratory of Industry Microbiology, International China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Ministry of Education, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Bin Hu
- Department of Pharmacy, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, China
| | - Jingyu Jia
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Tianjin Key Laboratory of Industry Microbiology, International China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Ministry of Education, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Xinyue Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Tianjin Key Laboratory of Industry Microbiology, International China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Ministry of Education, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Nan Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Tianjin Key Laboratory of Industry Microbiology, International China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Ministry of Education, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Tianjin Key Laboratory of Industry Microbiology, International China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Ministry of Education, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Shengying Ye
- Pharmacy Department, The 983th Hospital of The Joint Logistics Support Force of The Chinese People's Liberation Army, Tianjin, China.
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Tianjin Key Laboratory of Industry Microbiology, International China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Ministry of Education, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| |
Collapse
|
18
|
Chavhan RL, Jaybhaye SG, Hinge VR, Deshmukh AS, Shaikh US, Jadhav PK, Kadam US, Hong JC. Emerging applications of gene editing technologies for the development of climate-resilient crops. Front Genome Ed 2025; 7:1524767. [PMID: 40129518 PMCID: PMC11931038 DOI: 10.3389/fgeed.2025.1524767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/07/2025] [Indexed: 03/26/2025] Open
Abstract
Climate change threatens global crop yield and food security due to rising temperatures, erratic rainfall, and increased abiotic stresses like drought, heat, and salinity. Gene editing technologies, including CRISPR/Cas9, base editors, and prime editors, offer precise tools for enhancing crop resilience. This review explores the mechanisms of these technologies and their applications in developing climate-resilient crops to address future challenges. While CRISPR/enables targeted modifications of plant DNA, the base editors allow for direct base conversion without inducing double-stranded breaks, and the prime editors enable precise insertions, deletions, and substitutions. By understanding and manipulating key regulator genes involved in stress responses, such as DREB, HSP, SOS, ERECTA, HsfA1, and NHX; crop tolerance can be enhanced against drought, heat, and salt stress. Gene editing can improve traits related to root development, water use efficiency, stress response pathways, heat shock response, photosynthesis, membrane stability, ion homeostasis, osmotic adjustment, and oxidative stress response. Advancements in gene editing technologies, integration with genomics, phenomics, artificial intelligence (AI)/machine learning (ML) hold great promise. However, challenges such as off-target effects, delivery methods, and regulatory barriers must be addressed. This review highlights the potential of gene editing to develop climate-resilient crops, contributing to food security and sustainable agriculture.
Collapse
Affiliation(s)
- R. L. Chavhan
- Vilasrao Deshmukh College of Agricultural Biotechnology, Vasantrao Naik Marathwada Krishi Vidyapeeth, Latur, India
| | - S. G. Jaybhaye
- Vilasrao Deshmukh College of Agricultural Biotechnology, Vasantrao Naik Marathwada Krishi Vidyapeeth, Latur, India
| | - V. R. Hinge
- Vilasrao Deshmukh College of Agricultural Biotechnology, Vasantrao Naik Marathwada Krishi Vidyapeeth, Latur, India
| | - A. S. Deshmukh
- Vilasrao Deshmukh College of Agricultural Biotechnology, Vasantrao Naik Marathwada Krishi Vidyapeeth, Latur, India
| | - U. S. Shaikh
- Vilasrao Deshmukh College of Agricultural Biotechnology, Vasantrao Naik Marathwada Krishi Vidyapeeth, Latur, India
| | - P. K. Jadhav
- Vilasrao Deshmukh College of Agricultural Biotechnology, Vasantrao Naik Marathwada Krishi Vidyapeeth, Latur, India
| | - U. S. Kadam
- Division of Applied Life Science (BK21 Four), Division of Life Science, Plant Molecular Biology and Biotechnology Research Centre (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
| | - J. C. Hong
- Division of Applied Life Science (BK21 Four), Division of Life Science, Plant Molecular Biology and Biotechnology Research Centre (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
19
|
Song B. Efforts to Downsize Base Editors for Clinical Applications. Int J Mol Sci 2025; 26:2357. [PMID: 40076976 PMCID: PMC11900391 DOI: 10.3390/ijms26052357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/28/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Since the advent of the clustered regularly interspaced short palindromic repeats (CRISPR) system in the gene editing field, diverse CRISPR-based gene editing tools have been developed for treating genetic diseases. Of these, base editors (BEs) are promising because they can carry out precise gene editing at single-nucleotide resolution without inducing DNA double-strand breaks (DSBs), which pose significant risks of genomic instability. Despite their outstanding advantages, the clinical application of BEs remains challenging due to their large size, which limits their efficient delivery, particularly in adeno-associated virus (AAV)-based systems. To address this issue, various strategies have been explored to reduce the size of BEs. These approaches include truncating the nonessential domains and replacing the bulky components with smaller substitutes without compromising the editing efficiency. In this review, we highlight the importance of downsizing BEs for therapeutic applications and introduce recent advances in size-reduction strategies. Additionally, we introduce the ongoing efforts to overcome other limitations of BEs, providing insights into their potential for improving in vivo gene editing.
Collapse
Affiliation(s)
- Beomjong Song
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea
| |
Collapse
|
20
|
Xin X, Su J, Cui H, Wang L, Song S. Recent Advances in Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-Associated Proteins System-Based Biosensors. BIOSENSORS 2025; 15:155. [PMID: 40136952 PMCID: PMC11939850 DOI: 10.3390/bios15030155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025]
Abstract
High-sensitivity and high-specificity biodetection is critical for advancing applications in life sciences, biosafety, food safety, and environmental monitoring. CRISPR/Cas systems have emerged as transformative tools in biosensing due to their unparalleled specificity, programmability, and unique enzymatic activities. They exhibit two key cleavage behaviors: precise ON-target cleavage guided by specific protospacers, which ensures accurate target recognition, and bystander cleavage activity triggered upon target binding, which enables robust signal amplification. These properties make CRISPR/Cas systems highly versatile for designing biosensors for ultra-sensitive detection. This review comprehensively explores recent advancements in CRISPR/Cas system-based biosensors, highlighting their impact on improving biosensing performance. We discuss the integration of CRISPR/Cas systems with diverse signal readout mechanisms, including electrochemical, fluorescent, colorimetric, surface-enhanced Raman scattering (SERS), and so on. Additionally, we examine the development of integrated biosensing systems, such as microfluidic devices and portable biosensors, which leverage CRISPR/Cas technology for point-of-care testing (POCT) and high-throughput analysis. Furthermore, we identify unresolved challenges, aiming to inspire innovative solutions and accelerate the translation of these technologies into practical applications for diagnostics, food, and environment safety.
Collapse
Affiliation(s)
- Xianglin Xin
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China; (X.X.); (H.C.); (L.W.)
| | - Jing Su
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Haoran Cui
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China; (X.X.); (H.C.); (L.W.)
| | - Lihua Wang
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China; (X.X.); (H.C.); (L.W.)
| | - Shiping Song
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China; (X.X.); (H.C.); (L.W.)
| |
Collapse
|
21
|
Yang S, Wei Y, Quansah E, Zhang Z, Da W, Wang B, Wang K, Sun D, Tao Z, Zhang C. Cas12a is competitive for gene editing in the malaria parasites. Microb Pathog 2025; 200:107340. [PMID: 39880137 DOI: 10.1016/j.micpath.2025.107340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/22/2025] [Accepted: 01/25/2025] [Indexed: 01/31/2025]
Abstract
Malaria, caused by the Plasmodium parasites, has always been one of the worst infectious diseases that threaten human health, making it necessary for us to study the genetic function and physiological mechanisms of Plasmodium parasites from the molecular level to find more effective ways of addressing the increasingly pressing threat. The CRISPR (Clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated protein) is an RNA-guided adaptive immune system, which has been extensively developed and used as a genome editing tool in many organisms, including Plasmodium parasites. However, due to the physiological characteristics and special genomic characteristics of Plasmodium parasites, most of the tools currently used for genome editing of Plasmodium parasites have not met expectations. CRISPR-Cas12a (also known as Cpf1), one of the CRISPR-Cas systems, has attracted considerable attention because of its characteristics of being used for biological diagnosis and multiple genome editing. Recent studies have shown that its unique properties fit the genetic makeup of Plasmodium parasites making it a promising tool for gene editing in these parasites. In this review, we have summarized the relevant content of the Cas12 family, especially the frequently used Cas12a, its advantages for gene editing, and the application prospects in Plasmodium parasites.
