1
|
Sutrina SL, Inniss PI, Lazarus LA, Inglis L, Maximilien J. Replacing the general energy-coupling proteins of the phospho-enol-pyruvate:sugar phosphotransferase system ofSalmonella typhimuriumwith fructose-inducible counterparts results in the inability to utilize nonphosphotransferase system sugars. Can J Microbiol 2007; 53:586-98. [PMID: 17668017 DOI: 10.1139/w07-020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A Salmonella typhimurium mutant lacking Enzyme I and HPr, general proteins of the phosphoenolpyruvate:sugar phosphotransferase system (PTS), but producing homologues EIFructoseand FPr constitutively, did not grow in minimal medium supplemented with non-PTS sugars (melibiose, glycerol, and maltose) in the absence of any trace of Luria–Bertani broth; adding cyclic AMP allowed growth. On melibiose, rapid growth began only when melibiose permease activity had reached a threshold level. Wild-type cultures reached this level within about 2 h, but the mutant only after a 12–14 h lag period, and then only when cyclic AMP had been added to the medium. On a mixture of melibiose and a PTS sugar, permease was undetectable in either the wild type or mutant until the PTS sugar had been exhausted. Permease then appeared, increasing with time, but in the mutant it never reached the threshold allowing rapid growth on melibiose unless cyclic AMP had been added. On rich medium supplemented with melibiose or glycerol, the mutant produced lower (30%) levels of melibiose permease or glycerol kinase compared with the wild type. We propose that poor phosphorylation of the regulatory protein Enzyme IIAGlucose, leading to constitutive inducer exclusion and catabolite repression in this strain, accounts for these results.
Collapse
Affiliation(s)
- Sarah L Sutrina
- Department of Biological and Chemical Sciences, The University of the West Indies, Cave Hill Campus, Barbados.
| | | | | | | | | |
Collapse
|
2
|
Sutrina SL, Alleyne L, Hoyte K, Blenman M. Effect of replacing the general energy-coupling proteins of the PEP:sugar phosphotransferase system of Salmonella typhimurium with their fructose-inducible counterparts on utilization of the PTS sugar glucitol. MICROBIOLOGY (READING, ENGLAND) 2002; 148:3857-3864. [PMID: 12480889 DOI: 10.1099/00221287-148-12-3857] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A strain of Salmonella typhimurium in which the genes encoding the general phosphoenolpyruvate:sugar phosphotransferase system (PTS) proteins HPr and Enzyme I have been deleted, the normally cryptic gene encoding the fructose-inducible Enzyme I (EI* or EI(fructose)) is expressed, and the fructose repressor protein is inactive (fruR or cra mutant) was studied. This strain lacks HPr and EI, but expresses FPr (DTP) and EI(fructose) constitutively. Since FPr and EI(fructose) can substitute for HPr and EI, the strain grew in minimal liquid medium supplemented with the PTS sugars glucose, fructose, N-acetylglucosamine, mannitol or mannose. However, it showed very poor to negligible growth on the PTS sugar glucitol. It also grew very poorly on the non-PTS sugars maltose, melibiose and especially glycerol. Adding cAMP to the medium allowed growth on glucitol, but did not affect growth on glycerol. We suggest that poor phosphorylation of the regulatory molecule Enzyme IIA(glucose) by FPr is responsible for these effects.
