1
|
Karavaeva V, Sousa FL. Modular structure of complex II: An evolutionary perspective. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148916. [PMID: 36084748 DOI: 10.1016/j.bbabio.2022.148916] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/21/2022] [Accepted: 09/02/2022] [Indexed: 11/25/2022]
Abstract
Succinate dehydrogenases (SDHs) and fumarate reductases (FRDs) catalyse the interconversion of succinate and fumarate, a reaction highly conserved in all domains of life. The current classification of SDH/FRDs is based on the structure of the membrane anchor subunits and their cofactors. It is, however, unknown whether this classification would hold in the context of evolution. In this work, a large-scale comparative genomic analysis of complex II addresses the questions of its taxonomic distribution and phylogeny. Our findings report that for types C, D, and F, structural classification and phylogeny go hand in hand, while for types A, B and E the situation is more complex, highlighting the possibility for their classification into subgroups. Based on these findings, we proposed a revised version of the evolutionary scenario for these enzymes in which a primordial soluble module, corresponding to the cytoplasmatic subunits, would give rise to the current diversity via several independent membrane anchor attachment events.
Collapse
Affiliation(s)
- Val Karavaeva
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Wien, Austria
| | - Filipa L Sousa
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Wien, Austria.
| |
Collapse
|
2
|
Leigh RJ, McKenna C, McWade R, Lynch B, Walsh F. Comparative genomics and pangenomics of vancomycin-resistant and susceptible Enterococcus faecium from Irish hospitals. J Med Microbiol 2022; 71. [DOI: 10.1099/jmm.0.001590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction.
Enterococcus faecium
has emerged as an important nosocomial pathogen, which is increasingly difficult to treat due to the genetic acquisition of vancomycin resistance. Ireland has a recalcitrant vancomycin-resistant bloodstream infection rate compared to other developed countries.
Hypothesis/Gap statement. Vancomycin resistance rates persist amongst
E. faecium
isolates from Irish hospitals. The evolutionary genomics governing these trends have not been fully elucidated.
Methodology. A set of 28 vancomycin-resistant isolates was sequenced to construct a dataset alongside 61 other publicly available Irish genomes. This dataset was extensively analysed using in silico methodologies (comparative genomics, pangenomics, phylogenetics, genotypics and comparative functional analyses) to uncover distinct evolutionary, coevolutionary and clinically relevant population trends.
Results. These results suggest that a stable (in terms of genome size, GC% and number of genes), yet genetically diverse population (in terms of gene content) of
E. faecium
persists in Ireland with acquired resistance arising via plasmid acquisition (vanA) or, to a lesser extent, chromosomal recombination (vanB). Population analysis revealed five clusters with one cluster partitioned into four clades which transcend isolation dates. Pangenomic and recombination analyses revealed an open (whole genome and chromosomal specific) pangenome illustrating a rampant evolutionary pattern. Comparative resistomics and virulomics uncovered distinct chromosomal and mobilomal propensity for multidrug resistance, widespread chromosomal point-mutation-mediated resistance and chromosomally harboured arsenals of virulence factors. Interestingly, a potential difference in biofilm formation strategies was highlighted by coevolutionary analysis, suggesting differential biofilm genotypes between vanA and vanB isolates.
Conclusions. These results highlight the evolutionary history of Irish
E. faecium
isolates and may provide insight into underlying infection dynamics in a clinical setting. Due to the apparent ease of vancomycin resistance acquisition over time, susceptible
E. faecium
should be concurrently reduced in Irish hospitals to mitigate potential resistant infections.
Collapse
Affiliation(s)
- Robert J. Leigh
- Department of Biology, Maynooth University, Mariavilla, Maynooth, Co. Kildare, Ireland
| | - Chloe McKenna
- Department of Biology, Maynooth University, Mariavilla, Maynooth, Co. Kildare, Ireland
| | - Robert McWade
- Department of Microbiology, Mater Misericordiae University Hospital, Eccles St., Dublin 7, D07 R2WY, Ireland
| | - Breda Lynch
- Department of Microbiology, Mater Misericordiae University Hospital, Eccles St., Dublin 7, D07 R2WY, Ireland
| | - Fiona Walsh
- Department of Biology, Maynooth University, Mariavilla, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
3
|
Hederstedt L. Molecular Biology of Bacillus subtilis Cytochromes anno 2020. BIOCHEMISTRY (MOSCOW) 2021; 86:8-21. [DOI: 10.1134/s0006297921010028] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
4
|
Fischer S, Krause T, Lederer F, Merroun ML, Shevchenko A, Hübner R, Firkala T, Stumpf T, Jordan N, Jain R. Bacillus safensis JG-B5T affects the fate of selenium by extracellular production of colloidally less stable selenium nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121146. [PMID: 31771888 DOI: 10.1016/j.jhazmat.2019.121146] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 09/02/2019] [Accepted: 09/02/2019] [Indexed: 06/10/2023]
Abstract
Understanding the impact of microorganisms on the mobility of selenium (Se) is important for predicting the fate of toxic Se in the environment and improving wastewater treatment technologies. The bacteria strain Bacillus safensis JG-B5T, isolated from soil in a uranium mining waste pile, can influence the Se speciation in the environment and engineered systems. However, the mechanism and conditions of this process remain unknown. This study found that the B. safensis JG-B5T is an obligate aerobic microorganism with an ability to reduce 70% of 2.5 mM selenite to produce red spherical biogenic elemental selenium nanoparticles (BioSeNPs). Only extracellular production of BioSeNPs was observed using transmission electron microscopy. The two-chamber reactor experiments, genome analysis and corona proteins identified on BioSeNPs suggested that the selenite reduction process was primarily mediated through membrane-associated proteins, like succinate dehydrogenase. Extracellular presence and low colloidal stability of BioSeNPs as indicated by ζ-potential measurements, render B. safensis JG-B5T an attractive candidate in wastewater treatment as it provides easy way of recovering Se while maintaining low Se discharge. As this microorganism decreases Se mobility, it will affect Se bioavailability in the environment and decreases its toxicity.
Collapse
Affiliation(s)
- Sarah Fischer
- Helmholtz-Zentrum Dresden - Rossendorf e. V., Institute of Resource Ecology, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Thomas Krause
- Technische Universität Dresden, Institute of Microbiology, Chair of Molecular Biotechnology, 01062 Dresden, Germany
| | - Franziska Lederer
- Helmholtz-Zentrum Dresden - Rossendorf e. V., Helmholtz Institute Freiberg for Resource Technology, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Mohamed L Merroun
- University of Granada, Department of Microbiology, Campus Fuentenueva, E-18071 Granada, Spain
| | - Anna Shevchenko
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - René Hübner
- Helmholtz-Zentrum Dresden - Rossendorf e. V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Tamas Firkala
- Helmholtz-Zentrum Dresden - Rossendorf e. V., Helmholtz Institute Freiberg for Resource Technology, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Thorsten Stumpf
- Helmholtz-Zentrum Dresden - Rossendorf e. V., Institute of Resource Ecology, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Norbert Jordan
- Helmholtz-Zentrum Dresden - Rossendorf e. V., Institute of Resource Ecology, Bautzner Landstrasse 400, 01328 Dresden, Germany.
| | - Rohan Jain
- Helmholtz-Zentrum Dresden - Rossendorf e. V., Helmholtz Institute Freiberg for Resource Technology, Bautzner Landstrasse 400, 01328 Dresden, Germany.