Collapse
Affiliation(s)
- Shijie Yang
- The Second Clinical Medical College, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Yiming Wei
- The Second Clinical Medical College, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Elvis Quansah
- Department of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Ziyu Zhang
- The First Clinical Medical College, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Weiran Da
- The First Clinical Medical College, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Bingjie Wang
- The First Clinical Medical College, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Kaige Wang
- The First Clinical Medical College, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Danhong Sun
- The Second Clinical Medical College, Anhui Medical University, Hefei, 230032, People's Republic of China.
| | - Zhiyong Tao
- Key Laboratory of Infection and Immunity of Anhui Higher Education Institutes, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, Anhui, 233030, People's Republic of China.
| | - Chao Zhang
- Department of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China.
| |
Collapse
|
22
|
Xiong K, Wang X, Feng C, Zhang K, Chen D, Yang S. Vectors in CRISPR Gene Editing for Neurological Disorders: Challenges and Opportunities. Adv Biol (Weinh) 2025; 9:e2400374. [PMID: 39950370 DOI: 10.1002/adbi.202400374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 01/13/2025] [Indexed: 03/18/2025]
Abstract
Diseases of the nervous system are recognized as the second leading cause of death worldwide. The global prevalence of neurological diseases, such as Huntington's disease, Alzheimer's disease, and Parkinson's disease has seen a significant rise due to the increasing proportion of the aging population. The discovery of the clustered regularly interspaced short palindromic repeats (CRISPR) genome editing technique has paved way for universal neurological diseases treatment. However, finding a safe and effective method to deliver CRISPR gene-editing tools remains a main challenge for genome editing therapies in vivo. Adeno-associated virus (AAV) is currently one of the most commonly used vector systems, but some issues remain unresolved, including capsid immunogenicity, off-target mutations, and potential genotoxicity. To address these concerns, researchers are actively encouraging the development of new delivery systems, like virus-like particles and nanoparticles. These novel systems have the potential to enhance targeting efficiency, thereby offering possible solutions to the current challenges. This article reviews CRISPR delivery vectors for neurological disorders treatment and explores potential solutions to overcome limitations in vector systems. Additionally, the delivery strategies of CRISPR systems are highlighted as valuable tools for studying neurological diseases, and the challenges and opportunities that these vectors present.
Collapse
Affiliation(s)
- Kexin Xiong
- School of Pharmaceutical Sciences, Zhengzhou University, Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
| | - Xiaxia Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
| | - Caicai Feng
- School of Pharmaceutical Sciences, Zhengzhou University, Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
| | - Di Chen
- School of Pharmaceutical Sciences, Zhengzhou University, Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
| | - Sen Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
| |
Collapse
|
23
|
Yuan Z. From Origin to the Present: Establishment, Mechanism, Evolutions and Biomedical Applications of the CRISPR/Cas-Based Macromolecular System in Brief. Molecules 2025; 30:947. [PMID: 40005257 PMCID: PMC11858448 DOI: 10.3390/molecules30040947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/10/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
Advancements in biological and medical science are intricately linked to the biological central dogma. In recent years, gene editing techniques, especially CRISPR/Cas systems, have emerged as powerful tools for modifying genetic information, supplementing the central dogma and holding significant promise for disease diagnosis and treatment. Extensive research has been conducted on the continuously evolving CRISPR/Cas systems, particularly in relation to challenging diseases, such as cancer and HIV infection. Consequently, the integration of CRISPR/Cas-based techniques with contemporary medical approaches and therapies is anticipated to greatly enhance healthcare outcomes for humans. This review begins with a brief overview of the discovery of the CRISPR/Cas system. Subsequently, using CRISPR/Cas9 as an example, a clear description of the classical molecular mechanism underlying the CRISPR/Cas system was given. Additionally, the development of the CRISPR/Cas system and its applications in gene therapy and high-sensitivity disease diagnosis were discussed. Furthermore, we address the prospects for clinical applications of CRISPR/Cas-based gene therapy, highlighting the ethical considerations associated with altering genetic information. This brief review aims to enhance understanding of the CRISPR/Cas macromolecular system and provide insight into the potential of genetic macromolecular drugs for therapeutic purposes.
Collapse
Affiliation(s)
- Zheng Yuan
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100022, China
| |
Collapse
|
24
|
Asad M, Chang Y, Liao J, Yang G. CRISPR/Cas9 Genome Editing in the Diamondback Moth: Current Progress, Challenges, and Prospects. Int J Mol Sci 2025; 26:1515. [PMID: 40003981 PMCID: PMC11855872 DOI: 10.3390/ijms26041515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/04/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
The development of site-specific genome-editing tools like CRISPR (clustered regularly interspaced short palindromic repeat) and its associated protein, Cas9, is revolutionizing genetic engineering with its highly efficient mechanism, offering the potential for effective pest management. Recently, CRISPR/Cas9 gene-editing has been extensively utilized in the management of the diamondback moth, Plutella xylostella (L.), a highly destructive pest of vegetable crops, for different purposes, such as gene function analysis and genetic control. However, the progress related to this gene-editing tool in P. xylostella has not yet been summarized. This review highlights the progress and applications of CRISPR/Cas9 in uncovering the genes critical for development, reproduction, and insecticide resistance in P. xylostella. Moreover, the progress related to the CRISPR/Cas9 gene drive for population suppression and modifications has also been discussed. In addition to the significant progress made, challenges such as low germline editing efficiency and limited homology-directed repair remain obstacles to its widespread application. To address these limitations, we have discussed the different strategies that are anticipated to improve the efficiency of CRISPR/Cas9, paving the way to it becoming a pivotal tool in sustainable pest management. Therefore, the present review will help researchers in the future enhance the efficiency of the CRISPR/Cas9 system and use it to manage the diamondback moth.
Collapse
Affiliation(s)
- Muhammad Asad
- State Key Laboratory of Agricultural and Forestry Biosecurity, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.A.); (Y.C.); (J.L.)
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou 350002, China
| | - Yanpeng Chang
- State Key Laboratory of Agricultural and Forestry Biosecurity, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.A.); (Y.C.); (J.L.)
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou 350002, China
| | - Jianying Liao
- State Key Laboratory of Agricultural and Forestry Biosecurity, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.A.); (Y.C.); (J.L.)
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou 350002, China
| | - Guang Yang
- State Key Laboratory of Agricultural and Forestry Biosecurity, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.A.); (Y.C.); (J.L.)
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou 350002, China
| |
Collapse
|
25
|
Ahmadikhah A, Zarabizadeh H, Nayeri S, Abbasi MS. Advancements in genome editing tools for genetic studies and crop improvement. FRONTIERS IN PLANT SCIENCE 2025; 15:1370675. [PMID: 39963359 PMCID: PMC11830681 DOI: 10.3389/fpls.2024.1370675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 12/31/2024] [Indexed: 02/20/2025]
Abstract
The rapid increase in global population poses a significant challenge to food security, compounded by the adverse effects of climate change, which limit crop productivity through both biotic and abiotic stressors. Despite decades of progress in plant breeding and genetic engineering, the development of new crop varieties with desirable agronomic traits remains a time-consuming process. Traditional breeding methods often fall short of addressing the urgent need for improved crop varieties. Genome editing technologies, which enable precise modifications at specific genomic loci, have emerged as powerful tools for enhancing crop traits. These technologies, including RNA interference, Meganucleases, ZFNs, TALENs, and CRISPR/Cas systems, allow for the targeted insertion, deletion, or alteration of DNA fragments, facilitating improvements in traits such as herbicide and insect resistance, nutritional quality, and stress tolerance. Among these, CRISPR/Cas9 stands out for its simplicity, efficiency, and ability to reduce off-target effects, making it a valuable tool in both agricultural biotechnology and plant functional genomics. This review examines the functional mechanisms and applications of various genome editing technologies for crop improvement, highlighting their advantages and limitations. It also explores the ethical considerations associated with genome editing in agriculture and discusses the potential of these technologies to contribute to sustainable food production in the face of growing global challenges.