Collapse
Affiliation(s)
- Sarah L Sutrina
- Department of Biological and Chemical Sciences, The University of the West Indies, Cave Hill Campus, Barbados1
| | - Lisa Alleyne
- Department of Biological and Chemical Sciences, The University of the West Indies, Cave Hill Campus, Barbados1
| | - Keisher Hoyte
- Department of Biological and Chemical Sciences, The University of the West Indies, Cave Hill Campus, Barbados1
| | - Margot Blenman
- Department of Biological and Chemical Sciences, The University of the West Indies, Cave Hill Campus, Barbados1
| |
Collapse
|
3
|
Rabus R, Reizer J, Paulsen I, Saier MH. Enzyme I(Ntr) from Escherichia coli. A novel enzyme of the phosphoenolpyruvate-dependent phosphotransferase system exhibiting strict specificity for its phosphoryl acceptor, NPr. J Biol Chem 1999; 274:26185-91. [PMID: 10473571 DOI: 10.1074/jbc.274.37.26185] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The phosphoenolpyruvate (PEP)-dependent phosphotransferase system (PTS) phosphorylates sugars and regulates cellular metabolic processes using a phosphoryl transfer chain including the general energy coupling proteins, Enzyme I (EI) and HPr as well as the sugar-specific Enzyme II complexes. Analysis of the Escherichia coli genome has revealed the presence of 5 paralogues of EI and 5 paralogues of HPr, most of unknown function. The ptsP gene encodes an EI paralogue designated Enzyme I(nitrogen) (EI(Ntr)), and two genes located in the rpoN operon encode PTS protein paralogues, NPr and IIA(Ntr), both implicated in the regulation of sigma(54) activity. The ptsP gene was polymerase chain reaction amplified from the E. coli chromosome and cloned into an overexpression vector allowing the overproduction and purification of EI(Ntr). EI(Ntr) was shown to phosphorylate NPr in vitro using either a [(32)P]PEP-dependent protein phosphorylation assay or a quantitative sugar phosphorylation assay. EI(Ntr) phosphorylated NPr but not HPr, whereas Enzyme I exhibited a strong preference for HPr. These two pairs of proteins (EI(Ntr)/NPr and EI/HPr) thus exhibit little cross-reactivity. Phosphoryl transfer from PEP to NPr catalyzed by EI(Ntr) has a pH optimum of 8.0, is dependent on Mg(2+), is stimulated by high ionic strength, and exhibits two K(m) values for NPr (2 and 10 microM) possibly because of negative cooperativity. The results suggest that E. coli possesses at least two distinct PTS phosphoryl transfer chains, EI(Ntr) --> NPr --> IIA(Ntr) and EI --> HPr --> IIA(sugar). Sequence comparisons allow prediction of residues likely to be important for specificity. This is the first report demonstrating specificity at the level of the energy coupling proteins of the PTS.
Collapse
Affiliation(s)
- R Rabus
- Department of Biology, University of California at San Diego, La Jolla, California 92093-0116, USA
| | | | | | | |
Collapse
|
4
|
Titgemeyer F, Reizer J, Reizer A, Tang J, Parr TR, Saier MH. Nucleotide sequence of the region between crr and cysM in Salmonella typhimurium: five novel ORFs including one encoding a putative transcriptional regulator of the phosphotransferase system. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 1995; 5:145-52. [PMID: 7612925 DOI: 10.3109/10425179509029354] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A 4471 bp region between crr and cysM on the Salmonella typhimurium chromosome (49.5 min) has been sequenced. Five ORFs were found within this region, one of which is likely to be the putative regulatory gene, ptsJ, that corresponds in map position to a gene which when mutated allows expression of a cryptic Enzyme I of the phosphotransferase system. The deduced amino acid sequence of the encoded protein is similar to those of several open reading frames (ORFs) including ORFT2 of Rhodobacter spheroides with which it is 28% identical throughout most of its length (comparison score of 21 S.D.). PtsJ exhibits a putative, N-terminal, helix-turn-helix, DNA binding domain that is similar in sequence to those in members of the GntR family of transcriptional regulators. Analyses of the sequences of the ORFs encoded within this region are presented.
Collapse
Affiliation(s)
- F Titgemeyer
- Department of Biology, University of California at San Diego, La Jolla 92093-0116, USA
| | | | | | | | | | | |
Collapse
|
5
|
Abstract
In 1964, Kundig, Ghosh and Roseman reported the discovery of the phosphoenolpyruvate:sugar phosphotransferase system (PTS). Thirty years later, we find that the PTS functions not only as a sugar-phosphorylating system, but also as a complex protein kinase system that regulates a wide variety of metabolic processes and controls the expression of numerous genes. As a result of recent operon- and genome-sequencing projects, novel PTS protein-encoding genes have been discovered, most of which have yet to be functionally defined. Some of them appear to be involved in cellular processes distinct from those recognized previously. Fundamental aspects of past and current PTS research are briefly reviewed, and recent advances are integrated into conceptual pictures that provide guides for future research.