| |
Collapse
|
5
|
Hards K, Rodriguez SM, Cairns C, Cook GM. Alternate quinone coupling in a new class of succinate dehydrogenase may potentiate mycobacterial respiratory control. FEBS Lett 2019; 593:475-486. [DOI: 10.1002/1873-3468.13330] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 01/16/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Kiel Hards
- Department of Microbiology and Immunology University of Otago Dunedin New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery The University of Auckland New Zealand
| | | | - Charlotte Cairns
- Department of Microbiology and Immunology University of Otago Dunedin New Zealand
| | - Gregory M. Cook
- Department of Microbiology and Immunology University of Otago Dunedin New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery The University of Auckland New Zealand
| |
Collapse
|
6
|
Li AH, Lam WL, Stokes RW. Characterization of genes differentially expressed within macrophages by virulent and attenuated Mycobacterium tuberculosis identifies candidate genes involved in intracellular growth. MICROBIOLOGY-SGM 2008; 154:2291-2303. [PMID: 18667562 DOI: 10.1099/mic.0.2008/019661-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To identify genes involved in the intracellular survival of Mycobacterium tuberculosis we compared the transcriptomes of virulent (H37Rv) and attenuated (H37Ra) strains during their interaction with murine bone-marrow-derived macrophages. Expression profiling was accomplished via the bacterial artificial chromosome fingerprint array (BACFA) technique. Genes identified with BACFA, and confirmed via qPCR to be upregulated in the attenuated H37Ra at 168 h post-infection, were frdB, frdC and frdD. Genes upregulated in the virulent H37Rv were pks2, aceE and Rv1571. Further qPCR analysis of these genes at 4 and 96 h post-infection revealed that the frd operon (encoding the fumarate reductase enzyme complex) is expressed at higher levels in the virulent H37Rv at earlier time points while the expression of aceE and pks2 is higher in the virulent strain throughout the course of infection. Assessment of frd transcripts in oxygen-limited cultures of M. tuberculosis H37Ra and H37Rv showed that the attenuated strain displayed a lag in frdA and frdB expression at the onset of microaerophilic culture, when compared to microaerophilic cultures of H37Rv and aerated cultures of H37Ra. Lastly, treatment of intracellular bacteria with a putative inhibitor of fumarate reductase resulted in a significant reduction of bacterial growth.
Collapse
Affiliation(s)
- Alice H Li
- Department of Pathology and Laboratory Medicine, University of British Columbia, 950 West 28th Avenue, Vancouver, BC V5Z 4H4, Canada
| | - Wan L Lam
- Department of Pathology and Laboratory Medicine, University of British Columbia, Department of Cancer Genetics, BC Cancer Research Centre, 601 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada
| | - Richard W Stokes
- Departments of Paediatrics and Pathology and Laboratory Medicine, University of British Columbia, Division of Infectious and Immunological Diseases, BC Children's Hospital, 950 West 28th Avenue, Vancouver, BC V5Z 4H4, Canada
| |
Collapse
|
7
|
Miyadera H, Hiraishi A, Miyoshi H, Sakamoto K, Mineki R, Murayama K, Nagashima KVP, Matsuura K, Kojima S, Kita K. Complex II from phototrophic purple bacterium Rhodoferax fermentans displays rhodoquinol-fumarate reductase activity. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:1863-74. [PMID: 12694200 DOI: 10.1046/j.1432-1033.2003.03553.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It has long been accepted that bacterial quinol-fumarate reductase (QFR) generally uses a low-redox-potential naphthoquinone, menaquinone (MK), as the electron donor, whereas mitochondrial QFR from facultative and anaerobic eukaryotes uses a low-redox-potential benzoquinone, rhodoquinone (RQ), as the substrate. In the present study, we purified novel complex II from the RQ-containing phototrophic purple bacterium, Rhodoferax fermentans that exhibited high rhodoquinol-fumarate reductase activity in addition to succinate-ubiquinone reductase activity. SDS/PAGE indicated that the purified R. fermentans complex II comprises four subunits of 64.0, 28.6, 18.7 and 17.5 kDa and contains 1.3 nmol heme per mg protein. Phylogenetic analysis and comparison of the deduced amino acid sequences of R. fermentans complex II with pro/eukaryotic complex II indicate that the structure and the evolutional origins of R. fermentans complex II are closer to bacterial SQR than to mitochondrial rhodoquinol-fumarate reductase. The results strongly indicate that R. fermentans complex II and mitochondrial QFR might have evolved independently, although they both utilize RQ for fumarate reduction.
Collapse
Affiliation(s)
- Hiroko Miyadera
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Hederstedt L. Succinate:quinone oxidoreductase in the bacteria Paracoccus denitrificans and Bacillus subtilis. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1553:74-83. [PMID: 11803018 DOI: 10.1016/s0005-2728(01)00231-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
An overview of the present knowledge about succinate:quinone oxidoreductase in Paracoccus denitrificans and Bacillus subtilis is presented. P. denitrificans contains a monoheme succinate:ubiquinone oxidoreductase that is similar to that of mammalian mitochondria with respect to composition and sensitivity to carboxin. Results obtained with carboxin-resistant P. denitrificans mutants provide information about quinone-binding sites on the enzyme and the molecular basis for the resistance. B. subtilis contains a diheme succinate:menaquinone oxidoreductase whose activity is dependent on the electrochemical gradient across the cytoplasmic membrane. Data from studies of mutant variants of the B. subtilis enzyme combined with available crystal structures of a similar enzyme, Wolinella succinogenes fumarate reductase, substantiate a proposed explanation for the mechanism of coupling between quinone reductase activity and transmembrane potential.
Collapse
Affiliation(s)
- Lars Hederstedt
- Department of Microbiology, Lund University, Sölvegatan 12, SE-223 62, Lund, Sweden.
| |
Collapse
|
9
|
Schnorpfeil M, Janausch IG, Biel S, Kröger A, Unden G. Generation of a proton potential by succinate dehydrogenase of Bacillus subtilis functioning as a fumarate reductase. ACTA ACUST UNITED AC 2001; 268:3069-74. [PMID: 11358526 DOI: 10.1046/j.1432-1327.2001.02202.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The membrane fraction of Bacillus subtilis catalyzes the reduction of fumarate to succinate by NADH. The activity is inhibited by low concentrations of 2-(heptyl)-4-hydroxyquinoline-N-oxide (HOQNO), an inhibitor of succinate: quinone reductase. In sdh or aro mutant strains, which lack succinate dehydrogenase or menaquinone, respectively, the activity of fumarate reduction by NADH was missing. In resting cells fumarate reduction required glycerol or glucose as the electron donor, which presumably supply NADH for fumarate reduction. Thus in the bacteria, fumarate reduction by NADH is catalyzed by an electron transport chain consisting of NADH dehydrogenase (NADH:menaquinone reductase), menaquinone, and succinate dehydrogenase operating in the reverse direction (menaquinol:fumarate reductase). Poor anaerobic growth of B. subtilis was observed when fumarate was present. The fumarate reduction catalyzed by the bacteria in the presence of glycerol or glucose was not inhibited by the protonophore carbonyl cyanide m-chlorophenyl hydrazone (CCCP) or by membrane disruption, in contrast to succinate oxidation by O2. Fumarate reduction caused the uptake by the bacteria of the tetraphenyphosphonium cation (TPP+) which was released after fumarate had been consumed. TPP+ uptake was prevented by the presence of CCCP or HOQNO, but not by N,N'-dicyclohexylcarbodiimide, an inhibitor of ATP synthase. From the TPP+ uptake the electrochemical potential generated by fumarate reduction was calculated (Deltapsi = -132 mV) which was comparable to that generated by glucose oxidation with O2 (Deltapsi = -120 mV). The Deltapsi generated by fumarate reduction is suggested to stem from menaquinol:fumarate reductase functioning in a redox half-loop.
Collapse
Affiliation(s)
- M Schnorpfeil
- Institut für Mikrobiologie und Weinforschung, Johannes Gutenberg-Universität Mainz, Germany
| | | | | | | | | |
Collapse
|
10
|
Birch-Machin MA, Taylor RW, Cochran B, Ackrell BAC, Turnbull DM. Late-onset optic atrophy, ataxia, and myopathy associated with a mutation of a complex II gene. Ann Neurol 2001. [DOI: 10.1002/1531-8249(200009)48:3<330::aid-ana7>3.0.co;2-a] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
Irie T, Honda Y, Matsuyama T, Watanabe T, Kuwahara M. Cloning and characterization of the gene encoding the iron-sulfur protein of succinate dehydrogenase from Pleurotus ostreatus. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1396:27-31. [PMID: 9524211 DOI: 10.1016/s0167-4781(97)00203-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Genomic and cDNA fragments encoding the iron-sulfur protein (Ip) subunit of dehydrogenase (EC 1.3.99.1) have been cloned from the edible basidiomycetous fungus, Pleurotus ostreatus. The gene is interrupted by five introns and is predicted to encode a polypeptide of 268 amino acid residues. Sequence comparison with the Ip subunit from other species identified three conserved cysteine-rich clusters. One of these contains a critical histidine residue implicated in carboxin sensitivity in the heterobasidiomycete Ustilago maydis.