Collapse
Affiliation(s)
- Asadollah Ahmadikhah
- Department of Cellular and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | | | | | | |
Collapse
|
26
|
Clarissa EM, Karmacharya M, Choi H, Kumar S, Cho YK. Nature Inspired Delivery Vehicles for CRISPR-Based Genome Editing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2409353. [PMID: 39901476 DOI: 10.1002/smll.202409353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/16/2025] [Indexed: 02/05/2025]
Abstract
The advent of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-based genome editing technologies has opened up groundbreaking possibilities for treating a wide spectrum of genetic disorders and diseases. However, the success of these technologies relies heavily on the development of efficient and safe delivery systems. Among the most promising approaches are natural and synthetic nanocarrier-mediated delivery systems, including viral vectors, extracellular vesicles (EVs), engineered cellular membrane particles, liposomes, and various nanoparticles. These carriers enhance the efficacy of the CRISPR system by providing a unique combination of efficiency, specificity, and reduced immunogenicity. Synthetic carriers such as liposomes and nanoparticles facilitate CRISPR delivery with high reproducibility and customizable functions. Viral vectors, renowned for their high transduction efficiency and broad tropism, serve as powerful vehicles for delivering CRISPR components to various cell types. EVs, as natural carriers of RNA and proteins, offer a stealth mechanism to evade immune detection, allowing for the targeted delivery of genome editors with minimal off-target effects. Engineered cellular membrane particles further improve delivery by simulating the cellular environment, enhancing uptake, and minimizing immune response. This review explores the innovative integration of CRISPR genome editors with various nanocarrier systems, focusing on recent advancements, applications, and future directions in therapeutic genome editing.
Collapse
Affiliation(s)
- Elizabeth Maria Clarissa
- Center for Algorithmic and Robotized Synthesis, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Mamata Karmacharya
- Center for Algorithmic and Robotized Synthesis, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Hyunmin Choi
- Center for Algorithmic and Robotized Synthesis, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Sumit Kumar
- Center for Algorithmic and Robotized Synthesis, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Yoon-Kyoung Cho
- Center for Algorithmic and Robotized Synthesis, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| |
Collapse
|
27
|
Ju WS, Kim S, Lee JY, Lee H, No J, Lee S, Oh K. Gene Editing for Enhanced Swine Production: Current Advances and Prospects. Animals (Basel) 2025; 15:422. [PMID: 39943192 PMCID: PMC11815767 DOI: 10.3390/ani15030422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
Traditional pig breeding has improved production traits but faces limitations in genetic diversity, disease resistance, and environmental adaptation. Gene editing technologies, such as CRISPR/Cas9, base editing, and prime editing, enable precise genetic modifications, overcoming these limitations and expanding applications to biomedical research. Here, we reviewed the advancements in gene editing technologies in pigs and explored pathways toward optimized swine genetics for a resilient and adaptive livestock industry. This review synthesizes recent research on gene editing tools applied to pigs, focusing on CRISPR/Cas9 and its derivatives. It examines their impact on critical swine production traits and their role as human disease models. Significant advancements have been made in targeting genes for disease resistance, such as those conferring immunity to porcine reproductive and respiratory syndrome viruses. Additionally, gene-edited pigs are increasingly used as models for human diseases, demonstrating the technology's broader applications. However, challenges such as off-target effects, ethical concerns, and varying regulatory frameworks remain. Gene editing holds substantial potential for sustainable and productive livestock production by enhancing key traits and supporting biomedical applications. Addressing technical and ethical challenges through integrated approaches will be essential to realize its full potential, ensuring a resilient, ethical, and productive livestock sector for future generations.
Collapse
Affiliation(s)
| | - Seokho Kim
- Correspondence: ; Tel.: +82-63-238-7271; Fax: +82-63-238-729
| | | | | | | | | | | |
Collapse
|
28
|
Szabó V, Varsányi B, Barboni M, Takács Á, Knézy K, Molnár MJ, Nagy ZZ, György B, Rivolta C. Insights into eye genetics and recent advances in ocular gene therapy. Mol Cell Probes 2025; 79:102008. [PMID: 39805344 DOI: 10.1016/j.mcp.2025.102008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/04/2025] [Accepted: 01/05/2025] [Indexed: 01/16/2025]
Abstract
The rapid advancements in the field of genetics have significantly propelled the development of gene therapies, paving the way for innovative treatments of various hereditary disorders. This review focuses on the genetics of ophthalmologic conditions, highlighting the currently approved ophthalmic gene therapy and exploring emerging therapeutic strategies under development. Inherited retinal dystrophies represent a heterogeneous group of genetic disorders that manifest across a broad spectrum from infancy to late middle age. Key clinical features include nyctalopia (night blindness), constriction of the visual field, impairments in color perception, reduced central visual acuity, and rapid eye movements. Recent technological advancements, such as multimodal imaging, psychophysical assessments, and electrophysiological testing, have greatly enhanced our ability to understand disease progression and establish genotype-phenotype correlations. Additionally, the integration of molecular diagnostics into clinical practice is revolutionizing patient stratification and the design of targeted interventions, underscoring the transformative potential of personalized medicine in ophthalmology. The review also covers the challenges and opportunities in developing gene therapies for other ophthalmic conditions, such as age-related macular degeneration and optic neuropathies. We discuss the viral and non-viral vector systems used in ocular gene therapy, highlighting their advantages and limitations. Additionally, we explore the potential of emerging technologies like CRISPR/Cas9 in treating genetic eye diseases. We briefly address the regulatory landscape, concerns, challenges, and future directions of gene therapy in ophthalmology. We emphasize the need for long-term safety and efficacy data as these innovative treatments move from bench to bedside.
Collapse
Affiliation(s)
- Viktória Szabó
- Semmelweis University, Department of Ophthalmology, Mária Str. 39, Budapest, 1085, Hungary.
| | - Balázs Varsányi
- Semmelweis University, Department of Ophthalmology, Mária Str. 39, Budapest, 1085, Hungary; Ganglion Medical Center, Váradi Str. 10/A, Pécs, 7621, Hungary.
| | - Mirella Barboni
- Semmelweis University, Department of Ophthalmology, Mária Str. 39, Budapest, 1085, Hungary; Institute of Molecular and Clinical Ophthalmology Basel, Mittlere Strasse 91, Basel, CH-4031, Switzerland.
| | - Ágnes Takács
- Semmelweis University, Department of Ophthalmology, Mária Str. 39, Budapest, 1085, Hungary.
| | - Krisztina Knézy
- Semmelweis University, Department of Ophthalmology, Mária Str. 39, Budapest, 1085, Hungary.
| | - Mária Judit Molnár
- Semmelweis University, Institute of Genomic Medicine and Rare Disorders, Gyulai Pál Str. 2, Budapest, 1085, Hungary.
| | - Zoltán Zsolt Nagy
- Semmelweis University, Department of Ophthalmology, Mária Str. 39, Budapest, 1085, Hungary.
| | - Bence György
- Institute of Molecular and Clinical Ophthalmology Basel, Mittlere Strasse 91, Basel, CH-4031, Switzerland; Department of Ophthalmology, University of Basel, Mittlere Strasse 91, Basel, CH-4031, Switzerland.
| | - Carlo Rivolta
- Institute of Molecular and Clinical Ophthalmology Basel, Mittlere Strasse 91, Basel, CH-4031, Switzerland.
| |
Collapse
|
29
|
Arshad S, Qadir ML, Hussain N, Ali Q, Han S, Ali D. Advances in CRISPR/Cas9 technology: shaping the future of photosynthetic microorganisms for biofuel production. FUNCTIONAL PLANT BIOLOGY : FPB 2025; 52:FP24255. [PMID: 39932844 DOI: 10.1071/fp24255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/15/2025] [Indexed: 02/13/2025]
Abstract
Use of fossil fuels causes environmental issues due to its inefficiency and and imminent depletion. This has led to interest in identifying alternative and renewable energy sources such as biofuel generation from photosynthetic organisms. A wide variety of prokaryotic and eukaryotic microorganisms, known as microalgae, have the potential to be economical and ecologically sustainable in the manufacture of biofuels such as bio-hydrogen, biodiesel, bio-oils, and bio-syngas. By using contemporary bioengineering techniques, the innate potential of algae to produce biomass of superior quality may be enhanced. In algal biotechnology, directed genome modification via RNA-guided endonucleases is a new approach. CRISPR/Cas systems have recently been frequently used to modify the genetic makeup of several aquatic and freshwater microalgae. The majority of research has used the Cas9-driven Type II system, one of two classes and six unique kinds of CRISPR systems, to specifically target desired genes in algae, and knock them out and down, or both. Using CRISPR technology to modify its genetic makeup, microalgae has produced more biomass and increased in lipid content. This review highlights the attempts made so far to target microalgae genome modification, discusses the prospects for developing the CRISPR platform for large-scale genome modification of microalgae, and identifies the opportunities and challenges in the development and distribution of CRISPR/Cas9 components.