Collapse
Affiliation(s)
- M H Saier
- Department of Biology, University of California at San Diego, La Jolla 92093-0116
| | | |
Collapse
|
6
|
Postma PW, Lengeler JW, Jacobson GR. Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 1993; 57:543-94. [PMID: 8246840 PMCID: PMC372926 DOI: 10.1128/mr.57.3.543-594.1993] [Citation(s) in RCA: 850] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Numerous gram-negative and gram-positive bacteria take up carbohydrates through the phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS). This system transports and phosphorylates carbohydrates at the expense of PEP and is the subject of this review. The PTS consists of two general proteins, enzyme I and HPr, and a number of carbohydrate-specific enzymes, the enzymes II. PTS proteins are phosphoproteins in which the phospho group is attached to either a histidine residue or, in a number of cases, a cysteine residue. After phosphorylation of enzyme I by PEP, the phospho group is transferred to HPr. The enzymes II are required for the transport of the carbohydrates across the membrane and the transfer of the phospho group from phospho-HPr to the carbohydrates. Biochemical, structural, and molecular genetic studies have shown that the various enzymes II have the same basic structure. Each enzyme II consists of domains for specific functions, e.g., binding of the carbohydrate or phosphorylation. Each enzyme II complex can consist of one to four different polypeptides. The enzymes II can be placed into at least four classes on the basis of sequence similarity. The genetics of the PTS is complex, and the expression of PTS proteins is intricately regulated because of the central roles of these proteins in nutrient acquisition. In addition to classical induction-repression mechanisms involving repressor and activator proteins, other types of regulation, such as antitermination, have been observed in some PTSs. Apart from their role in carbohydrate transport, PTS proteins are involved in chemotaxis toward PTS carbohydrates. Furthermore, the IIAGlc protein, part of the glucose-specific PTS, is a central regulatory protein which in its nonphosphorylated form can bind to and inhibit several non-PTS uptake systems and thus prevent entry of inducers. In its phosphorylated form, P-IIAGlc is involved in the activation of adenylate cyclase and thus in the regulation of gene expression. By sensing the presence of PTS carbohydrates in the medium and adjusting the phosphorylation state of IIAGlc, cells can adapt quickly to changing conditions in the environment. In gram-positive bacteria, it has been demonstrated that HPr can be phosphorylated by ATP on a serine residue and this modification may perform a regulatory function.
Collapse
Affiliation(s)
- P W Postma
- E. C. Slater Institute, University of Amsterdam, The Netherlands
| | | | | |
Collapse
|
7
|
Reizer A, Pao GM, Saier MH. Evolutionary relationships among the permease proteins of the bacterial phosphoenolpyruvate: sugar phosphotransferase system. Construction of phylogenetic trees and possible relatedness to proteins of eukaryotic mitochondria. J Mol Evol 1991; 33:179-93. [PMID: 1920454 DOI: 10.1007/bf02193633] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The amino acid sequences of 15 sugar permeases of the bacterial phosphoenolpyruvate-dependent phosphotransferase system (PTS) were divided into four homologous segments, and these segments were analyzed to give phylogenetic trees. The permease segments fell into four clusters: the lactose-cellobiose cluster, the fructose-mannitol cluster, the glucose-N-acetylglucosamine cluster, and the sucrose-beta-glucoside cluster. Sequences of the glucitol and mannose permeases (clusters 5 and 6, respectively) were too dissimilar to establish homology with the other permeases, but short regions of statistically significant sequence similarities were noted. The functional and structural relationships of these permease segments are discussed. Some of the homologous PTS permeases were found to exhibit sufficient sequence similarity to subunits 4 and 5 of the eukaryotic mitochondrial NADH dehydrogenase complex to suggest homology. Moreover, subunits 4 and 5 of this complex appeared to be homologous to each other, suggesting that these PTS and mitochondrial proteins comprise a superfamily. The integral membrane subunits of the evolutionarily divergent mannose PTS permease, the P and M subunits, exhibited limited sequence similarity to subunit 6 of the mitochondrial F1F0-ATPase and subunit 5b of cytochrome oxidase, respectively. These results suggest that PTS sugar permeases and mitochondrial proton-translocating proteins may be related, although the possibility of convergent evolution cannot be ruled out.