Collapse
Affiliation(s)
- T Irie
- Wood Research Institute, Kyoto University, Japan
| | | | | | | | | |
Collapse
|
12
|
Abstract
Biogenesis of respiratory cytochromes is defined as consisting of the posttranslational processes that are necessary to assemble apoprotein, heme, and sometimes additional cofactors into mature enzyme complexes with electron transfer functions. Different biochemical reactions take place during maturation: (i) targeting of the apoprotein to or through the cytoplasmic membrane to its subcellular destination; (ii) proteolytic processing of precursor forms; (iii) assembly of subunits in the membrane and oligomerization; (iv) translocation and/or modification of heme and covalent or noncovalent binding to the protein moiety; (v) transport, processing, and incorporation of other cofactors; and (vi) folding and stabilization of the protein. These steps are discussed for the maturation of different oxidoreductase complexes, and they are arranged in a linear pathway to best account for experimental findings from studies concerning cytochrome biogenesis. The example of the best-studied case, i.e., maturation of cytochrome c, appears to consist of a pathway that requires at least nine specific genes and more general cellular functions such as protein secretion or the control of the redox state in the periplasm. Covalent attachment of heme appears to be enzyme catalyzed and takes place in the periplasm after translocation of the precursor through the membrane. The genetic characterization and the putative biochemical functions of cytochrome c-specific maturation proteins suggest that they may be organized in a membrane-bound maturase complex. Formation of the multisubunit cytochrome bc, complex and several terminal oxidases of the bo3, bd, aa3, and cbb3 types is discussed in detail, and models for linear maturation pathways are proposed wherever possible.
Collapse
Affiliation(s)
- L Thöny-Meyer
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, ETH Zentrum, Zürich, Switzerland.
| |
Collapse
|
13
|
Hägerhäll C. Succinate: quinone oxidoreductases. Variations on a conserved theme. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1320:107-41. [PMID: 9210286 DOI: 10.1016/s0005-2728(97)00019-4] [Citation(s) in RCA: 304] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- C Hägerhäll
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia 19104, USA.
| |
Collapse
|
14
|
Gilmour R, Krulwich TA. Purification and characterization of the succinate dehydrogenase complex and CO-reactive b-type cytochromes from the facultative alkaliphile Bacillus firmus OF4. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1276:57-63. [PMID: 8764891 DOI: 10.1016/0005-2728(96)00028-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The presence of a cytochrome bo-type terminal oxidase in Bacillus firmus OF4 had been suggested from the effects of CO on the spectra of reduced membrane cytochromes (Hicks, D.B., Plass, R.J. and Quirk, P.G. (1991) J. Bacteriol. 173, 5010-5016). In that study the CO-binding b-type cytochrome was partially purified by anion exchange chromatography. No further purification was attempted but later HPLC analysis indicated the absence of significant heme O in the B. firmus OF4 membranes. The current work shows that the partially purified cytochrome b is actually composed of three different b-type cytochromes which can be separated and purified by a combination of ion-exchange, hydroxyapatite and gel filtration chromatographies. Two of the cytochromes were CO-reactive but lacked the characteristic multisubunit composition of known terminal oxidases. Neither purified cytochrome catalyzed quinol or ferrocytochrome c oxidation. The more abundant CO-reactive b-type cytochrome (cytochrome b560) had an apparent molecular mass of 10 kDa, whereas the other, more minor component (cytochrome b558), was partially purified and showed two bands of 23 and 17 kDa on SDS-PAGE. The functions of the cytochromes b560 and b558 remain unknown but together they account for the spectrum originally attributed to cytochrome bo. The third, non-CO reactive, cytochrome b was associated with substantial succinate dehydrogenase activity and was purified as a three subunit succinate dehydrogenase complex with high specific activity (17.7 mumol/min/mg). Limited N-terminal sequence of each subunit demonstrated marked similarity to the complex from Bacillus subtilis. The cytochrome b of the alkaliphile enzyme was reduced about 50% by succinate compared to the level of reduction achieved by dithionite. The enzyme reacted with both napthoquinones and benzoquinones. The results presented indicate that Bacillus firmus OF4 contains a succinate dehydrogenase complex with very similar properties to the enzyme from Bacillus subtilis, but does not contain a cytochrome o-type terminal oxidase under the growth conditions studied.
Collapse
Affiliation(s)
- R Gilmour
- Department of Biochemistry, Mount Sinai School of Medicine of CUNY, New York 10029, USA
| | | |
Collapse
|
15
|
Mortarino M, Negri A, Tedeschi G, Simonic T, Duga S, Gassen HG, Ronchi S. L-aspartate oxidase from Escherichia coli. I. Characterization of coenzyme binding and product inhibition. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 239:418-26. [PMID: 8706749 DOI: 10.1111/j.1432-1033.1996.0418u.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This paper reports the biochemical characterization of the flavoprotein L-aspartate oxidase from Escherichia coli. Modification of a previously published procedure allowed overexpression of the holoenzyme in an unproteolysed form. L-Aspartate oxidase is a monomer of 60 kDa containing 1 mol of noncovalently bound FAD/mol protein. A polarographic and two spectrophotometric coupled assays have been set up to monitor the enzymatic activity continuously. L-Aspartate oxidase was subjected to product inhibition since iminoaspartate, which results from the oxidation of L-aspartate, binds to the enzyme with a dissociation constant (Kd) equal to 1.4 microM. The enzyme binds FAD by a simple second-order process with Kd 0.67 microM. Site-directed mutagenesis of the residues E43, G44, S45, F47 and Y48 located in the putative binding site of the isoallossazinic portion of FAD reduces the affinity for the coenzyme.
Collapse
Affiliation(s)
- M Mortarino
- Istituto di Fisiologia Veterinaria e Biochimica, Università di Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
16
|
Burger G, Lang BF, Reith M, Gray MW. Genes encoding the same three subunits of respiratory complex II are present in the mitochondrial DNA of two phylogenetically distant eukaryotes. Proc Natl Acad Sci U S A 1996; 93:2328-32. [PMID: 8637872 PMCID: PMC39795 DOI: 10.1073/pnas.93.6.2328] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Although mitochondrial DNA is known to encode a limited number (<20) of the polypeptide components of respiratory complexes I, III, IV, and V, genes for components of complex II [succinate dehydrogenase (ubiquinone); succinate:ubiquinone oxidoreductase, EC 1.3.5.1] are conspicuously lacking in mitochondrial genomes so far characterized. Here we show that the same three subunits of complex II are encoded in the mitochondrial DNA of two phylogenetically distant eukaryotes, Porphyra purpurea (a photosynthetic red alga) and Reclinomonas americana (a heterotrophic zooflagellate). These complex II genes, sdh2, sdh3, and sdh4, are homologs, respectively, of Escherichia coli sdhB, sdhC, and sdhD. In E. coli, sdhB encodes the iron-sulfur subunit of succinate dehydrogenase (SDH), whereas sdhC and sdhD specify, respectively, apocytochrome b558 and a hydrophobic 13-kDa polypeptide, which together anchor SDH to the inner mitochondrial membrane. Amino acid sequence similarities indicate that sdh2, sdh3, and sdh4 were originally encoded in the protomitochondrial genome and have subsequently been transferred to the nuclear genome in most eukaryotes. The data presented here are consistent with the view that mitochondria constitute a monophyletic lineage.
Collapse
Affiliation(s)
- G Burger
- Program in Evolutionary Biology, Canadian Institute for Advanced Research, Département de Biochimie, Université de Montréal, Quebec, Canada
| | | | | | | |
Collapse
|
17
|
Viehmann S, Richard O, Boyen C, Zetsche K. Genes for two subunits of succinate dehydrogenase form a cluster on the mitochondrial genome of Rhodophyta. Curr Genet 1996; 29:199-201. [PMID: 8821668 DOI: 10.1007/bf02221585] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Mitochondrial DNA from the unicellular rhodophyte Cyanidium caldarium RK-1 and the multicellular Chondrus crispus were isolated, cloned, and sequenced. Two genes, sdhB and sdhC, that encode subunits of the succinate dehydrogenase, were identified by similarity. These genes form a cluster (sdhCB) in both red algae.