Collapse
Affiliation(s)
- Samreen Arshad
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Muhammad Luqman Qadir
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Nazim Hussain
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Qurban Ali
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Shiming Han
- School of Biological Sciences and Technology, Liupanshui Normal University, Liupanshui 553004, China
| | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
30
|
Kursheed F, Naz E, Mateen S, Kulsoom U. CRISPR applications in microbial World: Assessing the opportunities and challenges. Gene 2025; 935:149075. [PMID: 39489225 DOI: 10.1016/j.gene.2024.149075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Genome editing has emerged during the past few decades in the scientific research area to manipulate genetic composition, obtain desired traits, and deal with biological challenges by exploring genetic traits and their sequences at a level of precision. The discovery of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) as a genome editing tool has offered a much better understanding of cellular and molecular mechanisms. This technology emerges as one of the most promising candidates for genome editing, offering several advantages over other techniques such as high accuracy and specificity. In the microbial world, CRISPR/Cas technology enables researchers to manipulate the genetic makeup of micro-organisms, allowing them to achieve almost impossible tasks. This technology initially discovered as a bacterial defense mechanism, is now being used for gene cutting and editing to explore more of its dimensions. CRISPR/Cas 9 systems are highly efficient and flexible, leading to its widespread uses in microbial research areas. Although this technology is widely used in the scientific community, many challenges, including off-target activity, low efficiency of Homology Directed Repair (HDR), and ethical considerations, still need to be overcome before it can be widely used. As CRISPR/Cas technology has revolutionized the field of microbiology, this review article aimed to present a comprehensive overview highlighting a brief history, basic mechanisms, and its application in the microbial world along with accessing the opportunities and challenges.
Collapse
Affiliation(s)
- Farhan Kursheed
- Department of Microbiology, PMAS Arid Agriculture University Rawalpindi, Pakistan.
| | - Esha Naz
- Department of Microbiology, PMAS Arid Agriculture University Rawalpindi, Pakistan
| | - Sana Mateen
- Department of Microbiology, PMAS Arid Agriculture University Rawalpindi, Pakistan
| | - Ume Kulsoom
- Department of Biotechnology, Faculty of Engineering, Science and Technology (FEST). Research Officer, Office of Research Innovation and Commercialization (ORIC), Hamdard University, Karachi 74600, Pakistan, Pakistan.
| |
Collapse
|
31
|
Liu Y, Bai X, Feng X, Liu S, Hu Y, Chu H, Zhang L, Cai B, Ma Y. Revolutionizing animal husbandry: Breakthroughs in gene editing delivery systems. Gene 2025; 935:149044. [PMID: 39490705 DOI: 10.1016/j.gene.2024.149044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/14/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Gene editing technology has become an essential tool for advancing breeding practices, enhancing disease resistance, and boosting productivity in animal husbandry. Despite its potential, the delivery of gene editing reagents into cells faces several challenges, including low targeting efficiency, immunogenicity, and cytotoxicity, which have hindered its wider application in the field. This review discusses the evolution of gene editing technologies and highlights recent advancements in various delivery methods used in animal husbandry. It critically evaluates the strengths and weaknesses of these different delivery approaches while identifying potential directions for future development. The goal is to equip researchers with effective strategies to optimize delivery methods, ultimately facilitating the implementation and progress of gene editing technologies in animal husbandry.
Collapse
Affiliation(s)
- Yuan Liu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, Yinchuan 750021, China.
| | - Xue Bai
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, Yinchuan 750021, China
| | - Xue Feng
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, Yinchuan 750021, China.
| | - Shuang Liu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, Yinchuan 750021, China.
| | - Yamei Hu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, Yinchuan 750021, China.
| | - Hongen Chu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, Yinchuan 750021, China.
| | - Lingkai Zhang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, Yinchuan 750021, China.
| | - Bei Cai
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, Yinchuan 750021, China.
| | - Yun Ma
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
32
|
Chen Y, Zhao R, Hu X, Wang X. The current status and future prospects of CRISPR-based detection of monkeypox virus: A review. Anal Chim Acta 2025; 1336:343295. [PMID: 39788645 DOI: 10.1016/j.aca.2024.343295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND The current pandemic of 2022 global mpox (formerly known as monkeypox), caused by infection with monkeypox virus (MPXV), has now reached over 120 countries. This constitutes a critical public health issue requiring effective disease management and surveillance. Rapid and reliable diagnosis is conducive to the control of infection, early intervention, and timely treatment. Clinical laboratories use various conventional diagnostic methods for detecting MPXV, including PCR, which can be regarded as a gold-standard diagnostic method. However, the application of PCR is limited by its requirements for high-cost equipment, skilled professionals, and a laboratory setting. RESULTS Clustered regularly interspaced short palindromic repeats (CRISPR)-based diagnostic systems have provided promising prospects for the rapid, sensitive, and specific detection of infectious diseases, especially in point-of-care settings. Over the past 2 years, an increasing number of researchers have concentrated on the application of the CRISPR method to mpox diagnosis. In the majority of cases, a two-step method was chosen, with CRISPR/Cas12a and recombinase polymerase amplification (RPA) as pre-amplification methods, followed by a fluorescence readout. Different strategies have been applied to overcome the encountered limitations of CRISPR detection, but no consensus on an integrated solution has been achieved. Thus, the application of the CRISPR/Cas system in mpox detection requires further exploration and improvement. SIGNIFICANCE This review discusses contemporary studies on MPXV CRISPR detection systems and the strategies proposed to address the challenges faced by CRISPR diagnosis with the hope of helping the development of CRISPR detection methods and improving pathogen detection technologies.
Collapse
Affiliation(s)
- Yingwei Chen
- Department of Quality Control Material R&D, Shanghai Center for Clinical Laboratory, Shanghai, PR China; Department of Molecular Diagnostic Innovation Technology, Shanghai Academy of Experimental Medicine, Shanghai, PR China
| | - Ran Zhao
- Department of Quality Control Material R&D, Shanghai Center for Clinical Laboratory, Shanghai, PR China; Department of Molecular Diagnostic Innovation Technology, Shanghai Academy of Experimental Medicine, Shanghai, PR China
| | - Xiaobo Hu
- Department of Quality Control Material R&D, Shanghai Center for Clinical Laboratory, Shanghai, PR China; Department of Molecular Biology, Shanghai Center for Clinical Laboratory, Shanghai, PR China.
| | - Xueliang Wang
- Department of Quality Control Material R&D, Shanghai Center for Clinical Laboratory, Shanghai, PR China; Department of Molecular Biology, Shanghai Center for Clinical Laboratory, Shanghai, PR China; Department of Molecular Diagnostic Innovation Technology, Shanghai Academy of Experimental Medicine, Shanghai, PR China.
| |
Collapse
|
33
|
Dai J, Wu B, Ai F, Yang Z, Lu Y, Zinian C, Zeng K, Zhang Z. Exploiting the Potential of Spherical PAM Antenna for Enhanced CRISPR-Cas12a: A Paradigm Shift toward a Universal Amplification-Free Nucleic Acid Test Platform. Anal Chem 2025; 97:1236-1245. [PMID: 39784310 DOI: 10.1021/acs.analchem.4c04871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The CRISPR-Cas12a system has shown tremendous potential for developing efficient biosensors. Albeit important, current CRISPR-Cas system-based diagnostic technologies (CRISPR-DX) highly rely on an additional preamplification procedure to obtain high sensitivity, inevitably leading to issues such as complicated assay workflow, cross-contamination, etc. Herein, a spherical protospacer-adjacent motif (PAM)-antenna-enhanced CRISPR-Cas12a system is fabricated for universal amplification-free nucleic acid detection with a detection limit of subfemtomolar. Meanwhile, the clinical detection capability of this sensor was further verified using gold-standard real-time quantitative polymerase chain reaction through Mycobacterium tuberculosis measurement, which demonstrated its good reliability for practical applications. Importantly, its excellent sensitivity is mainly ascribed to high efficiency of target search induced by a localized PAM-enriched microenvironment and improved catalytic activity of Cas12a (up to 4 folds). Our strategy provides some new insights for rapid and sensitive detection of nucleic acids in an amplification-free fashion.