Collapse
Affiliation(s)
- A Reizer
- Department of Biology, University of California, San Diego, La Jolla 92093-0116
| | | | | |
Collapse
|
8
|
Dean DA, Reizer J, Nikaido H, Saier MH. Regulation of the maltose transport system of Escherichia coli by the glucose-specific enzyme III of the phosphoenolpyruvate-sugar phosphotransferase system. Characterization of inducer exclusion-resistant mutants and reconstitution of inducer exclusion in proteoliposomes. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(17)45318-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
9
|
Feldheim DA, Chin AM, Nierva CT, Feucht BU, Cao YW, Xu YF, Sutrina SL, Saier MH. Physiological consequences of the complete loss of phosphoryl-transfer proteins HPr and FPr of the phosphoenolpyruvate:sugar phosphotransferase system and analysis of fructose (fru) operon expression in Salmonella typhimurium. J Bacteriol 1990; 172:5459-69. [PMID: 2203752 PMCID: PMC213213 DOI: 10.1128/jb.172.9.5459-5469.1990] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mutants of Salmonella typhimurium defective in the proteins of the fructose operon [fruB(MH)KA], the fructose repressor (fruR), the energy-coupling enzymes of the phosphoenolpyruvate:sugar phosphotransferase system (PTS) (ptsH and ptsI), and the proteins of cyclic AMP action (cya and crp) were analyzed for their effects on cellular physiological processes and expression of the fructose operon. The fru operon consists of three structural genes: fruB(MH), which encodes the enzyme IIIFru-modulator-FPr tridomain fusion protein of the PTS; fruK, which encodes fructose-1-phosphate kinase; and fruA, which encodes enzyme IIFru of the PTS. Among the mutants analyzed were Tn10 insertion mutants and lacZ transcriptional fusion mutants. It was found that whereas a fruR::Tn10 insertion mutant, several fruB(MH)::Mu dJ and fruK::Mu dJ fusion mutants, and several ptsHI deletion mutants expressed the fru operon and beta-galactosidase at high constitutive levels, ptsH point mutants and fruA::Mu dJ fusion mutants retained inducibility. Inclusion of the wild-type fru operon in trans did not restore fructose-inducible beta-galactosidase expression in the fru::Mu dJ fusion mutants. cya and crp mutants exhibited reduced basal activities of all fru regulon enzymes, but inducibility was not impaired. Surprisingly, fruB::Mu dJ crp or cya double mutants showed over 10-fold inducibility of the depressed beta-galactosidase activity upon addition of fructose, even though this activity in the fruB::Mu dJ fusion mutants that contained the wild-type cya and crp alleles was only slightly inducible. By contrast, beta-galactosidase activity in a fruK::Mu dJ fusion mutant, which was similarly depressed by introduction of a crp or cya mutation, remained constitutive. Other experiments indicated that sugar uptake via the PTS can utilize either FPr-P or HPr-P as the phosphoryl donor, but that FPr is preferred for fructose uptake whereas HPr is preferred for uptake of the other sugars. Double mutants lacking both proteins were negative for the utilization of all sugar substrates of the PTS, were negative for the utilization of several gluconeogenic carbon sources, exhibited greatly reduced adenylate cyclase activity, and were largely nonmotile. These phenotypic properties are more extreme than those observed for tight ptsH and ptsI mutants, including mutants deleted for these genes. A biochemical explanation for this fact is proposed.