Collapse
Affiliation(s)
- S Viehmann
- Institut für Pflanzenphysiologie, Justus-Liebig-Universität, Giessen, Germany
| | | | | | | |
Collapse
|
18
|
Iwasaki T, Wakagi T, Oshima T. Resolution of the aerobic respiratory system of the thermoacidophilic archaeon, Sulfolobus sp. strain 7. III. The archaeal novel respiratory complex II (succinate:caldariellaquinone oxidoreductase complex) inherently lacks heme group. J Biol Chem 1995; 270:30902-8. [PMID: 8537344 DOI: 10.1074/jbc.270.52.30902] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
An active respiratory complex II (succinate:quinone oxidoreductase) has been purified from tetraether lipid membranes of the thermoacidophilic archaeon, Sulfolobus sp. strain 7. It consists of four different subunits with apparent molecular masses of 66, 37, 33, and 12 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The 66-kDa subunit contains a covalently bound flavin, the 37-kDa subunit is a possible iron-sulfur protein carrying three distinct types of EPR-visible FeS cluster, and the 33- and 12-kDa subunits are putative membrane-anchor subunits, respectively. While no heme group is detected in the purified complex II, it catalyzes succinate-dependent reduction of ubiquinone-1 and 2,6-dichlorophenolindophenol in the absence of phenazine methosulfate. The respiratory complex II of Sulfolobus sp. strain 7 appears to be novel in that it functions as a true succinate:caldariellaquinone oxidoreductase, although inherently lacking any heme group. This further indicates that the heme group of several respiratory complexes II may not be involved in the redox intermediates of the electron transfer from succinate to quinone.
Collapse
Affiliation(s)
- T Iwasaki
- Department of Life Science, Tokyo Institute of Technology, Yokohama, Japan
| | | | | |
Collapse
|
19
|
Kowal AT, Werth MT, Manodori A, Cecchini G, Schröder I, Gunsalus RP, Johnson MK. Effect of cysteine to serine mutations on the properties of the [4Fe-4S] center in Escherichia coli fumarate reductase. Biochemistry 1995; 34:12284-93. [PMID: 7547971 DOI: 10.1021/bi00038a024] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Site-directed mutants of Escherichia coli fumarate reductase in which FrdB Cys148, Cys151, Cys154, and Cys158 are replaced individually by Ser have been constructed and overexpressed in a strain of E. coli lacking a wild-type copy of fumarate reductase and succinate dehydrogenase. The consequences of these mutations on bacterial growth, enzymatic activity, and the EPR properties of the constituent iron-sulfur clusters have been investigated. The Cys154Ser and Cys158Ser FrdB mutations result in enzymes with negligible activity that have largely dissociated from the cytoplasmic membrane and consequently are incapable of supporting cell growth under conditions requiring a functional fumarate reductase. EPR studies indicate that these effects are associated with loss of both the [3Fe-4S] and [4Fe-4S] clusters. In contrast the Cys148Ser and Cys151Ser FrdB mutations result in functional membrane bound enzymes that are able to support growth under anaerobic and aerobic conditions. EPR studies of these mutants indicate that all three of the constituent Fe-S clusters are assembled, and the redox and spectroscopic properties of the [2Fe-2S] and [3Fe-4S] clusters are unchanged compared to the wild-type enzyme. In both mutants the [4Fe-4S] cluster is assembled with one non-cysteinyl ligand, and the available data suggest serinate coordination. The physicochemical consequences are perturbation of the intercluster spin interaction between the S = 1/2 [4Fe-4S]+ and S = 2 [3Fe-FS]0 clusters and a 60-mV decrease in redox potential for the [4Fe-FS]2+,+ cluster in the FrdB Cys148Ser mutant, and a S = 1/2 to S = 3/2 spin state conversion for the [4Fe-4S]+ cluster and a 72-mV decrease in redox potential for the [4Fe-4S]2+,+ cluster in the FrdB Cys151Ser mutant. Taken together with the previous FrdB Cys to Ser mutagenesis results [Werth, M. T., Cecchini, G., Manodori, A., Ackrell, B. A. C., Schröder, I., Gunsalus, R. P., & Johnson, M. K. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 8965-8969; Manodori, A., Cecchini, G., Schröder, I., Gunsalus, R. P., Werth, M. T., & Johnson, M. K. (1992) Biochemistry 31, 2703-2712], the results provide strong support for the proposal that all three clusters are located in the FrdB subunit with Cys57, Cys62, Cys65, and Cys77 ligating the [2Fe-2S] cluster, Cys148, Cys151, Cys154, and Cys214 ligating the [4Fe-4S] cluster, and Cys158, Cys204, and Cys210 ligating the [3Fe-4S] cluster. The role of the low potential [4Fe-4S] cluster in mediating electron transfer from menaquinol to the FAD active site is discussed in light of these mutagenesis results.
Collapse
Affiliation(s)
- A T Kowal
- Department of Chemistry, University of Georgia, Athens 30602, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Hägerhäll C, Fridén H, Aasa R, Hederstedt L. Transmembrane topology and axial ligands to hemes in the cytochrome b subunit of Bacillus subtilis succinate:menaquinone reductase. Biochemistry 1995; 34:11080-9. [PMID: 7669765 DOI: 10.1021/bi00035a013] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The membrane-anchoring subunit of Bacillus subtilis succinate:menaquinone reductase is a protein of 202 residues containing two protoheme IX groups with bis-histidine axial ligation. Residues His13, His28, His70, His113, and His155 are the possible heme ligands. The transmembrane topology of this cytochrome was analyzed using fusions to alkaline phosphatase. The results support a proposed model with five transmembrane polypeptide segments and the N-terminus exposed to the cytoplasm. Mutant B. subtilis cytochromes containing a His13-->Tyr, a His28-->Tyr, and a His113-->Tyr mutation, respectively, were produced in Escherichia coli, partially purified, and analyzed. In addition, succinate: menaquinone reductase containing the His13-->Tyr mutation in the anchor subunit was overproduced in B. subtilis, purified, and characterized. The data demonstrate that His13 is not an axial heme ligand. Thermodynamic and spectroscopic properties of the cytochrome are, however, affected by the His13-->Tyr mutation; compared to wild type, the redox potentials of both hemes are negatively shifted and the gmax signal in the EPR spectrum of the high-potential heme is shifted from 3.68 to 3.50. From the combined results we conclude that His28 and His113 function as axial ligands to the low-potential heme, which is located in the membrane near the outer surface of the cytoplasmic membrane. Residues His70 and His155 ligate the high-potential heme, which is positioned close to His13 in the protein, near the inner surface of the membrane.
Collapse
Affiliation(s)
- C Hägerhäll
- Department of Microbiology, Lund University, Sweden
| | | | | | | |
Collapse
|
21
|
Cecchini G, Sices H, Schröder I, Gunsalus RP. Aerobic inactivation of fumarate reductase from Escherichia coli by mutation of the [3Fe-4S]-quinone binding domain. J Bacteriol 1995; 177:4587-92. [PMID: 7642483 PMCID: PMC177221 DOI: 10.1128/jb.177.16.4587-4592.1995] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Fumarate reductase from Escherichia coli functions both as an anaerobic fumarate reductase and as an aerobic succinate dehydrogenase. A site-directed mutation of E. coli fumarate reductase in which FrdB Pro-159 was replaced with a glutamine or histidine residue was constructed and overexpressed in a strain of E. coli lacking a functional copy of the fumarate reductase or succinate dehydrogenase complex. The consequences of these mutations on bacterial growth, assembly of the enzyme complex, and enzymatic activity were investigated. Both mutations were found to have no effect on anaerobic bacterial growth or on the ability of the enzyme to reduce fumarate compared with the wild-type enzyme. The FrdB Pro-159-to-histidine substitution was normal in its ability to oxidize succinate. In contrast, however, the FrdB Pro-159-to-Gln substitution was found to inhibit aerobic growth of E. coli under conditions requiring a functional succinate dehydrogenase, and furthermore, the aerobic activity of the enzyme was severely inhibited upon incubation in the presence of its substrate, succinate. This inactivation could be prevented by incubating the mutant enzyme complex in an anaerobic environment, separating the catalytic subunits of the fumarate reductase complex from their membrane anchors, or blocking the transfer of electrons from the enzyme to quinones. The results of these studies suggest that the succinate-induced inactivation occurs by the production of hydroxyl radicals generated by a Fenton-type reaction following introduction of this mutation into the [3Fe-4S] binding domain. Additional evidence shows that the substrate-induced inactivation requires quinones, which are the membrane-bound electron acceptors and donors for the succinate dehydrogenase and fumarate reductase activities. These data suggest that the [3Fe-4S] cluster is intimately associated with one of the quinone binding sites found n fumarate reductase and succinate dehydrogenase.