Collapse
Affiliation(s)
- Jiahui Dai
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Beibei Wu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Fengxiang Ai
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhugen Yang
- School of Water, Energy, and Environment, Cranfield University, Milton Keynes MK43 0AL, U.K
| | - Yanyan Lu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Cai Zinian
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Kun Zeng
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhen Zhang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
34
|
Ahmed R, Alghamdi WN, Alharbi FR, Alatawi HD, Alenezi KM, Alanazi TF, Elsherbiny NM. CRISPR/Cas9 System as a Promising Therapy in Thalassemia and Sickle Cell Disease: A Systematic Review of Clinical Trials. Mol Biotechnol 2025:10.1007/s12033-025-01368-x. [PMID: 39794549 DOI: 10.1007/s12033-025-01368-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/16/2024] [Indexed: 01/13/2025]
Abstract
Clustered, regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein (Cas) system is a new gene editing tool that represents a revolution in gene therapy. This study aimed to review the clinical trials conducted to evaluate the efficacy and safety of the CRISPR/Cas9 system in treating thalassemia and sickle cell disease (SCD). We searched relevant literature using "CRISPR Cas", "thalassemia", "sickle cell" and "clinical trial" as subject terms in PubMed, Cochrane, Web of Science, and Google Scholar up to December 3rd, 2023. Following the PIO format (Patients, Intervention, Outcome), PRISMA guidelines were followed in the study selection, data extraction, and quality assessment processes. Out of 110 publications, 6 studies met our eligibility criteria with a total of 115 patients involved. CRISPR/Cas9 system was used to disrupt BCL11A gene enhancer in 4 studies and to disrupt γ-globin gene promoters in 2 studies. Patients demonstrated significant activation of fetal hemoglobin, elevated total hemoglobin, transfusion independence in thalassemia, and repression of vaso-occlusive episodes in SCD. Using CRISPR/Cas9 system to directly disrupt genes provides a safe and potential one-time functional cure for thalassemia and SCD, suggesting CRISPR/Cas9 as a potential therapeutic tool for the treatment of inherited hematological disorders.
Collapse
Affiliation(s)
- Rehab Ahmed
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Wafa N Alghamdi
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Fetun R Alharbi
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Huda D Alatawi
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Kawthar M Alenezi
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Turki F Alanazi
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Nehal M Elsherbiny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia.
| |
Collapse
|
35
|
Zhang AN, Gaston JM, Cárdenas P, Zhao S, Gu X, Alm EJ. CRISPR-Cas spacer acquisition is a rare event in human gut microbiome. CELL GENOMICS 2025; 5:100725. [PMID: 39719706 PMCID: PMC11770219 DOI: 10.1016/j.xgen.2024.100725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/12/2024] [Accepted: 11/25/2024] [Indexed: 12/26/2024]
Abstract
Host-parasite relationships drive the evolution of both parties. In microbe-phage dynamics, CRISPR functions as an adaptive defense mechanism, updating immunity via spacer acquisition. Here, we investigated these interactions within the human gut microbiome, uncovering low frequencies of spacer acquisition at an average rate of one spacer every ∼2.9 point mutations using isolates' whole genomes and ∼2.7 years using metagenome time series. We identified a highly prevalent CRISPR array in Bifidobacterium longum spreading via horizontal gene transfer (HGT), with six spacers found in various genomic regions in 15 persons from the United States and Europe. These spacers, targeting two prominent Bifidobacterium phages, comprised 76% of spacer occurrence of all spacers targeting these phages in all B. longum populations. This result suggests that HGT of an entire CRISPR-Cas system introduced three times more spacers than local CRISPR-Cas acquisition in B. longum. Overall, our findings identified key ecological and evolutionary factors in prokaryote adaptive immunity.
Collapse
Affiliation(s)
- An-Ni Zhang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| | - Jeffry M Gaston
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore; Google, Cambridge, MA, USA
| | - Pablo Cárdenas
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Shijie Zhao
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Xiaoqiong Gu
- Singapore-MIT Alliance for Research and Technology, National University of Singapore, Singapore, Singapore
| | - Eric J Alm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
36
|
Inamdar A, Gurupadayya B, Halagali P, Nandakumar S, Pathak R, Singh H, Sharma H. Cutting-edge Strategies for Overcoming Therapeutic Barriers in Alzheimer's Disease. Curr Pharm Des 2025; 31:598-618. [PMID: 39492772 DOI: 10.2174/0113816128344571241018154506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 11/05/2024]
Abstract
Alzheimer's disease (AD) remains one of the hardest neurodegenerative diseases to treat due to its enduring cognitive deterioration and memory loss. Despite extensive research, few viable treatment approaches have been found; these are mostly due to several barriers, such as the disease's complex biology, limited pharmaceutical efficacy, and the BBB. This presentation discusses current strategies for addressing these therapeutic barriers to enhance AD treatment. Innovative drug delivery methods including liposomes, exosomes, and nanoparticles may be able to pass the blood-brain barrier and allow medicine to enter specific brain regions. These innovative strategies of medicine distribution reduce systemic side effects by improving absorption. Moreover, the development of disease-modifying treatments that target tau protein tangles, amyloid-beta plaques, and neuroinflammation offers the chance to influence the course of the illness rather than only treat its symptoms. Furthermore, gene therapy and CRISPR-Cas9 technologies have surfaced as potentially groundbreaking methods for addressing the underlying genetic defects associated with AD. Furthermore, novel approaches to patient care may involve the utilization of existing medications having neuroprotective properties, such as those for diabetes and cardiovascular conditions. Furthermore, biomarker research and personalized medicine have made individualized therapy approaches possible, ensuring that patients receive the best care possible based on their unique genetic and molecular profiles.
Collapse
Affiliation(s)
- Aparna Inamdar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India
| | - Bannimath Gurupadayya
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India
| | - Prashant Halagali
- Department of Pharmaceutical Quality Assurance, KLE College of Pharmacy, KLE Academy of Higher Education and Research, Belagavi 590010, Karnataka, India
| | - S Nandakumar
- Associate Scientist, Corteva Agriscience, Hyderabad 500081, Telangana, India
| | - Rashmi Pathak
- Department of Pharmacy, Invertis University, Bareilly (UP) 243123, India
| | - Himalaya Singh
- Department of Medicine, Government Institute of Medical Sciences, Greater Noida (UP) 201312, India
| | - Himanshu Sharma
- Department of Pharmacy, Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad (UP) 244001, India
| |
Collapse
|
37
|
Chaudhary N, Sharma K, Kaur H, Prajapati S, Mohan B, Taneja N. CRISPR-Cas-assisted phage engineering for personalized antibacterial treatments. Indian J Med Microbiol 2025; 53:100771. [PMID: 39667702 DOI: 10.1016/j.ijmmb.2024.100771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND In the age of modern medicine, CRISPR-Cas system-aided phage engineering has emerged as a major game changer for developing personalized antibacterial treatments. Modifying genomic DNA at a specific location leads to the inactivation of target genes, the acquisition of novel genetic features, and the correction of lethal gene mutations. Phages can be modified to precisely detect and control bacteria because of the vast possibilities of CRISPR-Cas-based genetic engineering. OBJECTIVES The primary objective of this review is to explore the basic principles, mechanisms, limitations, and perspectives of CRISPR-Cas system-aided phage engineering in producing tailored antibacterial therapeutics. Furthermore, this study will address how editing phage genomes using CRISPR-Cas technology allows for precise bacteria targeting, broadening phage host range, and improving infection control tactics. CONTENT The arrival of the CRISPR-Cas system has transformed the field of phage engineering and aided in the precise modification of phagе genomes to broaden the phage host range. This novel strategy uses the accuracy of the CRISPR-Cas system to design engineered bacteriophages, giving targeted options for infection control. These recent advancements have the potential to alter the era of modern medicine.