Collapse
Affiliation(s)
- D A Feldheim
- Department of Biology, University of California, San Diego, La Jolla 92093
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Wu LF, Tomich JM, Saier MH. Structure and evolution of a multidomain multiphosphoryl transfer protein. Nucleotide sequence of the fruB(HI) gene in Rhodobacter capsulatus and comparisons with homologous genes from other organisms. J Mol Biol 1990; 213:687-703. [PMID: 2193161 DOI: 10.1016/s0022-2836(05)80256-6] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The gene order of the fructose (fru) operon and nucleotide sequence of the first gene (fruB(HI) of Rhodobacter capsulatus are reported, analyzed and compared with homologous genes from other bacteria, and the gene products are identified. Included within the region reported is a gene encoding a multiphosphoryl transfer protein (MTP) of the phosphoenolpyruvate:sugar phosphotransferase system (PTS). MTP consists of three moieties: a fructose-specific enzyme III (IIIfru)-like N-terminal moiety (residues 1 to 143) followed by an FPr(HPr)-like moiety (residues 157 to 245) and an enzyme I-like moiety (residues 273 to 827). The enzyme III-like moiety closely resembles the N-terminal 143 residues of the IIIfru-FPR fusion protein from Salmonella typhimurium (40.6% identity throughout its length) and the C-terminal 145 residues of the mannitol-specific enzyme II (IImtl) (37.8% identity throughout its length with the IIImtl moiety of IImtl). The FPr-like domain of MTP resembles the S. typhimurium FPr (42.4% identity) and the Escherichia coli or S. typhimurium HPr (38.8% identity). The enzyme I-like moiety resembles the E. coli enzyme I (38.9% identity). Predicted phosphorylation sites within the three functional units of MTP (His62 in the IIIfru-like moiety; His171 in the FPr-like moiety and His457 in the enzyme I-like moiety) were identified on the basis of sequence comparisons with the homologous proteins from enteric bacteria. The three functional domains of MTP are joined by two flexible "linkage" regions, rich in alanine, glycine and proline, which show 47% sequence identity with each other. They also exhibit a high degree of sequence identity with the linkage region of the mannose-specific enzyme III (IIIman) of the E. coli PTS as well as several other proteins of bacterial, eukaryotic and viral origin. At the RNA level, these linker regions formed hairpin structures with high (90%) G + C content. Analyses of the IIIfru-FPr fusion protein of S. typhimurium revealed that between the IIIfru and FPr moieties of this protein is a stretch of 142 amino acids that do not show homology to known PTS proteins. This region and the adjacent FPr-like region contain a sequence of 110 residues exhibiting 59% similarity to the receiver consensus motif defined by Kofoid and Parkinson. Because the Salmonella IIIfru-FPr fusion protein has been implicated in transcriptional regulation, this region of the Salmonella protein may prove to have regulatory significance.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- L F Wu
- Department of Biology, University of California, San Diego, La Jolla 92093
| | | | | |
Collapse
|
11
|
Saier MH. Current studies on the bacterial phosphotransferase system in the Saier laboratory (La Jolla, California, Summer, 1988). FEMS Microbiol Lett 1989. [DOI: 10.1111/j.1574-6968.1989.tb14115.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
12
|
|
13
|
Sutrina SL, Chin AM, Esch F, Saier MH. Purification and characterization of the fructose-inducible HPr-like protein, FPr, and the fructose-specific enzyme III of the phosphoenolpyruvate: sugar phosphotransferase system of Salmonella typhimurium. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)60679-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
14
|
Chin AM, Feucht BU, Saier MH. Evidence for regulation of gluconeogenesis by the fructose phosphotransferase system in Salmonella typhimurium. J Bacteriol 1987; 169:897-9. [PMID: 3542978 PMCID: PMC211866 DOI: 10.1128/jb.169.2.897-899.1987] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A genetic locus designated fruR, previously mapped to min 3 on the Salmonella typhimurium chromosome, gave rise to constitutive expression of the fructose (fru) regulon and pleiotropically prevented growth on all Krebs cycle intermediates. Regulatory effects of fruR were independent of cyclic AMP and its receptor protein and did not prevent uptake of Krebs cycle intermediates. Instead, the phosphotransferase system appeared to regulate gluconeogenesis by controlling the activities of phosphoenolpyruvate carboxykinase and phosphoenolpyruvate synthase.
Collapse
|