Collapse
Affiliation(s)
- G Cecchini
- Molecular Biology Division, Veterans Administration Medical Center, San Francisco, California 94121, USA
| | | | | | | |
Collapse
|
22
|
Kuramochi T, Kita K, Takamiya S, Kojima S, Hayasaki M. Comparative study and cDNA cloning of the flavoprotein subunit of mitochondrial complex II (succinate-ubiquinone oxidoreductase: fumarate reductase) from the dog heartworm, Dirofilaria immitis. Comp Biochem Physiol B Biochem Mol Biol 1995; 111:491-502. [PMID: 7613771 DOI: 10.1016/0305-0491(95)00022-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Mitochondrial complex II functions as a fumarate reductase (FRD), the reverse reaction of succinate dehydrogenase (SDH), and plays an important role in the anaerobic respiratory chain of parasitic helminths. In this study, complex II from the dog heartworm, Dirofilaria immitis adult, which is thought to act as a homolactatic fermenter, was examined in terms of its enzymatic features and primary structure in order to investigate the possible role of mitochondria in this filaria. Mitochondria from D. immitis adult showed high FRD activity when the enzymatic assay was performed using methylviologen as an artificial electron donor. The ratio of SDH to FRD in D. immitis was comparable to that in Ascaris suum adult, which is known to have an anaerobic mitochondrial respiratory chain with a high FRD activity of complex II. The FRD activity of D. immitis mitochondria was inhibited by the sulfhydryl reagent N-ethylmaleimide (NEM), while that of A. suum complex II was resistant to this inhibitor. The presence of the flavoprotein (Fp) subunit, which contains the substrate binding active site, was confirmed in D. immitis mitochondria by immunoblotting using a monoclonal antibody against the A. suum Fp subunit. By homology probing with the polymerase chain reaction, the entire cDNA for the D. immitis adult Fp was cloned and sequenced. The deduced amino acid sequence showed significant homology to that of A. suum and other mitochondrial Fps, in contrast to much less similarity to bacterial FRD, even though the D. immitis complex II showed high FRD activity. These results are the first indication of the presence of a functional complex II in D. immitis mitochondria.
Collapse
Affiliation(s)
- T Kuramochi
- Department of Veterinary Internal Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Japan
| | | | | | | | | |
Collapse
|
23
|
Hägerhäll C, Sled V, Hederstedt L, Ohnishi T. The trinuclear iron-sulfur cluster S3 in Bacillus subtilis succinate:menaquinone reductase; effects of a mutation in the putative cluster ligation motif on enzyme activity and EPR properties. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1229:356-62. [PMID: 7748886 DOI: 10.1016/0005-2728(95)00023-c] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Succinate:quinone reductases (SQRs) and quinol:fumarate reductases (QFRs) each contain a bi-, a tri- and a tetra-nuclear iron-sulfur cluster. The C-terminal half of the iron-sulfur protein subunit of these enzymes shows two fully conserved motifs of cysteine residues, stereotypical for ligands of [3Fe-4S] and [4Fe-4S] clusters. To analyze the functional role of the trinuclear cluster S3 in Bacillus subtilis SQR, a fourth cysteine residue was introduced into the putative ligation motif to that cluster. A corresponding mutation in Escherichia coli QFR results in a tri- to tetranuclear conversion (Manodori et al. (1992) Biochemistry 31, 2703-2731). We have found that presence of the extra cysteine in B. subtilis SQR does not result in cluster conversion. It does, however, affect the EPR properties of the cluster S3, whereas those of the other two clusters remain normal. The results strongly support the view that residues in the most C-terminal cysteine motif in the iron-sulfur protein subunit of SQRs and QFRs ligate the trinuclear cluster. Compared to wild-type SQR, S3 in the B. subtilis mutant enzyme is not sensitive to methanol and the midpoint redox potential is close to normal. The quinone reductase activity of the mutant enzyme is only 35% of normal. Thus, the architecture around cluster S3 plays a role in electron transfer to quinone or in the binding of quinone to the enzyme.
Collapse
Affiliation(s)
- C Hägerhäll
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia 19104, USA
| | | | | | | |
Collapse
|
24
|
Affiliation(s)
- M Lübben
- Lehrstuhl für Biophysik, Ruhr-Universität Bochum, Germany
| |
Collapse
|
25
|
Heinzen RA, Mo YY, Robertson SJ, Mallavia LP. Characterization of the succinate dehydrogenase-encoding gene cluster (sdh) from the rickettsia Coxiella burnetii. Gene 1995; 155:27-34. [PMID: 7698664 DOI: 10.1016/0378-1119(94)00888-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have identified and sequenced four genes that encode the protein subunits comprising the succinate dehydrogenase enzyme complex (Sdh) of the rickettsia Coxiella burnetii. The Sdh-encoding gene cluster (sdhCDAB) begins 3326 bp upstream from the citrate synthase-encoding gene (gltA) start codon and is read with opposite polarity. An open reading frame encoding the N-terminal 280 amino acids (aa) of 2-oxoglutarate dehydrogenase (SucA) begins 24 bp downstream from the stop codon of the gene specifying the iron-sulfur subunit (sdhB) of Sdh. The deduced aa sequence of Sdh subunits and the N-terminal portion of SucA revealed significant aa identity with the Esherichia coli homologues ranging from a low of 36.6% for SdhD to a high of 61.2% for SdhA and SdhB. Primer extension identified transcription start points (tsp) for sdh and sucA. The region upstream from the sdh tsp, but not the sucA tsp, displayed homology to promoter consensus sequences of E. coli. Further evidence that sucA transcription can occur independent of sdh transcription was provided by demonstrating that a TnphoA insertion disrupting sdhB had no effect on the production of SucA by an E. coli cell-extract-directed in vitro transcription/translation system. The plasmid clone pLPM60, which carries the C. burnetii sdhCDAB coding and upstream regulatory regions, rescued an E. coli sdhA mutant (MOB252), indicating functional expression of the rickettsial locus. A cell extract of MOB252 transformed with pLPM60 showed a sixfold greater level of Sdh enzyme activity over the E. coli wild type. A plasmid clone lacking the sdh upstream regulatory region did not complement nor produce sdh mRNA by dot blot analysis.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- R A Heinzen
- Department of Microbiology, Washington State University, Pullman 99164-4233, USA
| | | | | | | |
Collapse
|
26
|
Van Hellemond JJ, Tielens AG. Expression and functional properties of fumarate reductase. Biochem J 1994; 304 ( Pt 2):321-31. [PMID: 7998964 PMCID: PMC1137495 DOI: 10.1042/bj3040321] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- J J Van Hellemond
- Laboratory of Veterinary Biochemistry, Utrecht University, The Netherlands
| | | |
Collapse
|
27
|
Kuramochi T, Hirawake H, Kojima S, Takamiya S, Furushima R, Aoki T, Komuniecki R, Kita K. Sequence comparison between the flavoprotein subunit of the fumarate reductase (complex II) of the anaerobic parasitic nematode, Ascaris suum and the succinate dehydrogenase of the aerobic, free-living nematode, Caenorhabditis elegans. Mol Biochem Parasitol 1994; 68:177-87. [PMID: 7739664 DOI: 10.1016/0166-6851(94)90163-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Complex II in adult mitochondria of the parasitic nematode, Ascaris suum, exhibits high fumarate reductase activity and plays a key role in the anaerobic electron-transport observed in these organelles. In the present study, cDNAs for the flavoprotein (Fp) subunits of complex II have been isolated, cloned and sequenced from both A. suum and the aerobic, free-living nematode, Caenorhabditis elegans. Additional sequence at the 3' end of the mRNAs was determined by the Rapid Amplification of cDNA Ends (RACE). Nucleotide sequence analysis of the A. suum cDNAs revealed a 22-nucleotide trans-spliced leader sequence characteristic of many nematode mRNAs, an open reading frame of 1935 nucleotides and a 3' untranslated region of 616 nucleotides including a poly (A) tail from a polyadenylation signal (AATAAA). The open reading frame encoded a 645 amino acid sequence, including a 30 amino acid mitochondrial presequence. The amino acid sequences for the Fp subunits from both organisms were very similar, even though the ascarid enzyme functions physiologically as a fumarate reductase and the C. elegans enzyme a succinate dehydrogenase. The ascarid sequence was much less similar to the Escherichia coli fumarate reductase. The sensitivity of other Fp subunits to sulfhydryl reagents appears to reside in a cysteine immediately preceding a conserved arginine in the putative active site. In both nematode sequences, this cysteine is replaced by serine even though the succinate dehydrogenase activity of both enzymes is still sensitive to sulfhydryl inhibition. A cysteine six residues upstream of the serine may be involved in the sulfhydryl sensitivity of the nematode enzymes. Surprisingly, in contrast to succinate dehydrogenase activity, the fumarate reductase activity of the ascarid enzyme was not sensitive to sulfhydryl inhibition, suggesting that the mechanism of the two reactions involves separate catalytic processes.