Collapse
Affiliation(s)
- Naveen Chaudhary
- Department of Medical Microbiology, Postgraduate institute of Medical Education and Research, Chandigarh, 160012, India.
| | - Kritika Sharma
- Department of Medical Microbiology, Postgraduate institute of Medical Education and Research, Chandigarh, 160012, India.
| | - Harpreet Kaur
- Department of Medical Microbiology, Postgraduate institute of Medical Education and Research, Chandigarh, 160012, India.
| | - Surender Prajapati
- Department of Medical Microbiology, Postgraduate institute of Medical Education and Research, Chandigarh, 160012, India.
| | - Balvinder Mohan
- Department of Medical Microbiology, Postgraduate institute of Medical Education and Research, Chandigarh, 160012, India.
| | - Neelam Taneja
- Department of Medical Microbiology, Postgraduate institute of Medical Education and Research, Chandigarh, 160012, India.
| |
Collapse
|
38
|
Fatima H, Singh D, Muhammad H, Acharya S, Aziz MA. Improving the use of CRISPR/Cas9 gene editing machinery as a cancer therapeutic tool with the help of nanomedicine. 3 Biotech 2025; 15:17. [PMID: 39711922 PMCID: PMC11656010 DOI: 10.1007/s13205-024-04186-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/22/2024] [Indexed: 12/24/2024] Open
Abstract
CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats-associated protein 9) has revolutionized gene editing tools and paved the way for innovations in medical research for disease diagnosis and treatment. However, better specificity and efficient delivery of this gene machinery make it challenging to successfully edit genes for treating various diseases. This is mainly due to cellular barriers, instability in biological environments, and various off-target effects that prohibit safe and efficient delivery under in vivo conditions. This review examines several delivery modes [plasmid, mRNA, RNP (ribonucleoprotein)] and methods for the CRISPR-Cas9 system delivery, focusing on its potential applications in cancer therapy. Biocompatibility and cytotoxicity are crucial factors determining their safe and effective use. Various nanomaterials have been reviewed for their biocompatibility, limitations, and challenges in treating cancer. Among the reviewed nanoparticles, lipid nanoparticles (LNPs) stand out for their biocompatibility due to their biomimetic lipid bilayer that effectively delivers CRISPR/Cas9 cargoes while reducing toxicity. We discuss challenges in in vivo delivery and associated findings such as encapsulation, target delivery, controlled release, and endosomal escape. Future directions involve addressing limitations and adapting CRISPR-Cas9 for clinical trials, ensuring its safe and effective use.
Collapse
Affiliation(s)
- Hina Fatima
- Polymer and Process Engineering Department, Indian Institute of Technology Roorkee, Uttarakhand, 247001 India
- College of Medicine, Alfaisal University, 11533 Riyadh, Saudi Arabia
| | - Dimple Singh
- Department of Paper Technology, Indian Institute of Technology, Roorkee, Uttarakhand 247001 India
| | - Huzaifa Muhammad
- College of Medicine, Alfaisal University, 11533 Riyadh, Saudi Arabia
| | - Swati Acharya
- Cancer Nanomedicine Lab, Interdisciplinary Nanotechnology Center, Aligarh Muslim University, Aligarh, UP 202002 India
| | - Mohammad Azhar Aziz
- Cancer Nanomedicine Lab, Interdisciplinary Nanotechnology Center, Aligarh Muslim University, Aligarh, UP 202002 India
- Cancer Nanomedicine Consortium, Aligarh Muslim University, Aligarh, UP 202002 India
| |
Collapse
|
39
|
Kuang Z, Wu Y, Xie X, Zhao X, Chen H, Wu L, Gao H, Zhao H, Liang T, Zhang J, Li Y, Wu Q. Advances in Helicobacter pylori Antimicrobial Resistance Detection: From Culture-Based to Multi-Omics-Based Technologies. Helicobacter 2025; 30:e70007. [PMID: 39924349 DOI: 10.1111/hel.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 12/09/2024] [Accepted: 12/25/2024] [Indexed: 02/11/2025]
Abstract
Helicobacter pylori (H. pylori), a proven carcinogenic microbe, necessitates antimicrobial treatment once infected. However, H. pylori worldwide currently faces serious antibiotic resistance (AMR), requiring infected patients to undergo antibiotic susceptibility testing (AST) to guide therapy. Currently, the recommended ASTs for H. pylori are culture-based methods, which are time-consuming, complicated, and expensive, impeding their widespread application. With in-depth researches on the AMR mechanisms of H. pylori, specific gene mutations and novel proteins have been confirmed as the cause of AMR and can serve as targets of ASTs. Accordingly, molecular biology detection has been developed and tremendously shortened the time and reduced difficulty of AST. However, these assays still struggle to meet the enormous testing demand and need for even faster, simpler, and more accurate methods. In recent years, researchers have developed various new platforms based on biosensors, transcriptomics, proteomics, and single-cell analysis. This review introduces the AMR mechanisms of H. pylori and summarizes the current ASTs from the working principles to application characteristics. Additionally, we draw attention to the potentially applicable techniques for AST of H. pylori from DNA, RNA, protein, and cell perspectives. By systematically recapitulating the past, present, and future of AST for H. pylori, this review provides valuable insights for developing novel assays.
Collapse
Affiliation(s)
- Zupeng Kuang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yuwei Wu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xinqiang Xie
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xinyu Zhao
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Huiyuan Chen
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Lei Wu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - He Gao
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Hui Zhao
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Tingting Liang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jumei Zhang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Ying Li
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qingping Wu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
40
|
Bilal M, Geng J, Chen L, García-Caparros P, Hu T. Genome editing for grass improvement and future agriculture. HORTICULTURE RESEARCH 2025; 12:uhae293. [PMID: 39906167 PMCID: PMC11789526 DOI: 10.1093/hr/uhae293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/06/2024] [Indexed: 02/06/2025]
Abstract
Grasses, including turf and forage, cover most of the earth's surface; predominantly important for land, water, livestock feed, soil, and water conservation, as well as carbon sequestration. Improved production and quality of grasses by modern molecular breeding is gaining more research attention. Recent advances in genome-editing technologies are helping to revolutionize plant breeding and also offering smart and efficient acceleration on grass improvement. Here, we reviewed all recent researches using (CRISPR)/CRISPR-associated protein (Cas)-mediated genome editing tools to enhance the growth and quality of forage and turf grasses. Furthermore, we highlighted emerging approaches aimed at advancing grass breeding program. We assessed the CRISPR-Cas effectiveness, discussed the challenges associated with its application, and explored future perspectives primarily focusing on turf and forage grasses. Despite the promising potential of genome editing in grasses, its current efficiency remains limited due to several bottlenecks, such as the absence of comprehensive reference genomes, the lack of efficient gene delivery tools, unavailability of suitable vector and delivery for grass species, high polyploidization, and multiple homoeoalleles, etc. Despite these challenges, the CRISPR-Cas system holds great potential to fully harness its benefits in grass breeding and genetics, aiming to improve and sustain the quantity and quality of turf and forage grasses.
Collapse
Affiliation(s)
- Muhammad Bilal
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Jie Geng
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Lin Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Pedro García-Caparros
- Agronomy Department of Superior School Engineering, University of Almería, Almeria, Spain
| | - Tao Hu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| |
Collapse
|
41
|
Sobral AF, Dinis-Oliveira RJ, Barbosa DJ. CRISPR-Cas technology in forensic investigations: Principles, applications, and ethical considerations. Forensic Sci Int Genet 2025; 74:103163. [PMID: 39437497 DOI: 10.1016/j.fsigen.2024.103163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
CRISPR-Cas (Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated proteins) systems are adaptive immune systems originally present in bacteria, where they are essential to protect against external genetic elements, including viruses and plasmids. Taking advantage of this system, CRISPR-Cas-based technologies have emerged as incredible tools for precise genome editing, thus significantly advancing several research fields. Forensic sciences represent a multidisciplinary field that explores scientific methods to investigate and resolve legal issues, particularly criminal investigations and subject identification. Consequently, it plays a critical role in the justice system, providing scientific evidence to support judicial investigations. Although less explored, CRISPR-Cas-based methodologies demonstrate strong potential in the field of forensic sciences due to their high accuracy and sensitivity, including DNA profiling and identification, interpretation of crime scene investigations, detection of food contamination or fraud, and other aspects related to environmental forensics. However, using CRISPR-Cas-based methodologies in human samples raises several ethical issues and concerns regarding the potential misuse of individual genetic information. In this manuscript, we provide an overview of potential applications of CRISPR-Cas-based methodologies in several areas of forensic sciences and discuss the legal implications that challenge their routine implementation in this research field.