Collapse
Affiliation(s)
- T Kuramochi
- Department of Parasitology, University of Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Morris AA, Farnsworth L, Ackrell BA, Turnbull DM, Birch-Machin MA. The cDNA sequence of the flavoprotein subunit of human heart succinate dehydrogenase. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1185:125-8. [PMID: 8142412 DOI: 10.1016/0005-2728(94)90203-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We report the full-length cDNA sequence for the flavoprotein subunit of human heart succinate dehydrogenase (succinate: (acceptor) oxidoreductase EC 1.3.99.1). Identical sequence was obtained for part of the cDNA of the human placental flavoprotein, in contrast to a previously published sequence. The human sequence, like the bovine one, contains a cysteine triplet and at the active site there is an additional cysteine when compared with yeast or prokaryotes.
Collapse
Affiliation(s)
- A A Morris
- Division of Clinical Neuroscience, University of Newcastle upon Tyne, UK
| | | | | | | | | |
Collapse
|
29
|
Jay D, Jay EG, Garcia C. Inhibition of membrane-bound succinate dehydrogenase by fluorescamine. J Bioenerg Biomembr 1993; 25:685-8. [PMID: 8144496 DOI: 10.1007/bf00770255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Fluorescamine rapidly inactivated membrane-bound succinate dehydrogenase. The inhibition of the enzyme by this reagent was prevented by succinate and malonate, suggesting that the group modified by fluorescamine was located at the active site. The modification of the active site sulfhydryl group by 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) did not alter the inhibitory action of fluorescamine. However, the protective effect of malonate against fluorescamine inhibition was abolished in the enzyme modified at the thiol.
Collapse
Affiliation(s)
- D Jay
- Departamento de Bioquimica, Instituto Nacional de Cardiologia, Ignacio Chavez, Mexico, D.F
| | | | | |
Collapse
|
30
|
Aliabadi Z, Winkler HH, Wood DO. Isolation and characterization of the Rickettsia prowazekii gene encoding the flavoprotein subunit of succinate dehydrogenase. Gene X 1993; 133:135-40. [PMID: 8224887 DOI: 10.1016/0378-1119(93)90238-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The gene (sdhA) coding for the flavoprotein subunit (SdhA) of succinate dehydrogenase of the obligate intracellular parasitic bacterium, Rickettsia prowazekii, has been isolated using an oligodeoxyribonucleotide probe to the conserved flavin adenine dinucleotide (FAD)-binding region of characterized flavoproteins. Nucleotide (nt) sequence analysis revealed an open reading frame (ORF) of 1791 bp capable of encoding a protein of 596 amino acids (aa) with a deduced M(r) of 65,444. The deduced aa sequence, when compared to the flavoprotein subunits of Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae and Bos taurus, revealed 52.8, 34.0, 65.8 and 52.0% aa identity, respectively. R. prowazekii SdhA produced in E. coli minicells and analyzed by sodium dodecyl sulfate-polyacrylamide-gel electrophoresis (SDS-PAGE) migrated as a protein of approximately 63 kDa, comparable to the size of the deduced protein. In addition, two proteins of approximately 12 and 41 kDa were also produced in the E. coli minicells. The production of these proteins resulted from additional translational starts within the SdhA coding sequence, suggesting differences between the translational start signals of E. coli and R. prowazekii. Despite the similarity of R. prowazekii SdhA to that of E. coli, the R. prowazekii SdhA did not complement an E. coli sdhA mutant. In addition, analysis of the nt sequence immediately upstream from R. prowazekii sdhA revealed that the rickettsial sdh gene organization differs from that of E. coli and B. subtilis.
Collapse
Affiliation(s)
- Z Aliabadi
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile 36688
| | | | | |
Collapse
|
31
|
Bach M, Reiländer H, Gärtner P, Lottspeich F, Michel H. Nucleotide sequence of a putative succinate dehydrogenase operon in Thermoplasma acidophilum. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1174:103-7. [PMID: 8334158 DOI: 10.1016/0167-4781(93)90101-i] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
28 amino acids from the N-terminal region of a putative terminal oxidase from the archaebacterium Thermoplasma acidophilum were determined by Edman degradation. On basis of this amino acid sequence a degenerated oligonucleotide was synthesized and used as a radioactive probe for Southern blot analysis of EcoRI digested genomic DNA. A 2.3 kb EcoRI fragment strongly hybridized to the probe and size selected genomic library from genomic DNA was constructed. Several clones scored positive by screening the library with the degenerated oligonucleotide, from which only one clone contained a EcoRI DNA fragment encoding the 28 amino acid sequence determined by protein sequencing. Sequence analysis revealed the presence of three genes in the typical arrangement of an operon. The first gene codes for a protein containing 11 cystein residues in an arrangement typical for Fe/S proteins. Protein sequence comparison revealed significant homologies to the fumarate reductase and succinate dehydrogenase of other bacteria. The two other genes encode small hydrophobic proteins probably serving as membrane anchor for the Thermoplasma acidophilum succinate dehydrogenase.
Collapse
Affiliation(s)
- M Bach
- Max-Planck-Institut für Biophysik, Abteilung Molekulare Membranbiologie, Frankfurt/Main, Germany
| | | | | | | | | |
Collapse
|
32
|
Abstract
The quinol oxidase appears to be mainly responsible for the oxidation of the bacterial MKH2 in Bacillus subtilis W23 growing with either glucose or succinate. The activity of the enzyme was maximum with dimethylnaphthoquinol, a water-soluble analogue of the bacterial menaquinol. Menadiol or duroquinol were less actively respired, and naphthoquinol was not oxidized at all. After fourtyfold purification the isolated enzyme contained 5.3 mumol cytochrome aa3 per gram of protein and negligible amounts of cytochrome b and c. The turnover number based on cytochrome aa3 was about 10(3) electrons.s-1 at pH 7 and 37 degrees C. The preparation consisted mainly of a M(r) 57,000 and a M(r) 36,000 polypeptide. The N-terminal amino acid sequence of the latter polypeptide differed from that predicted by the qoxA gene of B. subtilis strain 168 (Santana et al. 1992), in that asp-14 predicted by qoxA was missing in the M(r) 36,000 polypeptide.
Collapse
Affiliation(s)
- E Lemma
- Institut für Mikrobiologie, J.-W.-Goethe Universität, Frankfurt am Main, Germany
| | | | | |
Collapse
|
33
|
Abstract
Bacillus subtilis cells must have cytochromes for growth and can synthesize cytochromes of a-, b-, c-, d-, and o-types. After a long lag, our knowledge of the structure, genetics and specific role for these cytochromes is now growing exponentially as the result of recent research. This progress is reviewed here and includes, for example, the discovery of two different cytochrome a systems and genes required for their biogenesis.
Collapse
|
34
|
Pealing SL, Black AC, Manson FD, Ward FB, Chapman SK, Reid GA. Sequence of the gene encoding flavocytochrome c from Shewanella putrefaciens: a tetraheme flavoenzyme that is a soluble fumarate reductase related to the membrane-bound enzymes from other bacteria. Biochemistry 1992; 31:12132-40. [PMID: 1333793 DOI: 10.1021/bi00163a023] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Flavocytochrome c from the Gram-negative, food-spoiling bacterium Shewanella putrefaciens is a soluble, periplasmic fumarate reductase. We have isolated the gene encoding flavocytochrome c and determined the complete DNA sequence. The predicted amino acid sequence indicates that flavocytochrome c is synthesized with an N-terminal secretory signal sequence of 25 amino acid residues. The mature protein contains 571 amino acid residues and consists of an N-terminal cytochrome domain, of about 117 residues, with four heme attachment sites typical of c-type cytochromes and a C-terminal flavoprotein domain of about 454 residues that is clearly related to the flavoprotein subunits of fumarate reductases and succinate dehydrogenases from bacterial and other sources. A second reading frame that may be cotranscribed with the flavocytochrome c gene exhibits some similarity with the 13-kDa membrane anchor subunit of Escherichia coli fumarate reductase. The sequence of the flavoprotein domain demonstrates an even closer relationship with the product of the yeast OSM1 gene, mutations in which result in sensitivity to high osmolarity. These findings are discussed in relation to the function of flavocytochrome c.