Collapse
Affiliation(s)
- Ana Filipa Sobral
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, Gandra 4585-116, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Gandra 4585-116, Portugal.
| | - Ricardo Jorge Dinis-Oliveira
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, Gandra 4585-116, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Gandra 4585-116, Portugal; Department of Public Health and Forensic Sciences and Medical Education, Faculty of Medicine, University of Porto, Porto 4200-319, Portugal; FOREN - Forensic Science Experts, Dr. Mário Moutinho Avenue, No. 33-A, Lisbon 1400-136, Portugal.
| | - Daniel José Barbosa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, Gandra 4585-116, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Gandra 4585-116, Portugal.
| |
Collapse
|
42
|
Yazdi ZF, Roshannezhad S, Sharif S, Abbaszadegan MR. Recent progress in prompt molecular detection of liquid biopsy using Cas enzymes: innovative approaches for cancer diagnosis and analysis. J Transl Med 2024; 22:1173. [PMID: 39741289 DOI: 10.1186/s12967-024-05908-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 11/20/2024] [Indexed: 01/02/2025] Open
Abstract
Creating fast, non-invasive, precise, and specific diagnostic tests is crucial for enhancing cancer treatment outcomes. Among diagnostic methods, those relying on nucleic acid detection are highly sensitive and specific. Recent developments in diagnostic technologies, particularly those leveraging Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), are revolutionizing cancer detection, providing accurate and timely results. In clinical oncology, liquid biopsy has become a noninvasive and early-detectable alternative to traditional biopsies over the last two decades. Analyzing the nucleic acid content of liquid biopsy samples, which include Circulating Tumor Cells (CTCs), Circulating Tumor DNA (ctDNA), Circulating Cell-Free RNA (cfRNA), and tumor extracellular vesicles, provides a noninvasive method for cancer detection and monitoring. In this review, we explore how the characteristics of various Cas (CRISPR-associated) enzymes have been utilized in diagnostic assays for cancer liquid biopsy and highlight their main applications of innovative approaches in monitoring, as well as early and rapid detection of cancers.
Collapse
Affiliation(s)
- Zahra Farshchian Yazdi
- Department of Medical Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Samaneh Sharif
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Mashhad University of Medical Sciences, Azadi Square, Mashhad, Iran.
| | - Mohammad Reza Abbaszadegan
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Mashhad University of Medical Sciences, Azadi Square, Mashhad, Iran.
| |
Collapse
|
43
|
Koshi D, Sugano J, Yamasaki F, Kawauchi M, Nakazawa T, Oh M, Honda Y. Trans-nuclei CRISPR/Cas9: safe approach for genome editing in the edible mushroom excluding foreign DNA sequences. Appl Microbiol Biotechnol 2024; 108:548. [PMID: 39738613 DOI: 10.1007/s00253-024-13367-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 01/02/2025]
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9)-assisted genome editing has been applied to several major edible agaricomycetes, enabling efficient gene targeting. This method is promising for rapid and efficient breeding to isolate high-value cultivars and overcome cultivation challenges. However, the integration of foreign DNA fragments during this process raises concerns regarding genetically modified organisms (GMOs) and their regulatory restrictions. In this study, we developed a foreign-DNA-free genome editing method in Pleurotus ostreatus by transferring the Cas9/guide RNA (gRNA) complex between nuclei in the dikaryotic state. We isolated a donor monokaryotic P. ostreatus strain expressing Cas9 and gRNA targeting pyrG by introducing a recombinant plasmid, which exhibited uracil auxotrophy and 5-fluoroorotic acid (5-FOA) resistance. This strain was then crossed with a pyrG+ recipient monokaryon, resulting in dikaryotic strains exhibiting 5-FOA resistance after mycelial growth. When these strains were de-dikaryonized into monokaryons through protoplasting, we obtained monokaryotic isolates harboring the recipient nucleus with small indels at the pyrG target site. Importantly, these isolates were confirmed to be free of foreign DNA through genomic PCR, Southern blotting, and whole-genome resequencing analyses. This is the first report of an efficient genome editing protocol in agaricomycetes that ensures no integration of exogenous DNA. This approach is expected to be applicable to other fungi with a dikaryotic life cycle, opening new possibilities for molecular breeding without the concerns associated with GMOs. KEY POINTS: • Successful genome editing via CRISPR/Cas9 trans-nuclei manner in P. ostreatus. • Recipient monokaryons from gene-edited dikaryons showed no exogenous DNA sequences. • Efficient genome editing protocol for safer molecular breeding in mushroom fungus.
Collapse
Affiliation(s)
- Daishiro Koshi
- Graduate School of Agriculture, Kyoto University, Sakyo-Ku, Kitashirakawaoiwakecho, Kyoto, 606-8502, Japan
| | - Junko Sugano
- Graduate School of Agriculture, Kyoto University, Sakyo-Ku, Kitashirakawaoiwakecho, Kyoto, 606-8502, Japan
| | - Fuga Yamasaki
- Graduate School of Agriculture, Kyoto University, Sakyo-Ku, Kitashirakawaoiwakecho, Kyoto, 606-8502, Japan
| | - Moriyuki Kawauchi
- Graduate School of Agriculture, Kyoto University, Sakyo-Ku, Kitashirakawaoiwakecho, Kyoto, 606-8502, Japan
| | - Takehito Nakazawa
- Graduate School of Agriculture, Kyoto University, Sakyo-Ku, Kitashirakawaoiwakecho, Kyoto, 606-8502, Japan
| | - Minji Oh
- Mushroom Research Division, Rural Development Administration, National Institute of Horticultural and Herbal Science, Bisanro 92, Eumseong, Chungbuk, 27709, Republic of Korea
| | - Yoichi Honda
- Graduate School of Agriculture, Kyoto University, Sakyo-Ku, Kitashirakawaoiwakecho, Kyoto, 606-8502, Japan.
| |
Collapse
|
44
|
Xing JX, Luo AJ, Wang XH, Ding Q, Yang L, Li WF. Identification of U6 Promoter and Establishment of Gene-Editing System in Larix kaempferi (Lamb.) Carr. PLANTS (BASEL, SWITZERLAND) 2024; 14:45. [PMID: 39795305 PMCID: PMC11722980 DOI: 10.3390/plants14010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/22/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025]
Abstract
This study aimed to establish a CRISPR/Cas9 gene-editing system for Larix kaempferi (Lamb.) Carr. (Japanese larch). We screened L. kaempferi U6 promoters and used them to drive sgRNA expression in the CRISPR/Cas9 gene-editing system. The L. kaempferi embryogenic callus was used as the receptor material for genetic transformation, and the frequency and types of gene editing were then analyzed. The results showed various mutations in the transgenic materials, including base substitutions and deletions, and the editing frequency ranged from 5% to 14.29%. In summary, we established a CRISPR/Cas9 gene-editing system for L. kaempferi. Our results demonstrate that the CRISPR/Cas9 system can efficiently edit genes in L. kaempferi, with significantly higher editing frequencies observed when sgRNA expression is driven by endogenous LaU6 promoters compared to the exogenous promoter ProAtU6-26. This work provides technical support for the study of L. kaempferi gene functions and genetic improvement.
Collapse
Affiliation(s)
- Jun-Xia Xing
- State Key Laboratory of Tree Genetics and Breeding, College of Forestry, Northeast Forestry University, Harbin 150040, China;
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (A.-J.L.); (X.-H.W.)
| | - Ao-Jie Luo
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (A.-J.L.); (X.-H.W.)
| | - Xin-Hao Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (A.-J.L.); (X.-H.W.)
| | - Qi Ding
- Life Science and Technology Center, China National Seed Group Co., Ltd., Wuhan 430073, China;
| | - Ling Yang
- State Key Laboratory of Tree Genetics and Breeding, College of Forestry, Northeast Forestry University, Harbin 150040, China;
- College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Wan-Feng Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (A.-J.L.); (X.-H.W.)
| |
Collapse
|
45
|
Zahoor N, Arif A, Shuaib M, Jin K, Li B, Li Z, Pei X, Zhu X, Zuo Q, Niu Y, Song J, Chen G. Induced Pluripotent Stem Cells in Birds: Opportunities and Challenges for Science and Agriculture. Vet Sci 2024; 11:666. [PMID: 39729006 DOI: 10.3390/vetsci11120666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
The only cells in an organism that could do any other sort of cell until 2006 (except sperm or egg) were known as embryonic stem cells, ESC [...].
Collapse
Affiliation(s)
- Nousheen Zahoor
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Areej Arif
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Muhammad Shuaib
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Kai Jin
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Bichun Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Zeyu Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Xiaomeng Pei
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Xilin Zhu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Qisheng Zuo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Yingjie Niu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Jiuzhou Song
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Guohong Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
46
|
Di Carlo E, Sorrentino C. State of the art CRISPR-based strategies for cancer diagnostics and treatment. Biomark Res 2024; 12:156. [PMID: 39696697 DOI: 10.1186/s40364-024-00701-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024] Open
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technology is a groundbreaking and dynamic molecular tool for DNA and RNA "surgery". CRISPR/Cas9 is the most widely applied system in oncology research. It is a major advancement in genome manipulation due to its precision, efficiency, scalability and versatility compared to previous gene editing methods. It has shown great potential not only in the targeting of oncogenes or genes coding for immune checkpoint molecules, and in engineering T cells, but also in targeting epigenomic disturbances, which contribute to cancer development and progression. It has proven useful for detecting genetic mutations, enabling the large-scale screening of genes involved in tumor onset, progression and drug resistance, and in speeding up the development of highly targeted therapies tailored to the genetic and immunological profiles of the patient's tumor. Furthermore, the recently discovered Cas12 and Cas13 systems have expanded Cas9-based editing applications, providing new opportunities in the diagnosis and treatment of cancer. In addition to traditional cis-cleavage, they exhibit trans-cleavage activity, which enables their use as sensitive and specific diagnostic tools. Diagnostic platforms like DETECTR, which employs the Cas12 enzyme, that cuts single-stranded DNA reporters, and SHERLOCK, which uses Cas12, or Cas13, that specifically target and cleave single-stranded RNA, can be exploited to speed up and advance oncological diagnostics. Overall, CRISPR platform has the great potential to improve molecular diagnostics and the functionality and safety of engineered cellular medicines. Here, we will emphasize the potentially transformative impact of CRISPR technology in the field of oncology compared to traditional treatments, diagnostic and prognostic approaches, and highlight the opportunities and challenges raised by using the newly introduced CRISPR-based systems for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Emma Di Carlo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio University" of Chieti- Pescara, Via dei Vestini, Chieti, 66100, Italy.
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Via L. Polacchi 11, Chieti, 66100, Italy.
| | - Carlo Sorrentino
- Department of Medicine and Sciences of Aging, "G. d'Annunzio University" of Chieti- Pescara, Via dei Vestini, Chieti, 66100, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Via L. Polacchi 11, Chieti, 66100, Italy
| |
Collapse
|
47
|
Wang S, Wang J, Li B, Zhang J. Photoactivable CRISPR for Biosensing and Cancer Therapy. Chembiochem 2024; 25:e202400685. [PMID: 39317648 DOI: 10.1002/cbic.202400685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 09/26/2024]
Abstract
Photoactivable CRISPR technology represents a transformative approach in the field of genome editing, offering unprecedented control over gene editing with high spatial and temporal precision. By harnessing the power of light to modulate the activity of CRISPR components, this innovative strategy enables precise regulation of Cas proteins, guide RNAs, and ribonucleoprotein complexes. Recent advancements in optical control methodologies, including the development of photoactivable nanocarriers, have significantly expanded the potential applications of CRISPR in biomedical fields. This Concept highlights the latest developments in designing photoactivable CRISPR systems and their promising applications in biosensing and cancer therapy. Additionally, the remaining challenges and future trends are also discussed. It is expected that the photoactivable CRISPR would facilitate translating more precise gene therapies into clinical use.
Collapse
Affiliation(s)
- Siyuan Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jiaqi Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Baijiang Li
- Institution Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing, 210023, China
| | - Jingjing Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Institution Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing, 210023, China
| |
Collapse
|
48
|
Bairqdar A, Karitskaya PE, Stepanov GA. Expanding Horizons of CRISPR/Cas Technology: Clinical Advancements, Therapeutic Applications, and Challenges in Gene Therapy. Int J Mol Sci 2024; 25:13321. [PMID: 39769084 PMCID: PMC11678091 DOI: 10.3390/ijms252413321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
CRISPR-Cas technology has transformed the field of gene editing, opening new possibilities for treatment of various genetic disorders. Recent years have seen a surge in clinical trials using CRISPR-Cas-based therapies. This review examines the current landscape of CRISPR-Cas implementation in clinical trials, with data from key registries, including the Australian New Zealand Clinical Trials Registry, the Chinese Clinical Trial Register, and ClinicalTrials.gov. Emphasis is placed on the mechanism of action of tested therapies, the delivery method, and the most recent findings of each clinical trial.
Collapse
Affiliation(s)
- Ahmad Bairqdar
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia;
| | - Polina E. Karitskaya
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia;
| | - Grigory A. Stepanov
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia;
| |
Collapse
|
49
|
Liao H, Wu J, VanDusen NJ, Li Y, Zheng Y. CRISPR-Cas9-mediated homology-directed repair for precise gene editing. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102344. [PMID: 39494147 PMCID: PMC11531618 DOI: 10.1016/j.omtn.2024.102344] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
CRISPR-Cas9-mediated homology-directed repair (HDR) is a versatile platform for creating precise site-specific DNA insertions, deletions, and substitutions. These precise edits are made possible through the use of exogenous donor templates that carry the desired sequence. CRISPR-Cas9-mediated HDR can be widely used to study protein functions, disease modeling, and gene therapy. However, HDR is limited by its low efficiency, especially in postmitotic cells. Here, we review CRISPR-Cas9-mediated HDR, with a focus on methodologies for boosting HDR efficiency, and applications of precise editing via HDR. First, we describe two common mechanisms of DNA repair, non-homologous end joining (NHEJ), and HDR, and discuss their impact on CRISPR-Cas9-mediated precise genome editing. Second, we discuss approaches for improving HDR efficiency through inhibition of the NHEJ pathway, activation of the HDR pathway, modification of donor templates, and delivery of Cas9/sgRNA reagents. Third, we summarize the applications of HDR for protein labeling in functional studies, disease modeling, and ex vivo and in vivo gene therapies. Finally, we discuss alternative precise editing platforms and their limitations, and describe potential avenues to improving CRISPR-Cas9-mediated HDR efficiency and fidelity in future research.
Collapse
Affiliation(s)
- Hongyu Liao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041 China
| | - Jiahao Wu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041 China
| | - Nathan J. VanDusen
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041 China
| | - Yanjiang Zheng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041 China
| |
Collapse
|
50
|
Zhou L, Zeng X, Yang Y, Li R, Zhao Z. Applications and Prospects of CRISPR/Cas9 Technology in the Breeding of Major Tropical Crops. PLANTS (BASEL, SWITZERLAND) 2024; 13:3388. [PMID: 39683180 DOI: 10.3390/plants13233388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024]
Abstract
China is a major producer of tropical crops globally, boasting rich varieties and diverse functions. Tropical crops account for two-thirds of the plant species in this country. Many crops and their products, such as oil palm, rubber, banana, sugarcane, cassava, and papaya are well known to people. Most of these products are irreplaceable and possess special functions. They not only supply important raw materials for people's daily life and for industrial and agricultural production but also contribute to the economic growth in the tropical and subtropical regions of China. However, the modern molecular breeding of these crops is severely hampered by their biological characteristics and genetic complexity. Issues such as polyploidy, heterozygosity, vegetative propagation, long juvenile periods, and large plant sizes result in time consuming, low efficiency, and slow progress in conventional breeding of the major tropical crops. The development of genome-editing technologies has brought a new way in tropical crops breeding. As an emerging gene-editing technology, the CRISPR-Cas9 system has been widely used in plants, adopted for its higher targeting efficiency, versatility, and ease of usage. This approach has been applied in oil palm, rubber, banana, sugarcane, cassava, and papaya. This review summarized the delivery patterns, mutation detection, and application of the CRISPR-Cas9 system in tropical crop breeding, discussed the existing problems, and addressed prospects for future applications in this field, providing references to relevant studies.
Collapse
Affiliation(s)
- Lixia Zhou
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Xianhai Zeng
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Yaodong Yang
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Rui Li
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Zhihao Zhao
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| |
Collapse
|