Collapse
Affiliation(s)
- S L Pealing
- Edinburgh Centre for Molecular Recognition, Institute of Cell and Molecular Biology, Scotland, U.K
| | | | | | | | | | | |
Collapse
|
35
|
Yu L, Wei Y, Usui S, Yu C. Cytochrome b560 (QPs1) of mitochondrial succinate-ubiquinone reductase. Immunochemistry, cloning, and nucleotide sequencing. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)35794-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
36
|
|
37
|
|
38
|
Neidle EL, Kaplan S. Rhodobacter sphaeroides rdxA, a homolog of Rhizobium meliloti fixG, encodes a membrane protein which may bind cytoplasmic [4Fe-4S] clusters. J Bacteriol 1992; 174:6444-54. [PMID: 1400197 PMCID: PMC207600 DOI: 10.1128/jb.174.20.6444-6454.1992] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In the photosynthetic bacterium Rhodobacter sphaeroides, a chromosomal gene, rdxA, which encodes a 52-kDa protein, was found to be homologous to fixG, the first gene of a Rhizobium meliloti nitrogen fixation operon on the pSym plasmid (D. Kahn, M. David, O. Domergue, M.-L. Daveran, J. Ghai, P. R. Hirsch, and J. Batut, J. Bacteriol. 171:929-939, 1989). The deduced amino acid sequences of RdxA and FixG are 53% identical and 73% similar; sequence analyses suggested that each has five transmembrane helices and a central region resembling bacterial-type ferredoxins. Translational fusion proteins with an alkaline phosphatase reporter group were expressed in both R. sphaeroides and Escherichia coli and were used to assess the membrane topology of RdxA. Its ferredoxinlike sequence, which may bind two [4Fe-4S] centers, was found to be cytoplasmically located. Genetic disruptions showed that rdxA is not essential for nitrogen fixation in R. sphaeroides. Immediately downstream of rdxA, an open reading frame (ORFT2) that encoded a 48-kDa protein was found. This DNA sequence was not homologous to any region of the R. meliloti fixG operon. The N-terminal sequence of the ORFT2 gene product resembled amino acid sequences found in members of the GntR family of regulatory proteins (D. J. Haydon and J. R. Guest, FEMS Microbiol. Lett. 79:291-296, 1991). The rdxA gene was localized to the smaller of two R. sphaeroides chromosomes, upstream of and divergently transcribed from hemT, which encodes one of two 5-aminolevulinate synthase isozymes. The rdxA and hemT genes may share a transcriptional regulatory region. Southern hybridization analysis demonstrated the presence of an rdxA homolog on the R. sphaeroides large chromosome. The functions of this homolog, like those of rdxA, remain to be determined, but roles in oxidation-reduction processes are likely.
Collapse
Affiliation(s)
- E L Neidle
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston 77225
| | | |
Collapse
|
39
|
Schülke N, Blobel G, Pain D. Primary structure, import, and assembly of the yeast homolog of succinate dehydrogenase flavoprotein. Proc Natl Acad Sci U S A 1992; 89:8011-5. [PMID: 1518827 PMCID: PMC49845 DOI: 10.1073/pnas.89.17.8011] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We have isolated a homolog for the flavoprotein subunit of succinate dehydrogenase [succinate:(acceptor) oxidoreductase, EC 1.3.99.1] from Saccharomyces cerevisiae and used the obtained peptide sequences to clone and characterize the corresponding gene. It contained an open reading frame of 1923 base pairs and encoded a protein of 640 amino acids (M(r), 70,238) that showed approximately 49% and approximately 28% identity with the Escherichia coli and Bacillus subtilis enzymes, respectively. All features of the FAD cofactor binding site were completely conserved. Comparison of the deduced protein sequence with the N-terminal sequence determined from the isolated protein revealed an N-terminal extension of 28 amino acids that presumably represents a mitochondrial signal sequence. After in vitro transcription and translation, the preprotein was efficiently imported into isolated yeast mitochondria, cleaved to its mature form, and assembled into the membrane-bound succinate dehydrogenase complex.
Collapse
Affiliation(s)
- N Schülke
- Rockefeller University, Laboratory of Cell Biology, Howard Hughes Medical Institute, New York, NY 10021
| | | | | |
Collapse
|
40
|
Kita K, Mizuchi D, Wang H, Takamiya S, Aoki T, Kojima S. cDNA sequence of three cysteine-rich clusters in the iron-sulfur subunit of complex II (succinate-ubiquinone oxidoreductase) from Caenorhabditis elegans determined by automated DNA sequencer. Electrophoresis 1992; 13:506-11. [PMID: 1451685 DOI: 10.1002/elps.11501301106] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Homology probing by using mixed primers for polymerase chain reaction (PCR) and a subsequent sequence analysis by automated DNA sequencer were applied to determine a partial cDNA sequence of the iron-sulfur subunit of complex II (succinate-ubiquinone oxidoreductase). Complex II is a membrane-bound flavoenzyme, which catalyzes the oxidation of succinate to fumarate in the tricarboxylic acid cycle, and it is a component of the mitochondrial and bacterial respiratory chains. In this study, the partial amino acid sequence of iron-sulfur subunits in Caenorhabditis elegans mitochondria was deduced from the DNA sequence obtained from cDNA-PCR. Mixed oligonucleotide primers corresponding to two conserved regions which appear to be the binding site for the prosthetic group were used. The product of PCR was cloned into plasmid vector pUC 119 and the sequence was determined from double strand plasmid DNA by the dideoxy method using of one-dye, four-lane type the automated DNA sequencer (DSQ-1, Shimadzu). The PCR product contained 483 nucleotides and its deduced amino acid sequence was highly homologous with that in human liver (68.9%) and that of Escherichia coli sdh B product (50.3%). As expected, striking sequence conservation was found around the three cysteine-rich clusters which have been thought to comprise the iron-sulfur centers of the enzyme.
Collapse
Affiliation(s)
- K Kita
- Department of Parasitology, University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
41
|
Hughes RK, Doyle WA, Chovnick A, Whittle JR, Burke JF, Bray RC. Use of rosy mutant strains of Drosophila melanogaster to probe the structure and function of xanthine dehydrogenase. Biochem J 1992; 285 ( Pt 2):507-13. [PMID: 1637342 PMCID: PMC1132817 DOI: 10.1042/bj2850507] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The usefulness in structure/function studies of molybdenum-containing hydroxylases in work with rosy mutant strains of Drosophila melanogaster has been investigated. At least 23 such strains are available, each corresponding to a single known amino acid change in the xanthine dehydrogenase sequence. Sequence comparisons permit identification, with some certainty, of regions associated with the iron-sulphur centres and the pterin molybdenum cofactor of the enzyme. Procedures have been developed and rigorously tested for the assay in gel-filtered extracts of the flies, of different catalytic activities of xanthine dehydrogenase by the use of various oxidizing and reducing substrates. These methods have been applied to 11 different rosy mutant strains that map to different regions of the sequence. All the mutations studied cause characteristic activity changes in the enzyme. In general these are consistent with the accepted assignment of the cofactors to the different domains and with the known reactivities of the molybdenum, flavin and iron-sulphur centres. Most results are interpretable in terms of the mutation affecting electron transfer to or from one redox centre only. The activity data provide evidence that FAD and the NAD+/NADH binding sites are retained in mutants mapping to the flavin domain. Therefore, despite some indications from sequence comparisons, it is concluded that the structure of this domain of xanthine dehydrogenase cannot be directly related to that of other flavoproteins for which structural data are available. The data also indicate that the artificial electron acceptor phenazine methosulphate acts at the iron-sulphur centres and suggest that these centres may not be essential for electron transfer between molybdenum and flavin. The work emphasizes the importance of combined genetic and biochemical study of rosy mutant xanthine dehydrogenase variants in probing the structure and function of enzymes of this class.
Collapse
Affiliation(s)
- R K Hughes
- Biochemistry Laboratory, School of Biological Sciences, University of Sussex, Brighton, U.K
| | | | | | | | | | | |
Collapse
|
42
|
Birch-Machin M, Farnsworth L, Ackrell B, Cochran B, Jackson S, Bindoff L, Aitken A, Diamond A, Turnbull D. The sequence of the flavoprotein subunit of bovine heart succinate dehydrogenase. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)49946-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
43
|
Krafft T, Bokranz M, Klimmek O, Schröder I, Fahrenholz F, Kojro E, Kröger A. Cloning and nucleotide sequence of the psrA gene of Wolinella succinogenes polysulphide reductase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 206:503-10. [PMID: 1597189 DOI: 10.1111/j.1432-1033.1992.tb16953.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The polysulphide reductase (formerly sulphur reductase) of Wolinella succinogenes is a component of the phosphorylative electron transport system with polysulphide as the terminal acceptor. Using an antiserum raised against the major subunit (PsrA, 85 kDa) of the enzyme, the corresponding gene (psrA) was cloned from a lambda-gene bank. The N-terminal amino acid sequence of PsrA mapped within the psrA gene product, which also contained an apparent signal peptide. Downstream of the psrA gene two more open reading frames (psrB and psrC) were found. The three genes may form a transcriptional unit with the transcription start site in front of psrA. The three genes were present only once on the genome. PsrA is a hydrophilic protein homologous to the largest subunits of six prokaryotic molybdoenzymes. PsrB is predicted to be hydrophilic, to contain ferredoxin-like cysteine clusters and to be homologous to the smaller hydrophilic subunits of four molybdoenzymes. PsrC is predicted to be a hydrophobic protein that could possibly serve as the membrane anchor of the enzyme.
Collapse
Affiliation(s)
- T Krafft
- Institut für Mikrobiologie, J.W. Goethe-Universität, Frankfurt am Main, Federal Republic of Germany
| | | | | | | | | | | | | |
Collapse
|
44
|
Isolation and nucleotide sequence of the Saccharomyces cerevisiae gene for the succinate dehydrogenase flavoprotein subunit. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50205-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
45
|
Abstract
During the past ten years, studies on the respiratory chain of mitochondria in parasites have progressed to provide new insight into the structural organization and physiological significance of the mitochondrial respiratory chain. In this review, Kiyoshi Kita focuses on studies on the respiratory chain of Ascaris mitochondria in which major advances have recently been made. These include the identification of the unique features of anaerobic respiration, the elucidation of the molecular structures of the components involved and an understanding of the evolution of the energy transducing system and of the developmental changes that occur during the life cycle of this nematode.
Collapse
Affiliation(s)
- K Kita
- Department of Parasitology, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108, Japan
| |
Collapse
|
46
|
Manodori A, Cecchini G, Schröder I, Gunsalus RP, Werth MT, Johnson MK. [3Fe-4S] to [4Fe-4S] cluster conversion in Escherichia coli fumarate reductase by site-directed mutagenesis. Biochemistry 1992; 31:2703-12. [PMID: 1312345 DOI: 10.1021/bi00125a010] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Site-directed mutants of Escherichia coli fumarate reductase in which FrdB Cys204, Cys210, and Cys214 were individually replaced by Ser and in which Val207 was replaced by Cys were constructed and overexpressed in a strain of E. coli lacking a wild-type copy of fumarate reductase and succinate dehydrogenase. The consequences of these mutations on bacterial growth, enzymatic activity, and the EPR properties of the constituent iron-sulfur clusters were investigated. The FrdB Cys204Ser, Cys210Ser, and Cys214Ser mutations result in enzymes with negligible activity that have dissociated from the membrane and consequently are incapable of supporting cell growth under conditions requiring a functional fumarate reductase. EPR studies indicate that these effects are associated with loss of both the [3Fe-4S] and [4Fe-4S] clusters, centers 3 and 2, respectively. In contrast, the FrdB Val207Cys mutation results in a functional membrane-bound enzyme that is able to support growth under anaerobic and aerobic conditions. However, EPR studies indicate that the indigenous [3Fe-4S]+,0 cluster (Em = -70 mV), center 3, has been replaced by a much lower potential [4Fe-4S]2+,+ cluster (Em = -350 mV), indicating that the primary sequence of the polypeptide determines the type of clusters assembled. The results of these studies afford new insights into the role of centers 2 and 3 in mediating electron transfer from menaquinol, the residues that ligate these clusters, and the intercluster magnetic interactions in the wild-type enzyme.
Collapse
Affiliation(s)
- A Manodori
- Molecular Biology Division, Veterans Administration medical Center, San Francisco, California 94121
| | | | | | | | | | | |
Collapse
|
47
|
Matsubara H, Saeki K. Structural and Functional Diversity of Ferredoxins and Related Proteins. ADVANCES IN INORGANIC CHEMISTRY 1992. [DOI: 10.1016/s0898-8838(08)60065-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
48
|
Chapter 7 Progress in succinate:quinone oxidoreductase research. ACTA ACUST UNITED AC 1992. [DOI: 10.1016/s0167-7306(08)60175-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
49
|
Heinzen RA, Frazier ME, Mallavia LP. Sequence and linkage analysis of the Coxiella burnetii citrate synthase-encoding gene. Gene X 1991; 109:63-9. [PMID: 1756983 DOI: 10.1016/0378-1119(91)90589-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The nucleotide (nt) sequence of the Coxiella burnetii citrate synthase-encoding gene (gltA), previously cloned in Escherichia coli, was determined. The nt sequence analysis revealed an open reading frame (ORF) of 1290 bp capable of coding for a protein of 430 amino acids (aa) with a deduced Mr of 48,633. Preceding an ATG start codon, a possible transcription start point (tsp) with homology to the E. coli promoter consensus was detected. A poly-purine-rich region occurred immediately upstream from the gltA reading frame and potentially serves as a ribosome-binding site. Additionally, a G + C-rich region of dyad symmetry 3' to the translational stop codon was found that could possibly function as a Rho-independent transcriptional termination signal. A large, nearly perfect, inverted repeat was identified upstream from the gltA tsp and was shown by Southern analysis to be present in multiple copies in the C. burnetii genome. The deduced aa sequence of C. burnetii GltA was optimally aligned with enzymes from various prokaryotic sources and one eukaryotic source (pig heart). Using perfect aa identity, the C. burnetii enzyme demonstrated the greatest homology with GltA from Acinetobacter anitratum (65%). Although only 26% aa identity was seen with the pig heart enzyme, many of the residues identified in ligand binding appear to be conserved. Sequencing studies of a region centered approx. 5.6 kb upstream from gltA revealed an ORF read with opposite polarity that encodes a peptide highly homologous to the C terminus of the flavoprotein subunit of E. coli succinate dehydrogenase. This report represents the first nt sequence analysis of a gene of known function from the obligate intracellular parasite, C. burnetii.
Collapse
Affiliation(s)
- R A Heinzen
- Department of Microbiology, Washington State University, Pullman 99164-4340
| | | | | |
Collapse
|
50
|
Bray RC, Turner NA, Le Gall J, Barata BA, Moura JJ. Information from e.p.r. spectroscopy on the iron-sulphur centres of the iron-molybdenum protein (aldehyde oxidoreductase) of Desulfovibrio gigas. Biochem J 1991; 280 ( Pt 3):817-20. [PMID: 1662489 PMCID: PMC1130529 DOI: 10.1042/bj2800817] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
E.p.r. spectra of reduced iron-sulphur centres of the aldehyde oxidoreductase (iron-molybdenum protein) of Desulfovibrio gigas were recorded at X-band and Q-band frequencies and simulated. Results are consistent with the view that only two types of [2Fe-2S] clusters are present, as in eukaryotic molybdenum-containing hydroxylases. The data indicate the Fe/SI centre to be very similar, and the Fe/SII centre somewhat similar, to these centres in the eukaryotic enzymes.
Collapse
Affiliation(s)
- R C Bray
- School of Biological Sciences, University of Sussex, Brighton, U.K
| | | | | | | | | |
Collapse
|